Properties

Label 2340.2.fo.b.1961.1
Level $2340$
Weight $2$
Character 2340.1961
Analytic conductor $18.685$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1241,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.fo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1961.1
Character \(\chi\) \(=\) 2340.1961
Dual form 2340.2.fo.b.1241.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{5} +(0.0943773 + 0.352221i) q^{7} +(0.741884 - 2.76875i) q^{11} +(2.55727 - 2.54173i) q^{13} +(-2.67668 + 4.63615i) q^{17} +(-0.440635 + 0.118068i) q^{19} +(4.23522 + 7.33561i) q^{23} -1.00000i q^{25} +(3.94905 - 2.27999i) q^{29} +(-5.97321 - 5.97321i) q^{31} +(-0.315793 - 0.182323i) q^{35} +(8.63123 + 2.31273i) q^{37} +(-4.92527 - 1.31972i) q^{41} +(3.85361 + 2.22488i) q^{43} +(-1.40381 - 1.40381i) q^{47} +(5.94703 - 3.43352i) q^{49} -9.32366i q^{53} +(1.43321 + 2.48239i) q^{55} +(5.14683 - 1.37909i) q^{59} +(-2.66247 + 4.61153i) q^{61} +(-0.0109895 + 3.60553i) q^{65} +(3.61721 - 13.4996i) q^{67} +(3.70429 + 13.8246i) q^{71} +(6.70176 - 6.70176i) q^{73} +1.04523 q^{77} +8.79220 q^{79} +(-5.75093 + 5.75093i) q^{83} +(-1.38555 - 5.17096i) q^{85} +(-3.42864 + 12.7959i) q^{89} +(1.13660 + 0.660842i) q^{91} +(0.228090 - 0.395063i) q^{95} +(6.07736 - 1.62842i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 8 q^{7} + 12 q^{13} + 28 q^{19} + 36 q^{31} - 40 q^{37} - 72 q^{43} - 36 q^{49} - 32 q^{61} + 16 q^{67} + 28 q^{73} + 48 q^{79} - 20 q^{85} + 132 q^{91} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) 0.0943773 + 0.352221i 0.0356713 + 0.133127i 0.981465 0.191640i \(-0.0613807\pi\)
−0.945794 + 0.324767i \(0.894714\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.741884 2.76875i 0.223686 0.834809i −0.759240 0.650811i \(-0.774429\pi\)
0.982927 0.183999i \(-0.0589042\pi\)
\(12\) 0 0
\(13\) 2.55727 2.54173i 0.709259 0.704948i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.67668 + 4.63615i −0.649191 + 1.12443i 0.334125 + 0.942529i \(0.391559\pi\)
−0.983316 + 0.181903i \(0.941774\pi\)
\(18\) 0 0
\(19\) −0.440635 + 0.118068i −0.101089 + 0.0270866i −0.309009 0.951059i \(-0.599997\pi\)
0.207920 + 0.978146i \(0.433331\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.23522 + 7.33561i 0.883104 + 1.52958i 0.847872 + 0.530202i \(0.177884\pi\)
0.0352322 + 0.999379i \(0.488783\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.94905 2.27999i 0.733320 0.423383i −0.0863154 0.996268i \(-0.527509\pi\)
0.819636 + 0.572885i \(0.194176\pi\)
\(30\) 0 0
\(31\) −5.97321 5.97321i −1.07282 1.07282i −0.997132 0.0756883i \(-0.975885\pi\)
−0.0756883 0.997132i \(-0.524115\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.315793 0.182323i −0.0533787 0.0308182i
\(36\) 0 0
\(37\) 8.63123 + 2.31273i 1.41897 + 0.380211i 0.885117 0.465369i \(-0.154078\pi\)
0.533849 + 0.845580i \(0.320745\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.92527 1.31972i −0.769199 0.206106i −0.147181 0.989110i \(-0.547020\pi\)
−0.622017 + 0.783003i \(0.713687\pi\)
\(42\) 0 0
\(43\) 3.85361 + 2.22488i 0.587670 + 0.339292i 0.764176 0.645008i \(-0.223146\pi\)
−0.176505 + 0.984300i \(0.556479\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.40381 1.40381i −0.204766 0.204766i 0.597272 0.802039i \(-0.296251\pi\)
−0.802039 + 0.597272i \(0.796251\pi\)
\(48\) 0 0
\(49\) 5.94703 3.43352i 0.849575 0.490502i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.32366i 1.28070i −0.768082 0.640352i \(-0.778789\pi\)
0.768082 0.640352i \(-0.221211\pi\)
\(54\) 0 0
\(55\) 1.43321 + 2.48239i 0.193254 + 0.334726i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.14683 1.37909i 0.670060 0.179542i 0.0922781 0.995733i \(-0.470585\pi\)
0.577782 + 0.816191i \(0.303918\pi\)
\(60\) 0 0
\(61\) −2.66247 + 4.61153i −0.340894 + 0.590445i −0.984599 0.174828i \(-0.944063\pi\)
0.643705 + 0.765274i \(0.277396\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.0109895 + 3.60553i −0.00136308 + 0.447212i
\(66\) 0 0
\(67\) 3.61721 13.4996i 0.441912 1.64924i −0.282050 0.959400i \(-0.591014\pi\)
0.723962 0.689839i \(-0.242319\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.70429 + 13.8246i 0.439619 + 1.64068i 0.729766 + 0.683697i \(0.239629\pi\)
−0.290148 + 0.956982i \(0.593704\pi\)
\(72\) 0 0
\(73\) 6.70176 6.70176i 0.784382 0.784382i −0.196185 0.980567i \(-0.562855\pi\)
0.980567 + 0.196185i \(0.0628553\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.04523 0.119115
\(78\) 0 0
\(79\) 8.79220 0.989200 0.494600 0.869121i \(-0.335315\pi\)
0.494600 + 0.869121i \(0.335315\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.75093 + 5.75093i −0.631246 + 0.631246i −0.948381 0.317134i \(-0.897279\pi\)
0.317134 + 0.948381i \(0.397279\pi\)
\(84\) 0 0
\(85\) −1.38555 5.17096i −0.150284 0.560869i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.42864 + 12.7959i −0.363435 + 1.35636i 0.506094 + 0.862478i \(0.331089\pi\)
−0.869530 + 0.493881i \(0.835578\pi\)
\(90\) 0 0
\(91\) 1.13660 + 0.660842i 0.119148 + 0.0692751i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.228090 0.395063i 0.0234015 0.0405326i
\(96\) 0 0
\(97\) 6.07736 1.62842i 0.617063 0.165341i 0.0632707 0.997996i \(-0.479847\pi\)
0.553792 + 0.832655i \(0.313180\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.37827 + 11.0475i 0.634661 + 1.09927i 0.986587 + 0.163237i \(0.0521936\pi\)
−0.351926 + 0.936028i \(0.614473\pi\)
\(102\) 0 0
\(103\) 11.2042i 1.10398i 0.833850 + 0.551991i \(0.186132\pi\)
−0.833850 + 0.551991i \(0.813868\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.0311 6.36880i 1.06642 0.615696i 0.139216 0.990262i \(-0.455542\pi\)
0.927200 + 0.374567i \(0.122208\pi\)
\(108\) 0 0
\(109\) 9.42497 + 9.42497i 0.902749 + 0.902749i 0.995673 0.0929245i \(-0.0296215\pi\)
−0.0929245 + 0.995673i \(0.529622\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.9331 + 8.04429i 1.31072 + 0.756743i 0.982215 0.187760i \(-0.0601228\pi\)
0.328502 + 0.944503i \(0.393456\pi\)
\(114\) 0 0
\(115\) −8.18181 2.19231i −0.762958 0.204434i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.88557 0.505236i −0.172850 0.0463149i
\(120\) 0 0
\(121\) 2.41070 + 1.39182i 0.219155 + 0.126529i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) −11.4078 + 6.58632i −1.01228 + 0.584441i −0.911859 0.410504i \(-0.865353\pi\)
−0.100423 + 0.994945i \(0.532020\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.4866i 0.916217i 0.888896 + 0.458109i \(0.151473\pi\)
−0.888896 + 0.458109i \(0.848527\pi\)
\(132\) 0 0
\(133\) −0.0831720 0.144058i −0.00721192 0.0124914i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.61194 2.03961i 0.650332 0.174256i 0.0814531 0.996677i \(-0.474044\pi\)
0.568879 + 0.822421i \(0.307377\pi\)
\(138\) 0 0
\(139\) 2.34623 4.06379i 0.199004 0.344686i −0.749201 0.662342i \(-0.769563\pi\)
0.948206 + 0.317656i \(0.102896\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.14021 8.96610i −0.429846 0.749783i
\(144\) 0 0
\(145\) −1.18021 + 4.40459i −0.0980109 + 0.365782i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.968416 + 3.61418i 0.0793358 + 0.296085i 0.994181 0.107719i \(-0.0343545\pi\)
−0.914846 + 0.403804i \(0.867688\pi\)
\(150\) 0 0
\(151\) 13.2072 13.2072i 1.07478 1.07478i 0.0778166 0.996968i \(-0.475205\pi\)
0.996968 0.0778166i \(-0.0247949\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.44739 0.678511
\(156\) 0 0
\(157\) 19.1626 1.52935 0.764673 0.644419i \(-0.222901\pi\)
0.764673 + 0.644419i \(0.222901\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.18405 + 2.18405i −0.172127 + 0.172127i
\(162\) 0 0
\(163\) −1.59062 5.93628i −0.124587 0.464966i 0.875237 0.483694i \(-0.160705\pi\)
−0.999825 + 0.0187278i \(0.994038\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.04153 11.3511i 0.235361 0.878378i −0.742625 0.669707i \(-0.766420\pi\)
0.977986 0.208671i \(-0.0669136\pi\)
\(168\) 0 0
\(169\) 0.0792459 12.9998i 0.00609584 0.999981i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.45218 + 2.51525i −0.110407 + 0.191231i −0.915935 0.401328i \(-0.868549\pi\)
0.805527 + 0.592559i \(0.201882\pi\)
\(174\) 0 0
\(175\) 0.352221 0.0943773i 0.0266254 0.00713425i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.59526 11.4233i −0.492953 0.853820i 0.507014 0.861938i \(-0.330749\pi\)
−0.999967 + 0.00811814i \(0.997416\pi\)
\(180\) 0 0
\(181\) 23.1725i 1.72240i −0.508266 0.861200i \(-0.669713\pi\)
0.508266 0.861200i \(-0.330287\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −7.73855 + 4.46786i −0.568950 + 0.328483i
\(186\) 0 0
\(187\) 10.8506 + 10.8506i 0.793471 + 0.793471i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.1414 11.0513i −1.38502 0.799642i −0.392271 0.919850i \(-0.628311\pi\)
−0.992749 + 0.120208i \(0.961644\pi\)
\(192\) 0 0
\(193\) −19.8294 5.31327i −1.42735 0.382458i −0.539266 0.842136i \(-0.681298\pi\)
−0.888086 + 0.459678i \(0.847965\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.88280 + 2.11219i 0.561626 + 0.150487i 0.528453 0.848962i \(-0.322772\pi\)
0.0331729 + 0.999450i \(0.489439\pi\)
\(198\) 0 0
\(199\) −6.89149 3.97881i −0.488525 0.282050i 0.235437 0.971890i \(-0.424348\pi\)
−0.723962 + 0.689839i \(0.757681\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.17576 + 1.17576i 0.0825221 + 0.0825221i
\(204\) 0 0
\(205\) 4.41588 2.54951i 0.308418 0.178065i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.30760i 0.0904487i
\(210\) 0 0
\(211\) 3.48632 + 6.03848i 0.240008 + 0.415706i 0.960716 0.277532i \(-0.0895166\pi\)
−0.720708 + 0.693239i \(0.756183\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.29815 + 1.15168i −0.293131 + 0.0785443i
\(216\) 0 0
\(217\) 1.54015 2.66762i 0.104552 0.181090i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.93883 + 18.6593i 0.332222 + 1.25516i
\(222\) 0 0
\(223\) 0.596124 2.22477i 0.0399194 0.148981i −0.943090 0.332539i \(-0.892095\pi\)
0.983009 + 0.183558i \(0.0587614\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.858436 3.20373i −0.0569764 0.212639i 0.931569 0.363566i \(-0.118441\pi\)
−0.988545 + 0.150927i \(0.951774\pi\)
\(228\) 0 0
\(229\) −9.86704 + 9.86704i −0.652032 + 0.652032i −0.953482 0.301450i \(-0.902529\pi\)
0.301450 + 0.953482i \(0.402529\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.6009 −1.08756 −0.543780 0.839228i \(-0.683007\pi\)
−0.543780 + 0.839228i \(0.683007\pi\)
\(234\) 0 0
\(235\) 1.98528 0.129506
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.9444 13.9444i 0.901991 0.901991i −0.0936174 0.995608i \(-0.529843\pi\)
0.995608 + 0.0936174i \(0.0298430\pi\)
\(240\) 0 0
\(241\) 4.81769 + 17.9799i 0.310335 + 1.15818i 0.928255 + 0.371944i \(0.121309\pi\)
−0.617920 + 0.786241i \(0.712025\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.77732 + 6.63304i −0.113549 + 0.423770i
\(246\) 0 0
\(247\) −0.826727 + 1.42191i −0.0526034 + 0.0904737i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −14.3742 + 24.8968i −0.907288 + 1.57147i −0.0894727 + 0.995989i \(0.528518\pi\)
−0.817816 + 0.575480i \(0.804815\pi\)
\(252\) 0 0
\(253\) 23.4525 6.28408i 1.47445 0.395077i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.48872 16.4349i −0.591890 1.02518i −0.993978 0.109583i \(-0.965049\pi\)
0.402088 0.915601i \(-0.368285\pi\)
\(258\) 0 0
\(259\) 3.25837i 0.202465i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.9273 8.04093i 0.858794 0.495825i −0.00481415 0.999988i \(-0.501532\pi\)
0.863608 + 0.504163i \(0.168199\pi\)
\(264\) 0 0
\(265\) 6.59282 + 6.59282i 0.404994 + 0.404994i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −19.4762 11.2446i −1.18748 0.685593i −0.229748 0.973250i \(-0.573790\pi\)
−0.957733 + 0.287657i \(0.907124\pi\)
\(270\) 0 0
\(271\) −31.1063 8.33492i −1.88958 0.506310i −0.998637 0.0521842i \(-0.983382\pi\)
−0.890938 0.454126i \(-0.849952\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.76875 0.741884i −0.166962 0.0447373i
\(276\) 0 0
\(277\) 10.0765 + 5.81765i 0.605437 + 0.349549i 0.771177 0.636620i \(-0.219668\pi\)
−0.165741 + 0.986169i \(0.553002\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 17.0909 + 17.0909i 1.01956 + 1.01956i 0.999805 + 0.0197551i \(0.00628864\pi\)
0.0197551 + 0.999805i \(0.493711\pi\)
\(282\) 0 0
\(283\) 3.86509 2.23151i 0.229755 0.132649i −0.380704 0.924697i \(-0.624318\pi\)
0.610459 + 0.792048i \(0.290985\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.85934i 0.109753i
\(288\) 0 0
\(289\) −5.82927 10.0966i −0.342898 0.593917i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.88583 + 0.773256i −0.168592 + 0.0451741i −0.342128 0.939654i \(-0.611148\pi\)
0.173536 + 0.984828i \(0.444481\pi\)
\(294\) 0 0
\(295\) −2.66419 + 4.61452i −0.155115 + 0.268668i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 29.4757 + 7.99436i 1.70462 + 0.462326i
\(300\) 0 0
\(301\) −0.419957 + 1.56730i −0.0242059 + 0.0903377i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.37819 5.14349i −0.0789151 0.294515i
\(306\) 0 0
\(307\) −3.16535 + 3.16535i −0.180656 + 0.180656i −0.791642 0.610986i \(-0.790773\pi\)
0.610986 + 0.791642i \(0.290773\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.00398 0.227045 0.113522 0.993535i \(-0.463787\pi\)
0.113522 + 0.993535i \(0.463787\pi\)
\(312\) 0 0
\(313\) 5.88412 0.332590 0.166295 0.986076i \(-0.446820\pi\)
0.166295 + 0.986076i \(0.446820\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.7128 14.7128i 0.826356 0.826356i −0.160655 0.987011i \(-0.551361\pi\)
0.987011 + 0.160655i \(0.0513607\pi\)
\(318\) 0 0
\(319\) −3.38297 12.6254i −0.189410 0.706888i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.632061 2.35888i 0.0351688 0.131252i
\(324\) 0 0
\(325\) −2.54173 2.55727i −0.140990 0.141852i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.361963 0.626938i 0.0199557 0.0345642i
\(330\) 0 0
\(331\) −22.5912 + 6.05330i −1.24173 + 0.332720i −0.819135 0.573601i \(-0.805546\pi\)
−0.422592 + 0.906320i \(0.638880\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.98791 + 12.1034i 0.381790 + 0.661280i
\(336\) 0 0
\(337\) 30.4217i 1.65717i 0.559860 + 0.828587i \(0.310855\pi\)
−0.559860 + 0.828587i \(0.689145\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −20.9697 + 12.1069i −1.13558 + 0.655625i
\(342\) 0 0
\(343\) 3.57552 + 3.57552i 0.193060 + 0.193060i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −21.0900 12.1763i −1.13217 0.653660i −0.187691 0.982228i \(-0.560101\pi\)
−0.944480 + 0.328568i \(0.893434\pi\)
\(348\) 0 0
\(349\) 20.3200 + 5.44474i 1.08771 + 0.291450i 0.757750 0.652545i \(-0.226299\pi\)
0.329958 + 0.943996i \(0.392966\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.01614 + 1.61202i 0.320207 + 0.0857991i 0.415342 0.909665i \(-0.363662\pi\)
−0.0951356 + 0.995464i \(0.530328\pi\)
\(354\) 0 0
\(355\) −12.3948 7.15614i −0.657848 0.379809i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −21.9258 21.9258i −1.15720 1.15720i −0.985076 0.172121i \(-0.944938\pi\)
−0.172121 0.985076i \(-0.555062\pi\)
\(360\) 0 0
\(361\) −16.2743 + 9.39595i −0.856540 + 0.494524i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.47772i 0.496087i
\(366\) 0 0
\(367\) −5.59558 9.69183i −0.292087 0.505909i 0.682216 0.731151i \(-0.261016\pi\)
−0.974303 + 0.225241i \(0.927683\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.28399 0.879942i 0.170496 0.0456843i
\(372\) 0 0
\(373\) −10.2637 + 17.7772i −0.531433 + 0.920468i 0.467894 + 0.883784i \(0.345013\pi\)
−0.999327 + 0.0366837i \(0.988321\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.30368 15.8679i 0.221651 0.817241i
\(378\) 0 0
\(379\) −9.06352 + 33.8255i −0.465562 + 1.73750i 0.189458 + 0.981889i \(0.439327\pi\)
−0.655020 + 0.755611i \(0.727340\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.84644 18.0872i −0.247641 0.924210i −0.972037 0.234826i \(-0.924548\pi\)
0.724396 0.689384i \(-0.242119\pi\)
\(384\) 0 0
\(385\) −0.739088 + 0.739088i −0.0376674 + 0.0376674i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.92290 −0.198899 −0.0994495 0.995043i \(-0.531708\pi\)
−0.0994495 + 0.995043i \(0.531708\pi\)
\(390\) 0 0
\(391\) −45.3453 −2.29321
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.21703 + 6.21703i −0.312813 + 0.312813i
\(396\) 0 0
\(397\) −6.00536 22.4123i −0.301400 1.12484i −0.936000 0.352001i \(-0.885502\pi\)
0.634599 0.772841i \(-0.281165\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.136017 0.507621i 0.00679234 0.0253494i −0.962446 0.271471i \(-0.912490\pi\)
0.969239 + 0.246122i \(0.0791564\pi\)
\(402\) 0 0
\(403\) −30.4574 0.0928324i −1.51719 0.00462431i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.8067 22.1819i 0.634807 1.09952i
\(408\) 0 0
\(409\) 26.8622 7.19771i 1.32825 0.355904i 0.476188 0.879343i \(-0.342018\pi\)
0.852063 + 0.523440i \(0.175351\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.971487 + 1.68267i 0.0478038 + 0.0827986i
\(414\) 0 0
\(415\) 8.13304i 0.399235i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.200186 0.115578i 0.00977975 0.00564634i −0.495102 0.868835i \(-0.664869\pi\)
0.504882 + 0.863188i \(0.331536\pi\)
\(420\) 0 0
\(421\) −18.3716 18.3716i −0.895378 0.895378i 0.0996449 0.995023i \(-0.468229\pi\)
−0.995023 + 0.0996449i \(0.968229\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.63615 + 2.67668i 0.224886 + 0.129838i
\(426\) 0 0
\(427\) −1.87555 0.502553i −0.0907643 0.0243202i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.2167 4.34525i −0.781132 0.209304i −0.153848 0.988095i \(-0.549167\pi\)
−0.627284 + 0.778791i \(0.715833\pi\)
\(432\) 0 0
\(433\) 25.8889 + 14.9470i 1.24414 + 0.718305i 0.969935 0.243365i \(-0.0782514\pi\)
0.274207 + 0.961671i \(0.411585\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.73229 2.73229i −0.130703 0.130703i
\(438\) 0 0
\(439\) −13.4168 + 7.74619i −0.640348 + 0.369705i −0.784749 0.619814i \(-0.787208\pi\)
0.144400 + 0.989519i \(0.453875\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.99029i 0.284607i 0.989823 + 0.142304i \(0.0454509\pi\)
−0.989823 + 0.142304i \(0.954549\pi\)
\(444\) 0 0
\(445\) −6.62363 11.4725i −0.313990 0.543847i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.6369 4.99374i 0.879530 0.235669i 0.209325 0.977846i \(-0.432873\pi\)
0.670204 + 0.742177i \(0.266207\pi\)
\(450\) 0 0
\(451\) −7.30797 + 12.6578i −0.344119 + 0.596031i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.27098 + 0.336410i −0.0595845 + 0.0157711i
\(456\) 0 0
\(457\) −1.90753 + 7.11901i −0.0892306 + 0.333013i −0.996082 0.0884380i \(-0.971812\pi\)
0.906851 + 0.421451i \(0.138479\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.55335 5.79719i −0.0723469 0.270002i 0.920272 0.391280i \(-0.127968\pi\)
−0.992619 + 0.121278i \(0.961301\pi\)
\(462\) 0 0
\(463\) 3.47393 3.47393i 0.161447 0.161447i −0.621760 0.783208i \(-0.713582\pi\)
0.783208 + 0.621760i \(0.213582\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −33.9452 −1.57080 −0.785398 0.618991i \(-0.787542\pi\)
−0.785398 + 0.618991i \(0.787542\pi\)
\(468\) 0 0
\(469\) 5.09622 0.235322
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.01908 9.01908i 0.414698 0.414698i
\(474\) 0 0
\(475\) 0.118068 + 0.440635i 0.00541733 + 0.0202177i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.98717 29.8085i 0.364943 1.36199i −0.502555 0.864545i \(-0.667607\pi\)
0.867498 0.497440i \(-0.165727\pi\)
\(480\) 0 0
\(481\) 27.9507 16.0240i 1.27444 0.730630i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.14588 + 5.44882i −0.142847 + 0.247418i
\(486\) 0 0
\(487\) 16.2642 4.35798i 0.737001 0.197479i 0.129256 0.991611i \(-0.458741\pi\)
0.607745 + 0.794132i \(0.292074\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.26215 + 2.18611i 0.0569601 + 0.0986578i 0.893099 0.449859i \(-0.148526\pi\)
−0.836139 + 0.548517i \(0.815193\pi\)
\(492\) 0 0
\(493\) 24.4112i 1.09943i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.51971 + 2.60946i −0.202737 + 0.117050i
\(498\) 0 0
\(499\) 7.14857 + 7.14857i 0.320014 + 0.320014i 0.848772 0.528759i \(-0.177342\pi\)
−0.528759 + 0.848772i \(0.677342\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −15.0961 8.71572i −0.673100 0.388615i 0.124150 0.992263i \(-0.460380\pi\)
−0.797250 + 0.603649i \(0.793713\pi\)
\(504\) 0 0
\(505\) −12.3219 3.30163i −0.548316 0.146921i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.08608 + 1.63076i 0.269761 + 0.0722821i 0.391164 0.920321i \(-0.372073\pi\)
−0.121403 + 0.992603i \(0.538739\pi\)
\(510\) 0 0
\(511\) 2.99299 + 1.72801i 0.132402 + 0.0764425i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.92255 7.92255i −0.349109 0.349109i
\(516\) 0 0
\(517\) −4.92825 + 2.84533i −0.216744 + 0.125137i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.1078i 0.486643i 0.969946 + 0.243321i \(0.0782369\pi\)
−0.969946 + 0.243321i \(0.921763\pi\)
\(522\) 0 0
\(523\) −17.1039 29.6248i −0.747900 1.29540i −0.948828 0.315795i \(-0.897729\pi\)
0.200927 0.979606i \(-0.435604\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 43.6811 11.7043i 1.90278 0.509848i
\(528\) 0 0
\(529\) −24.3741 + 42.2172i −1.05974 + 1.83553i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −15.9496 + 9.14382i −0.690855 + 0.396063i
\(534\) 0 0
\(535\) −3.29674 + 12.3036i −0.142530 + 0.531930i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.09454 19.0131i −0.219437 0.818952i
\(540\) 0 0
\(541\) −26.9297 + 26.9297i −1.15780 + 1.15780i −0.172853 + 0.984948i \(0.555298\pi\)
−0.984948 + 0.172853i \(0.944702\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −13.3289 −0.570948
\(546\) 0 0
\(547\) 5.96163 0.254901 0.127450 0.991845i \(-0.459321\pi\)
0.127450 + 0.991845i \(0.459321\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.47090 + 1.47090i −0.0626624 + 0.0626624i
\(552\) 0 0
\(553\) 0.829784 + 3.09680i 0.0352860 + 0.131689i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.99877 14.9236i 0.169433 0.632333i −0.828000 0.560728i \(-0.810521\pi\)
0.997433 0.0716048i \(-0.0228121\pi\)
\(558\) 0 0
\(559\) 15.5098 4.10521i 0.655993 0.173632i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.55059 + 6.14980i −0.149639 + 0.259183i −0.931094 0.364779i \(-0.881145\pi\)
0.781455 + 0.623962i \(0.214478\pi\)
\(564\) 0 0
\(565\) −15.5404 + 4.16403i −0.653788 + 0.175182i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.42204 + 14.5874i 0.353070 + 0.611536i 0.986786 0.162030i \(-0.0518043\pi\)
−0.633715 + 0.773566i \(0.718471\pi\)
\(570\) 0 0
\(571\) 19.8996i 0.832774i 0.909187 + 0.416387i \(0.136704\pi\)
−0.909187 + 0.416387i \(0.863296\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.33561 4.23522i 0.305916 0.176621i
\(576\) 0 0
\(577\) −0.530957 0.530957i −0.0221040 0.0221040i 0.695968 0.718072i \(-0.254975\pi\)
−0.718072 + 0.695968i \(0.754975\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.56835 1.48284i −0.106553 0.0615185i
\(582\) 0 0
\(583\) −25.8149 6.91707i −1.06914 0.286476i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.92004 + 1.05037i 0.161798 + 0.0433535i 0.338808 0.940855i \(-0.389976\pi\)
−0.177011 + 0.984209i \(0.556643\pi\)
\(588\) 0 0
\(589\) 3.33725 + 1.92676i 0.137509 + 0.0793909i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.59697 + 1.59697i 0.0655796 + 0.0655796i 0.739136 0.673556i \(-0.235234\pi\)
−0.673556 + 0.739136i \(0.735234\pi\)
\(594\) 0 0
\(595\) 1.69055 0.976041i 0.0693059 0.0400138i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.71920i 0.192821i −0.995342 0.0964107i \(-0.969264\pi\)
0.995342 0.0964107i \(-0.0307362\pi\)
\(600\) 0 0
\(601\) −13.8054 23.9116i −0.563132 0.975374i −0.997221 0.0745035i \(-0.976263\pi\)
0.434088 0.900870i \(-0.357071\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.68879 + 0.720458i −0.109315 + 0.0292908i
\(606\) 0 0
\(607\) −15.2581 + 26.4278i −0.619307 + 1.07267i 0.370306 + 0.928910i \(0.379253\pi\)
−0.989612 + 0.143761i \(0.954080\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.15801 0.0218172i −0.289582 0.000882631i
\(612\) 0 0
\(613\) −8.23877 + 30.7475i −0.332761 + 1.24188i 0.573516 + 0.819195i \(0.305579\pi\)
−0.906276 + 0.422686i \(0.861087\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.11071 + 7.87728i 0.0849741 + 0.317127i 0.995309 0.0967442i \(-0.0308429\pi\)
−0.910335 + 0.413872i \(0.864176\pi\)
\(618\) 0 0
\(619\) −9.45659 + 9.45659i −0.380093 + 0.380093i −0.871135 0.491043i \(-0.836616\pi\)
0.491043 + 0.871135i \(0.336616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.83056 −0.193532
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −33.8253 + 33.8253i −1.34870 + 1.34870i
\(630\) 0 0
\(631\) −6.88603 25.6990i −0.274129 1.02306i −0.956423 0.291984i \(-0.905685\pi\)
0.682295 0.731077i \(-0.260982\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.40933 12.7238i 0.135295 0.504928i
\(636\) 0 0
\(637\) 6.48108 23.8961i 0.256790 0.946800i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −20.1230 + 34.8540i −0.794809 + 1.37665i 0.128152 + 0.991755i \(0.459096\pi\)
−0.922960 + 0.384895i \(0.874238\pi\)
\(642\) 0 0
\(643\) −0.868262 + 0.232650i −0.0342409 + 0.00917482i −0.275899 0.961187i \(-0.588975\pi\)
0.241658 + 0.970362i \(0.422309\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.47623 6.02100i −0.136665 0.236710i 0.789568 0.613664i \(-0.210305\pi\)
−0.926232 + 0.376954i \(0.876972\pi\)
\(648\) 0 0
\(649\) 15.2734i 0.599533i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 41.8416 24.1572i 1.63739 0.945345i 0.655658 0.755058i \(-0.272391\pi\)
0.981728 0.190287i \(-0.0609420\pi\)
\(654\) 0 0
\(655\) −7.41514 7.41514i −0.289733 0.289733i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.87776 + 2.23882i 0.151056 + 0.0872122i 0.573623 0.819120i \(-0.305538\pi\)
−0.422567 + 0.906332i \(0.638871\pi\)
\(660\) 0 0
\(661\) −38.0839 10.2046i −1.48129 0.396911i −0.574506 0.818501i \(-0.694806\pi\)
−0.906787 + 0.421589i \(0.861472\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.160676 + 0.0430530i 0.00623074 + 0.00166952i
\(666\) 0 0
\(667\) 33.4502 + 19.3125i 1.29520 + 0.747782i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.7929 + 10.7929i 0.416656 + 0.416656i
\(672\) 0 0
\(673\) 15.4580 8.92469i 0.595863 0.344022i −0.171549 0.985176i \(-0.554877\pi\)
0.767412 + 0.641154i \(0.221544\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.42183i 0.246811i −0.992356 0.123406i \(-0.960618\pi\)
0.992356 0.123406i \(-0.0393816\pi\)
\(678\) 0 0
\(679\) 1.14713 + 1.98689i 0.0440228 + 0.0762498i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.84317 + 1.83362i −0.261847 + 0.0701616i −0.387354 0.921931i \(-0.626611\pi\)
0.125507 + 0.992093i \(0.459944\pi\)
\(684\) 0 0
\(685\) −3.94023 + 6.82468i −0.150548 + 0.260758i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −23.6982 23.8431i −0.902829 0.908350i
\(690\) 0 0
\(691\) 2.10851 7.86908i 0.0802117 0.299354i −0.914153 0.405370i \(-0.867143\pi\)
0.994364 + 0.106016i \(0.0338094\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.21450 + 4.53256i 0.0460685 + 0.171930i
\(696\) 0 0
\(697\) 19.3018 19.3018i 0.731109 0.731109i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −11.4270 −0.431593 −0.215796 0.976438i \(-0.569235\pi\)
−0.215796 + 0.976438i \(0.569235\pi\)
\(702\) 0 0
\(703\) −4.07629 −0.153740
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.28919 + 3.28919i −0.123703 + 0.123703i
\(708\) 0 0
\(709\) −5.12896 19.1415i −0.192622 0.718876i −0.992870 0.119206i \(-0.961965\pi\)
0.800247 0.599670i \(-0.204701\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.5193 69.1150i 0.693553 2.58838i
\(714\) 0 0
\(715\) 9.97467 + 2.70532i 0.373031 + 0.101173i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.0442 34.7175i 0.747521 1.29475i −0.201486 0.979491i \(-0.564577\pi\)
0.949007 0.315254i \(-0.102090\pi\)
\(720\) 0 0
\(721\) −3.94635 + 1.05742i −0.146970 + 0.0393804i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.27999 3.94905i −0.0846765 0.146664i
\(726\) 0 0
\(727\) 4.19951i 0.155751i −0.996963 0.0778755i \(-0.975186\pi\)
0.996963 0.0778755i \(-0.0248137\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −20.6298 + 11.9106i −0.763021 + 0.440530i
\(732\) 0 0
\(733\) −3.94126 3.94126i −0.145574 0.145574i 0.630564 0.776137i \(-0.282824\pi\)
−0.776137 + 0.630564i \(0.782824\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −34.6935 20.0303i −1.27795 0.737825i
\(738\) 0 0
\(739\) −26.8799 7.20245i −0.988794 0.264946i −0.272050 0.962283i \(-0.587702\pi\)
−0.716744 + 0.697337i \(0.754368\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −25.0468 6.71128i −0.918879 0.246213i −0.231773 0.972770i \(-0.574453\pi\)
−0.687106 + 0.726557i \(0.741119\pi\)
\(744\) 0 0
\(745\) −3.24038 1.87084i −0.118718 0.0685422i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.28431 + 3.28431i 0.120006 + 0.120006i
\(750\) 0 0
\(751\) −24.7819 + 14.3079i −0.904306 + 0.522101i −0.878595 0.477568i \(-0.841518\pi\)
−0.0257111 + 0.999669i \(0.508185\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18.6778i 0.679753i
\(756\) 0 0
\(757\) 23.4332 + 40.5875i 0.851694 + 1.47518i 0.879678 + 0.475569i \(0.157758\pi\)
−0.0279844 + 0.999608i \(0.508909\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.7826 + 2.88919i −0.390869 + 0.104733i −0.448901 0.893582i \(-0.648184\pi\)
0.0580315 + 0.998315i \(0.481518\pi\)
\(762\) 0 0
\(763\) −2.43017 + 4.20917i −0.0879780 + 0.152382i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.65656 16.6085i 0.348678 0.599699i
\(768\) 0 0
\(769\) 11.3385 42.3157i 0.408876 1.52594i −0.387919 0.921694i \(-0.626806\pi\)
0.796794 0.604251i \(-0.206527\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.44957 + 5.40985i 0.0521373 + 0.194579i 0.987082 0.160213i \(-0.0512182\pi\)
−0.934945 + 0.354792i \(0.884552\pi\)
\(774\) 0 0
\(775\) −5.97321 + 5.97321i −0.214564 + 0.214564i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.32607 0.0833400
\(780\) 0 0
\(781\) 41.0250 1.46799
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −13.5500 + 13.5500i −0.483622 + 0.483622i
\(786\) 0 0
\(787\) 10.4823 + 39.1205i 0.373654 + 1.39450i 0.855301 + 0.518131i \(0.173372\pi\)
−0.481647 + 0.876365i \(0.659961\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.51840 + 5.66673i −0.0539879 + 0.201486i
\(792\) 0 0
\(793\) 4.91260 + 18.5602i 0.174452 + 0.659091i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.465021 + 0.805441i −0.0164719 + 0.0285302i −0.874144 0.485667i \(-0.838577\pi\)
0.857672 + 0.514197i \(0.171910\pi\)
\(798\) 0 0
\(799\) 10.2658 2.75072i 0.363178 0.0973134i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −13.5836 23.5274i −0.479354 0.830265i
\(804\) 0 0
\(805\) 3.08871i 0.108863i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.15315 + 3.55252i −0.216333 + 0.124900i −0.604251 0.796794i \(-0.706528\pi\)
0.387918 + 0.921694i \(0.373194\pi\)
\(810\) 0 0
\(811\) 2.95262 + 2.95262i 0.103681 + 0.103681i 0.757044 0.653364i \(-0.226643\pi\)
−0.653364 + 0.757044i \(0.726643\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.32233 + 3.07285i 0.186433 + 0.107637i
\(816\) 0 0
\(817\) −1.96073 0.525375i −0.0685971 0.0183805i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 39.4238 + 10.5636i 1.37590 + 0.368671i 0.869630 0.493704i \(-0.164357\pi\)
0.506270 + 0.862375i \(0.331024\pi\)
\(822\) 0 0
\(823\) −39.2644 22.6693i −1.36867 0.790202i −0.377912 0.925842i \(-0.623358\pi\)
−0.990758 + 0.135640i \(0.956691\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.6636 14.6636i −0.509903 0.509903i 0.404593 0.914497i \(-0.367413\pi\)
−0.914497 + 0.404593i \(0.867413\pi\)
\(828\) 0 0
\(829\) −27.3885 + 15.8128i −0.951242 + 0.549200i −0.893467 0.449130i \(-0.851734\pi\)
−0.0577756 + 0.998330i \(0.518401\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 36.7618i 1.27372i
\(834\) 0 0
\(835\) 5.87578 + 10.1772i 0.203340 + 0.352195i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 32.2463 8.64036i 1.11326 0.298298i 0.345110 0.938562i \(-0.387842\pi\)
0.768155 + 0.640264i \(0.221175\pi\)
\(840\) 0 0
\(841\) −4.10333 + 7.10718i −0.141494 + 0.245075i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 9.13618 + 9.24825i 0.314294 + 0.318150i
\(846\) 0 0
\(847\) −0.262712 + 0.980455i −0.00902689 + 0.0336888i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 19.5898 + 73.1103i 0.671531 + 2.50619i
\(852\) 0 0
\(853\) 32.7512 32.7512i 1.12138 1.12138i 0.129845 0.991534i \(-0.458552\pi\)
0.991534 0.129845i \(-0.0414479\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 47.2081 1.61260 0.806299 0.591509i \(-0.201468\pi\)
0.806299 + 0.591509i \(0.201468\pi\)
\(858\) 0 0
\(859\) 45.6328 1.55697 0.778486 0.627662i \(-0.215988\pi\)
0.778486 + 0.627662i \(0.215988\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −36.5583 + 36.5583i −1.24446 + 1.24446i −0.286326 + 0.958132i \(0.592434\pi\)
−0.958132 + 0.286326i \(0.907566\pi\)
\(864\) 0 0
\(865\) −0.751705 2.80540i −0.0255587 0.0953865i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.52280 24.3434i 0.221271 0.825793i
\(870\) 0 0
\(871\) −25.0621 43.7161i −0.849198 1.48126i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.182323 + 0.315793i −0.00616364 + 0.0106757i
\(876\) 0 0
\(877\) 19.2133 5.14819i 0.648787 0.173842i 0.0806066 0.996746i \(-0.474314\pi\)
0.568180 + 0.822904i \(0.307648\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −16.6875 28.9035i −0.562215 0.973785i −0.997303 0.0733970i \(-0.976616\pi\)
0.435088 0.900388i \(-0.356717\pi\)
\(882\) 0 0
\(883\) 12.8119i 0.431155i 0.976487 + 0.215577i \(0.0691633\pi\)
−0.976487 + 0.215577i \(0.930837\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27.5297 15.8943i 0.924358 0.533678i 0.0393350 0.999226i \(-0.487476\pi\)
0.885023 + 0.465548i \(0.154143\pi\)
\(888\) 0 0
\(889\) −3.39648 3.39648i −0.113914 0.113914i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.784312 + 0.452823i 0.0262460 + 0.0151531i
\(894\) 0 0
\(895\) 12.7411 + 3.41396i 0.425887 + 0.114116i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −37.2073 9.96967i −1.24093 0.332507i
\(900\) 0 0
\(901\) 43.2259 + 24.9565i 1.44006 + 0.831421i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 16.3854 + 16.3854i 0.544671 + 0.544671i
\(906\) 0 0
\(907\) 11.9402 6.89370i 0.396469 0.228902i −0.288490 0.957483i \(-0.593153\pi\)
0.684959 + 0.728581i \(0.259820\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.4607i 0.379709i 0.981812 + 0.189855i \(0.0608016\pi\)
−0.981812 + 0.189855i \(0.939198\pi\)
\(912\) 0 0
\(913\) 11.6564 + 20.1894i 0.385769 + 0.668171i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.69359 + 0.989695i −0.121973 + 0.0326826i
\(918\) 0 0
\(919\) 0.380145 0.658430i 0.0125398 0.0217196i −0.859687 0.510820i \(-0.829342\pi\)
0.872227 + 0.489101i \(0.162675\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 44.6112 + 25.9379i 1.46840 + 0.853757i
\(924\) 0 0
\(925\) 2.31273 8.63123i 0.0760422 0.283793i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.84747 + 25.5551i 0.224658 + 0.838436i 0.982541 + 0.186045i \(0.0595671\pi\)
−0.757883 + 0.652391i \(0.773766\pi\)
\(930\) 0 0
\(931\) −2.21508 + 2.21508i −0.0725964 + 0.0725964i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −15.3450 −0.501835
\(936\) 0 0
\(937\) −11.1139 −0.363076 −0.181538 0.983384i \(-0.558108\pi\)
−0.181538 + 0.983384i \(0.558108\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.32739 + 1.32739i −0.0432716 + 0.0432716i −0.728412 0.685140i \(-0.759741\pi\)
0.685140 + 0.728412i \(0.259741\pi\)
\(942\) 0 0
\(943\) −11.1786 41.7192i −0.364026 1.35856i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.64195 6.12785i 0.0533562 0.199128i −0.934103 0.357005i \(-0.883798\pi\)
0.987459 + 0.157876i \(0.0504647\pi\)
\(948\) 0 0
\(949\) 0.104155 34.1723i 0.00338102 1.10928i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −24.7384 + 42.8482i −0.801355 + 1.38799i 0.117369 + 0.993088i \(0.462554\pi\)
−0.918724 + 0.394900i \(0.870779\pi\)
\(954\) 0 0
\(955\) 21.3494 5.72056i 0.690851 0.185113i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.43679 + 2.48859i 0.0463963 + 0.0803608i
\(960\) 0 0
\(961\) 40.3584i 1.30188i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 17.7786 10.2645i 0.572312 0.330424i
\(966\) 0 0
\(967\) −23.3987 23.3987i −0.752452 0.752452i 0.222484 0.974936i \(-0.428583\pi\)
−0.974936 + 0.222484i \(0.928583\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7.38401 4.26316i −0.236964 0.136811i 0.376816 0.926288i \(-0.377019\pi\)
−0.613781 + 0.789477i \(0.710352\pi\)
\(972\) 0 0
\(973\) 1.65278 + 0.442861i 0.0529857 + 0.0141975i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.05268 2.42566i −0.289621 0.0776037i 0.111084 0.993811i \(-0.464568\pi\)
−0.400704 + 0.916207i \(0.631235\pi\)
\(978\) 0 0
\(979\) 32.8849 + 18.9861i 1.05101 + 0.606798i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.80808 + 8.80808i 0.280934 + 0.280934i 0.833481 0.552547i \(-0.186344\pi\)
−0.552547 + 0.833481i \(0.686344\pi\)
\(984\) 0 0
\(985\) −7.06752 + 4.08044i −0.225190 + 0.130014i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 37.6915i 1.19852i
\(990\) 0 0
\(991\) −21.2481 36.8028i −0.674968 1.16908i −0.976478 0.215616i \(-0.930824\pi\)
0.301510 0.953463i \(-0.402509\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 7.68646 2.05958i 0.243677 0.0652931i
\(996\) 0 0
\(997\) −9.11451 + 15.7868i −0.288660 + 0.499973i −0.973490 0.228729i \(-0.926543\pi\)
0.684831 + 0.728702i \(0.259876\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.fo.b.1961.1 yes 40
3.2 odd 2 inner 2340.2.fo.b.1961.9 yes 40
13.6 odd 12 inner 2340.2.fo.b.1241.9 yes 40
39.32 even 12 inner 2340.2.fo.b.1241.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.fo.b.1241.1 40 39.32 even 12 inner
2340.2.fo.b.1241.9 yes 40 13.6 odd 12 inner
2340.2.fo.b.1961.1 yes 40 1.1 even 1 trivial
2340.2.fo.b.1961.9 yes 40 3.2 odd 2 inner