L(s) = 1 | − 2.23i·5-s + (2.61 + 2.61i)11-s + (−2 + 3i)13-s + (2.23 − 2.23i)17-s + (5.85 + 5.85i)19-s + (−3.38 − 3.38i)23-s − 5.00·25-s + 5.23i·29-s + (5.85 − 5.85i)31-s + 9.70i·37-s + (−3.76 + 3.76i)41-s + (−3.85 − 3.85i)43-s + 8.94i·47-s + 7·49-s + (−1.47 + 1.47i)53-s + ⋯ |
L(s) = 1 | − 0.999i·5-s + (0.789 + 0.789i)11-s + (−0.554 + 0.832i)13-s + (0.542 − 0.542i)17-s + (1.34 + 1.34i)19-s + (−0.705 − 0.705i)23-s − 1.00·25-s + 0.972i·29-s + (1.05 − 1.05i)31-s + 1.59i·37-s + (−0.587 + 0.587i)41-s + (−0.587 − 0.587i)43-s + 1.30i·47-s + 49-s + (−0.202 + 0.202i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.966 - 0.256i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.966 - 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.821891242\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.821891242\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + 2.23iT \) |
| 13 | \( 1 + (2 - 3i)T \) |
good | 7 | \( 1 - 7T^{2} \) |
| 11 | \( 1 + (-2.61 - 2.61i)T + 11iT^{2} \) |
| 17 | \( 1 + (-2.23 + 2.23i)T - 17iT^{2} \) |
| 19 | \( 1 + (-5.85 - 5.85i)T + 19iT^{2} \) |
| 23 | \( 1 + (3.38 + 3.38i)T + 23iT^{2} \) |
| 29 | \( 1 - 5.23iT - 29T^{2} \) |
| 31 | \( 1 + (-5.85 + 5.85i)T - 31iT^{2} \) |
| 37 | \( 1 - 9.70iT - 37T^{2} \) |
| 41 | \( 1 + (3.76 - 3.76i)T - 41iT^{2} \) |
| 43 | \( 1 + (3.85 + 3.85i)T + 43iT^{2} \) |
| 47 | \( 1 - 8.94iT - 47T^{2} \) |
| 53 | \( 1 + (1.47 - 1.47i)T - 53iT^{2} \) |
| 59 | \( 1 + (-3.38 + 3.38i)T - 59iT^{2} \) |
| 61 | \( 1 - 5.70T + 61T^{2} \) |
| 67 | \( 1 + 0.291T + 67T^{2} \) |
| 71 | \( 1 + (2.61 - 2.61i)T - 71iT^{2} \) |
| 73 | \( 1 - 11.7T + 73T^{2} \) |
| 79 | \( 1 + 3.70iT - 79T^{2} \) |
| 83 | \( 1 + 10.4iT - 83T^{2} \) |
| 89 | \( 1 + (-2.23 + 2.23i)T - 89iT^{2} \) |
| 97 | \( 1 - 15.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.101498473155164723825307185131, −8.234005103817220782302507103913, −7.58535115007675060857447000572, −6.71627340147355089720103066582, −5.85168947634319406147281034353, −4.90308086578868861123383054332, −4.36850045841657432318850011617, −3.36109205748141406254339579891, −1.98221446923143905892971355481, −1.08255356534435903536922387422,
0.75663905842047902556270462590, 2.28236865222397606820576494257, 3.24052041124100521842339830390, 3.81923703491424639438027110711, 5.17648650337015644912133188417, 5.83517397011830226209491309634, 6.70432109003418189178910977831, 7.37633014870060540059042164465, 8.086949198950060279147068409776, 8.982313368259731453917825392935