Properties

Label 2340.2.fo.b.1241.9
Level $2340$
Weight $2$
Character 2340.1241
Analytic conductor $18.685$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1241,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.fo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1241.9
Character \(\chi\) \(=\) 2340.1241
Dual form 2340.2.fo.b.1961.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{5} +(0.0943773 - 0.352221i) q^{7} +(-0.741884 - 2.76875i) q^{11} +(2.55727 + 2.54173i) q^{13} +(2.67668 + 4.63615i) q^{17} +(-0.440635 - 0.118068i) q^{19} +(-4.23522 + 7.33561i) q^{23} +1.00000i q^{25} +(-3.94905 - 2.27999i) q^{29} +(-5.97321 + 5.97321i) q^{31} +(0.315793 - 0.182323i) q^{35} +(8.63123 - 2.31273i) q^{37} +(4.92527 - 1.31972i) q^{41} +(3.85361 - 2.22488i) q^{43} +(1.40381 - 1.40381i) q^{47} +(5.94703 + 3.43352i) q^{49} -9.32366i q^{53} +(1.43321 - 2.48239i) q^{55} +(-5.14683 - 1.37909i) q^{59} +(-2.66247 - 4.61153i) q^{61} +(0.0109895 + 3.60553i) q^{65} +(3.61721 + 13.4996i) q^{67} +(-3.70429 + 13.8246i) q^{71} +(6.70176 + 6.70176i) q^{73} -1.04523 q^{77} +8.79220 q^{79} +(5.75093 + 5.75093i) q^{83} +(-1.38555 + 5.17096i) q^{85} +(3.42864 + 12.7959i) q^{89} +(1.13660 - 0.660842i) q^{91} +(-0.228090 - 0.395063i) q^{95} +(6.07736 + 1.62842i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 8 q^{7} + 12 q^{13} + 28 q^{19} + 36 q^{31} - 40 q^{37} - 72 q^{43} - 36 q^{49} - 32 q^{61} + 16 q^{67} + 28 q^{73} + 48 q^{79} - 20 q^{85} + 132 q^{91} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) 0.0943773 0.352221i 0.0356713 0.133127i −0.945794 0.324767i \(-0.894714\pi\)
0.981465 + 0.191640i \(0.0613807\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.741884 2.76875i −0.223686 0.834809i −0.982927 0.183999i \(-0.941096\pi\)
0.759240 0.650811i \(-0.225571\pi\)
\(12\) 0 0
\(13\) 2.55727 + 2.54173i 0.709259 + 0.704948i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.67668 + 4.63615i 0.649191 + 1.12443i 0.983316 + 0.181903i \(0.0582258\pi\)
−0.334125 + 0.942529i \(0.608441\pi\)
\(18\) 0 0
\(19\) −0.440635 0.118068i −0.101089 0.0270866i 0.207920 0.978146i \(-0.433331\pi\)
−0.309009 + 0.951059i \(0.599997\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.23522 + 7.33561i −0.883104 + 1.52958i −0.0352322 + 0.999379i \(0.511217\pi\)
−0.847872 + 0.530202i \(0.822116\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.94905 2.27999i −0.733320 0.423383i 0.0863154 0.996268i \(-0.472491\pi\)
−0.819636 + 0.572885i \(0.805824\pi\)
\(30\) 0 0
\(31\) −5.97321 + 5.97321i −1.07282 + 1.07282i −0.0756883 + 0.997132i \(0.524115\pi\)
−0.997132 + 0.0756883i \(0.975885\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.315793 0.182323i 0.0533787 0.0308182i
\(36\) 0 0
\(37\) 8.63123 2.31273i 1.41897 0.380211i 0.533849 0.845580i \(-0.320745\pi\)
0.885117 + 0.465369i \(0.154078\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.92527 1.31972i 0.769199 0.206106i 0.147181 0.989110i \(-0.452980\pi\)
0.622017 + 0.783003i \(0.286313\pi\)
\(42\) 0 0
\(43\) 3.85361 2.22488i 0.587670 0.339292i −0.176505 0.984300i \(-0.556479\pi\)
0.764176 + 0.645008i \(0.223146\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.40381 1.40381i 0.204766 0.204766i −0.597272 0.802039i \(-0.703749\pi\)
0.802039 + 0.597272i \(0.203749\pi\)
\(48\) 0 0
\(49\) 5.94703 + 3.43352i 0.849575 + 0.490502i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.32366i 1.28070i −0.768082 0.640352i \(-0.778789\pi\)
0.768082 0.640352i \(-0.221211\pi\)
\(54\) 0 0
\(55\) 1.43321 2.48239i 0.193254 0.334726i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.14683 1.37909i −0.670060 0.179542i −0.0922781 0.995733i \(-0.529415\pi\)
−0.577782 + 0.816191i \(0.696082\pi\)
\(60\) 0 0
\(61\) −2.66247 4.61153i −0.340894 0.590445i 0.643705 0.765274i \(-0.277396\pi\)
−0.984599 + 0.174828i \(0.944063\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.0109895 + 3.60553i 0.00136308 + 0.447212i
\(66\) 0 0
\(67\) 3.61721 + 13.4996i 0.441912 + 1.64924i 0.723962 + 0.689839i \(0.242319\pi\)
−0.282050 + 0.959400i \(0.591014\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.70429 + 13.8246i −0.439619 + 1.64068i 0.290148 + 0.956982i \(0.406296\pi\)
−0.729766 + 0.683697i \(0.760371\pi\)
\(72\) 0 0
\(73\) 6.70176 + 6.70176i 0.784382 + 0.784382i 0.980567 0.196185i \(-0.0628553\pi\)
−0.196185 + 0.980567i \(0.562855\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.04523 −0.119115
\(78\) 0 0
\(79\) 8.79220 0.989200 0.494600 0.869121i \(-0.335315\pi\)
0.494600 + 0.869121i \(0.335315\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.75093 + 5.75093i 0.631246 + 0.631246i 0.948381 0.317134i \(-0.102721\pi\)
−0.317134 + 0.948381i \(0.602721\pi\)
\(84\) 0 0
\(85\) −1.38555 + 5.17096i −0.150284 + 0.560869i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.42864 + 12.7959i 0.363435 + 1.35636i 0.869530 + 0.493881i \(0.164422\pi\)
−0.506094 + 0.862478i \(0.668911\pi\)
\(90\) 0 0
\(91\) 1.13660 0.660842i 0.119148 0.0692751i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.228090 0.395063i −0.0234015 0.0405326i
\(96\) 0 0
\(97\) 6.07736 + 1.62842i 0.617063 + 0.165341i 0.553792 0.832655i \(-0.313180\pi\)
0.0632707 + 0.997996i \(0.479847\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.37827 + 11.0475i −0.634661 + 1.09927i 0.351926 + 0.936028i \(0.385527\pi\)
−0.986587 + 0.163237i \(0.947806\pi\)
\(102\) 0 0
\(103\) 11.2042i 1.10398i −0.833850 0.551991i \(-0.813868\pi\)
0.833850 0.551991i \(-0.186132\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.0311 6.36880i −1.06642 0.615696i −0.139216 0.990262i \(-0.544458\pi\)
−0.927200 + 0.374567i \(0.877792\pi\)
\(108\) 0 0
\(109\) 9.42497 9.42497i 0.902749 0.902749i −0.0929245 0.995673i \(-0.529622\pi\)
0.995673 + 0.0929245i \(0.0296215\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.9331 + 8.04429i −1.31072 + 0.756743i −0.982215 0.187760i \(-0.939877\pi\)
−0.328502 + 0.944503i \(0.606544\pi\)
\(114\) 0 0
\(115\) −8.18181 + 2.19231i −0.762958 + 0.204434i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.88557 0.505236i 0.172850 0.0463149i
\(120\) 0 0
\(121\) 2.41070 1.39182i 0.219155 0.126529i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) −11.4078 6.58632i −1.01228 0.584441i −0.100423 0.994945i \(-0.532020\pi\)
−0.911859 + 0.410504i \(0.865353\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.4866i 0.916217i 0.888896 + 0.458109i \(0.151473\pi\)
−0.888896 + 0.458109i \(0.848527\pi\)
\(132\) 0 0
\(133\) −0.0831720 + 0.144058i −0.00721192 + 0.0124914i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.61194 2.03961i −0.650332 0.174256i −0.0814531 0.996677i \(-0.525956\pi\)
−0.568879 + 0.822421i \(0.692623\pi\)
\(138\) 0 0
\(139\) 2.34623 + 4.06379i 0.199004 + 0.344686i 0.948206 0.317656i \(-0.102896\pi\)
−0.749201 + 0.662342i \(0.769563\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.14021 8.96610i 0.429846 0.749783i
\(144\) 0 0
\(145\) −1.18021 4.40459i −0.0980109 0.365782i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.968416 + 3.61418i −0.0793358 + 0.296085i −0.994181 0.107719i \(-0.965645\pi\)
0.914846 + 0.403804i \(0.132312\pi\)
\(150\) 0 0
\(151\) 13.2072 + 13.2072i 1.07478 + 1.07478i 0.996968 + 0.0778166i \(0.0247949\pi\)
0.0778166 + 0.996968i \(0.475205\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.44739 −0.678511
\(156\) 0 0
\(157\) 19.1626 1.52935 0.764673 0.644419i \(-0.222901\pi\)
0.764673 + 0.644419i \(0.222901\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.18405 + 2.18405i 0.172127 + 0.172127i
\(162\) 0 0
\(163\) −1.59062 + 5.93628i −0.124587 + 0.464966i −0.999825 0.0187278i \(-0.994038\pi\)
0.875237 + 0.483694i \(0.160705\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.04153 11.3511i −0.235361 0.878378i −0.977986 0.208671i \(-0.933086\pi\)
0.742625 0.669707i \(-0.233580\pi\)
\(168\) 0 0
\(169\) 0.0792459 + 12.9998i 0.00609584 + 0.999981i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.45218 + 2.51525i 0.110407 + 0.191231i 0.915935 0.401328i \(-0.131451\pi\)
−0.805527 + 0.592559i \(0.798118\pi\)
\(174\) 0 0
\(175\) 0.352221 + 0.0943773i 0.0266254 + 0.00713425i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.59526 11.4233i 0.492953 0.853820i −0.507014 0.861938i \(-0.669251\pi\)
0.999967 + 0.00811814i \(0.00258411\pi\)
\(180\) 0 0
\(181\) 23.1725i 1.72240i 0.508266 + 0.861200i \(0.330287\pi\)
−0.508266 + 0.861200i \(0.669713\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.73855 + 4.46786i 0.568950 + 0.328483i
\(186\) 0 0
\(187\) 10.8506 10.8506i 0.793471 0.793471i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.1414 11.0513i 1.38502 0.799642i 0.392271 0.919850i \(-0.371689\pi\)
0.992749 + 0.120208i \(0.0383561\pi\)
\(192\) 0 0
\(193\) −19.8294 + 5.31327i −1.42735 + 0.382458i −0.888086 0.459678i \(-0.847965\pi\)
−0.539266 + 0.842136i \(0.681298\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −7.88280 + 2.11219i −0.561626 + 0.150487i −0.528453 0.848962i \(-0.677228\pi\)
−0.0331729 + 0.999450i \(0.510561\pi\)
\(198\) 0 0
\(199\) −6.89149 + 3.97881i −0.488525 + 0.282050i −0.723962 0.689839i \(-0.757681\pi\)
0.235437 + 0.971890i \(0.424348\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.17576 + 1.17576i −0.0825221 + 0.0825221i
\(204\) 0 0
\(205\) 4.41588 + 2.54951i 0.308418 + 0.178065i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.30760i 0.0904487i
\(210\) 0 0
\(211\) 3.48632 6.03848i 0.240008 0.415706i −0.720708 0.693239i \(-0.756183\pi\)
0.960716 + 0.277532i \(0.0895166\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.29815 + 1.15168i 0.293131 + 0.0785443i
\(216\) 0 0
\(217\) 1.54015 + 2.66762i 0.104552 + 0.181090i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.93883 + 18.6593i −0.332222 + 1.25516i
\(222\) 0 0
\(223\) 0.596124 + 2.22477i 0.0399194 + 0.148981i 0.983009 0.183558i \(-0.0587614\pi\)
−0.943090 + 0.332539i \(0.892095\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.858436 3.20373i 0.0569764 0.212639i −0.931569 0.363566i \(-0.881559\pi\)
0.988545 + 0.150927i \(0.0482259\pi\)
\(228\) 0 0
\(229\) −9.86704 9.86704i −0.652032 0.652032i 0.301450 0.953482i \(-0.402529\pi\)
−0.953482 + 0.301450i \(0.902529\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.6009 1.08756 0.543780 0.839228i \(-0.316993\pi\)
0.543780 + 0.839228i \(0.316993\pi\)
\(234\) 0 0
\(235\) 1.98528 0.129506
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −13.9444 13.9444i −0.901991 0.901991i 0.0936174 0.995608i \(-0.470157\pi\)
−0.995608 + 0.0936174i \(0.970157\pi\)
\(240\) 0 0
\(241\) 4.81769 17.9799i 0.310335 1.15818i −0.617920 0.786241i \(-0.712025\pi\)
0.928255 0.371944i \(-0.121309\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.77732 + 6.63304i 0.113549 + 0.423770i
\(246\) 0 0
\(247\) −0.826727 1.42191i −0.0526034 0.0904737i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.3742 + 24.8968i 0.907288 + 1.57147i 0.817816 + 0.575480i \(0.195185\pi\)
0.0894727 + 0.995989i \(0.471482\pi\)
\(252\) 0 0
\(253\) 23.4525 + 6.28408i 1.47445 + 0.395077i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.48872 16.4349i 0.591890 1.02518i −0.402088 0.915601i \(-0.631715\pi\)
0.993978 0.109583i \(-0.0349514\pi\)
\(258\) 0 0
\(259\) 3.25837i 0.202465i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −13.9273 8.04093i −0.858794 0.495825i 0.00481415 0.999988i \(-0.498468\pi\)
−0.863608 + 0.504163i \(0.831801\pi\)
\(264\) 0 0
\(265\) 6.59282 6.59282i 0.404994 0.404994i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 19.4762 11.2446i 1.18748 0.685593i 0.229748 0.973250i \(-0.426210\pi\)
0.957733 + 0.287657i \(0.0928763\pi\)
\(270\) 0 0
\(271\) −31.1063 + 8.33492i −1.88958 + 0.506310i −0.890938 + 0.454126i \(0.849952\pi\)
−0.998637 + 0.0521842i \(0.983382\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.76875 0.741884i 0.166962 0.0447373i
\(276\) 0 0
\(277\) 10.0765 5.81765i 0.605437 0.349549i −0.165741 0.986169i \(-0.553002\pi\)
0.771177 + 0.636620i \(0.219668\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −17.0909 + 17.0909i −1.01956 + 1.01956i −0.0197551 + 0.999805i \(0.506289\pi\)
−0.999805 + 0.0197551i \(0.993711\pi\)
\(282\) 0 0
\(283\) 3.86509 + 2.23151i 0.229755 + 0.132649i 0.610459 0.792048i \(-0.290985\pi\)
−0.380704 + 0.924697i \(0.624318\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.85934i 0.109753i
\(288\) 0 0
\(289\) −5.82927 + 10.0966i −0.342898 + 0.593917i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.88583 + 0.773256i 0.168592 + 0.0451741i 0.342128 0.939654i \(-0.388852\pi\)
−0.173536 + 0.984828i \(0.555519\pi\)
\(294\) 0 0
\(295\) −2.66419 4.61452i −0.155115 0.268668i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −29.4757 + 7.99436i −1.70462 + 0.462326i
\(300\) 0 0
\(301\) −0.419957 1.56730i −0.0242059 0.0903377i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.37819 5.14349i 0.0789151 0.294515i
\(306\) 0 0
\(307\) −3.16535 3.16535i −0.180656 0.180656i 0.610986 0.791642i \(-0.290773\pi\)
−0.791642 + 0.610986i \(0.790773\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.00398 −0.227045 −0.113522 0.993535i \(-0.536213\pi\)
−0.113522 + 0.993535i \(0.536213\pi\)
\(312\) 0 0
\(313\) 5.88412 0.332590 0.166295 0.986076i \(-0.446820\pi\)
0.166295 + 0.986076i \(0.446820\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.7128 14.7128i −0.826356 0.826356i 0.160655 0.987011i \(-0.448639\pi\)
−0.987011 + 0.160655i \(0.948639\pi\)
\(318\) 0 0
\(319\) −3.38297 + 12.6254i −0.189410 + 0.706888i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.632061 2.35888i −0.0351688 0.131252i
\(324\) 0 0
\(325\) −2.54173 + 2.55727i −0.140990 + 0.141852i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.361963 0.626938i −0.0199557 0.0345642i
\(330\) 0 0
\(331\) −22.5912 6.05330i −1.24173 0.332720i −0.422592 0.906320i \(-0.638880\pi\)
−0.819135 + 0.573601i \(0.805546\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.98791 + 12.1034i −0.381790 + 0.661280i
\(336\) 0 0
\(337\) 30.4217i 1.65717i −0.559860 0.828587i \(-0.689145\pi\)
0.559860 0.828587i \(-0.310855\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20.9697 + 12.1069i 1.13558 + 0.655625i
\(342\) 0 0
\(343\) 3.57552 3.57552i 0.193060 0.193060i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 21.0900 12.1763i 1.13217 0.653660i 0.187691 0.982228i \(-0.439899\pi\)
0.944480 + 0.328568i \(0.106566\pi\)
\(348\) 0 0
\(349\) 20.3200 5.44474i 1.08771 0.291450i 0.329958 0.943996i \(-0.392966\pi\)
0.757750 + 0.652545i \(0.226299\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.01614 + 1.61202i −0.320207 + 0.0857991i −0.415342 0.909665i \(-0.636338\pi\)
0.0951356 + 0.995464i \(0.469672\pi\)
\(354\) 0 0
\(355\) −12.3948 + 7.15614i −0.657848 + 0.379809i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.9258 21.9258i 1.15720 1.15720i 0.172121 0.985076i \(-0.444938\pi\)
0.985076 0.172121i \(-0.0550621\pi\)
\(360\) 0 0
\(361\) −16.2743 9.39595i −0.856540 0.494524i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.47772i 0.496087i
\(366\) 0 0
\(367\) −5.59558 + 9.69183i −0.292087 + 0.505909i −0.974303 0.225241i \(-0.927683\pi\)
0.682216 + 0.731151i \(0.261016\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.28399 0.879942i −0.170496 0.0456843i
\(372\) 0 0
\(373\) −10.2637 17.7772i −0.531433 0.920468i −0.999327 0.0366837i \(-0.988321\pi\)
0.467894 0.883784i \(-0.345013\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.30368 15.8679i −0.221651 0.817241i
\(378\) 0 0
\(379\) −9.06352 33.8255i −0.465562 1.73750i −0.655020 0.755611i \(-0.727340\pi\)
0.189458 0.981889i \(-0.439327\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.84644 18.0872i 0.247641 0.924210i −0.724396 0.689384i \(-0.757881\pi\)
0.972037 0.234826i \(-0.0754521\pi\)
\(384\) 0 0
\(385\) −0.739088 0.739088i −0.0376674 0.0376674i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.92290 0.198899 0.0994495 0.995043i \(-0.468292\pi\)
0.0994495 + 0.995043i \(0.468292\pi\)
\(390\) 0 0
\(391\) −45.3453 −2.29321
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.21703 + 6.21703i 0.312813 + 0.312813i
\(396\) 0 0
\(397\) −6.00536 + 22.4123i −0.301400 + 1.12484i 0.634599 + 0.772841i \(0.281165\pi\)
−0.936000 + 0.352001i \(0.885502\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −0.136017 0.507621i −0.00679234 0.0253494i 0.962446 0.271471i \(-0.0875102\pi\)
−0.969239 + 0.246122i \(0.920844\pi\)
\(402\) 0 0
\(403\) −30.4574 + 0.0928324i −1.51719 + 0.00462431i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.8067 22.1819i −0.634807 1.09952i
\(408\) 0 0
\(409\) 26.8622 + 7.19771i 1.32825 + 0.355904i 0.852063 0.523440i \(-0.175351\pi\)
0.476188 + 0.879343i \(0.342018\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.971487 + 1.68267i −0.0478038 + 0.0827986i
\(414\) 0 0
\(415\) 8.13304i 0.399235i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.200186 0.115578i −0.00977975 0.00564634i 0.495102 0.868835i \(-0.335131\pi\)
−0.504882 + 0.863188i \(0.668464\pi\)
\(420\) 0 0
\(421\) −18.3716 + 18.3716i −0.895378 + 0.895378i −0.995023 0.0996449i \(-0.968229\pi\)
0.0996449 + 0.995023i \(0.468229\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.63615 + 2.67668i −0.224886 + 0.129838i
\(426\) 0 0
\(427\) −1.87555 + 0.502553i −0.0907643 + 0.0243202i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.2167 4.34525i 0.781132 0.209304i 0.153848 0.988095i \(-0.450833\pi\)
0.627284 + 0.778791i \(0.284167\pi\)
\(432\) 0 0
\(433\) 25.8889 14.9470i 1.24414 0.718305i 0.274207 0.961671i \(-0.411585\pi\)
0.969935 + 0.243365i \(0.0782514\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.73229 2.73229i 0.130703 0.130703i
\(438\) 0 0
\(439\) −13.4168 7.74619i −0.640348 0.369705i 0.144400 0.989519i \(-0.453875\pi\)
−0.784749 + 0.619814i \(0.787208\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.99029i 0.284607i 0.989823 + 0.142304i \(0.0454509\pi\)
−0.989823 + 0.142304i \(0.954549\pi\)
\(444\) 0 0
\(445\) −6.62363 + 11.4725i −0.313990 + 0.543847i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18.6369 4.99374i −0.879530 0.235669i −0.209325 0.977846i \(-0.567127\pi\)
−0.670204 + 0.742177i \(0.733793\pi\)
\(450\) 0 0
\(451\) −7.30797 12.6578i −0.344119 0.596031i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.27098 + 0.336410i 0.0595845 + 0.0157711i
\(456\) 0 0
\(457\) −1.90753 7.11901i −0.0892306 0.333013i 0.906851 0.421451i \(-0.138479\pi\)
−0.996082 + 0.0884380i \(0.971812\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.55335 5.79719i 0.0723469 0.270002i −0.920272 0.391280i \(-0.872032\pi\)
0.992619 + 0.121278i \(0.0386991\pi\)
\(462\) 0 0
\(463\) 3.47393 + 3.47393i 0.161447 + 0.161447i 0.783208 0.621760i \(-0.213582\pi\)
−0.621760 + 0.783208i \(0.713582\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 33.9452 1.57080 0.785398 0.618991i \(-0.212458\pi\)
0.785398 + 0.618991i \(0.212458\pi\)
\(468\) 0 0
\(469\) 5.09622 0.235322
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −9.01908 9.01908i −0.414698 0.414698i
\(474\) 0 0
\(475\) 0.118068 0.440635i 0.00541733 0.0202177i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.98717 29.8085i −0.364943 1.36199i −0.867498 0.497440i \(-0.834273\pi\)
0.502555 0.864545i \(-0.332393\pi\)
\(480\) 0 0
\(481\) 27.9507 + 16.0240i 1.27444 + 0.730630i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.14588 + 5.44882i 0.142847 + 0.247418i
\(486\) 0 0
\(487\) 16.2642 + 4.35798i 0.737001 + 0.197479i 0.607745 0.794132i \(-0.292074\pi\)
0.129256 + 0.991611i \(0.458741\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.26215 + 2.18611i −0.0569601 + 0.0986578i −0.893099 0.449859i \(-0.851474\pi\)
0.836139 + 0.548517i \(0.184807\pi\)
\(492\) 0 0
\(493\) 24.4112i 1.09943i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.51971 + 2.60946i 0.202737 + 0.117050i
\(498\) 0 0
\(499\) 7.14857 7.14857i 0.320014 0.320014i −0.528759 0.848772i \(-0.677342\pi\)
0.848772 + 0.528759i \(0.177342\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.0961 8.71572i 0.673100 0.388615i −0.124150 0.992263i \(-0.539620\pi\)
0.797250 + 0.603649i \(0.206287\pi\)
\(504\) 0 0
\(505\) −12.3219 + 3.30163i −0.548316 + 0.146921i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.08608 + 1.63076i −0.269761 + 0.0722821i −0.391164 0.920321i \(-0.627927\pi\)
0.121403 + 0.992603i \(0.461261\pi\)
\(510\) 0 0
\(511\) 2.99299 1.72801i 0.132402 0.0764425i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.92255 7.92255i 0.349109 0.349109i
\(516\) 0 0
\(517\) −4.92825 2.84533i −0.216744 0.125137i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.1078i 0.486643i 0.969946 + 0.243321i \(0.0782369\pi\)
−0.969946 + 0.243321i \(0.921763\pi\)
\(522\) 0 0
\(523\) −17.1039 + 29.6248i −0.747900 + 1.29540i 0.200927 + 0.979606i \(0.435604\pi\)
−0.948828 + 0.315795i \(0.897729\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −43.6811 11.7043i −1.90278 0.509848i
\(528\) 0 0
\(529\) −24.3741 42.2172i −1.05974 1.83553i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 15.9496 + 9.14382i 0.690855 + 0.396063i
\(534\) 0 0
\(535\) −3.29674 12.3036i −0.142530 0.531930i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.09454 19.0131i 0.219437 0.818952i
\(540\) 0 0
\(541\) −26.9297 26.9297i −1.15780 1.15780i −0.984948 0.172853i \(-0.944702\pi\)
−0.172853 0.984948i \(-0.555298\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13.3289 0.570948
\(546\) 0 0
\(547\) 5.96163 0.254901 0.127450 0.991845i \(-0.459321\pi\)
0.127450 + 0.991845i \(0.459321\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.47090 + 1.47090i 0.0626624 + 0.0626624i
\(552\) 0 0
\(553\) 0.829784 3.09680i 0.0352860 0.131689i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.99877 14.9236i −0.169433 0.632333i −0.997433 0.0716048i \(-0.977188\pi\)
0.828000 0.560728i \(-0.189479\pi\)
\(558\) 0 0
\(559\) 15.5098 + 4.10521i 0.655993 + 0.173632i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.55059 + 6.14980i 0.149639 + 0.259183i 0.931094 0.364779i \(-0.118855\pi\)
−0.781455 + 0.623962i \(0.785522\pi\)
\(564\) 0 0
\(565\) −15.5404 4.16403i −0.653788 0.175182i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.42204 + 14.5874i −0.353070 + 0.611536i −0.986786 0.162030i \(-0.948196\pi\)
0.633715 + 0.773566i \(0.281529\pi\)
\(570\) 0 0
\(571\) 19.8996i 0.832774i −0.909187 0.416387i \(-0.863296\pi\)
0.909187 0.416387i \(-0.136704\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.33561 4.23522i −0.305916 0.176621i
\(576\) 0 0
\(577\) −0.530957 + 0.530957i −0.0221040 + 0.0221040i −0.718072 0.695968i \(-0.754975\pi\)
0.695968 + 0.718072i \(0.254975\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.56835 1.48284i 0.106553 0.0615185i
\(582\) 0 0
\(583\) −25.8149 + 6.91707i −1.06914 + 0.286476i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.92004 + 1.05037i −0.161798 + 0.0433535i −0.338808 0.940855i \(-0.610024\pi\)
0.177011 + 0.984209i \(0.443357\pi\)
\(588\) 0 0
\(589\) 3.33725 1.92676i 0.137509 0.0793909i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.59697 + 1.59697i −0.0655796 + 0.0655796i −0.739136 0.673556i \(-0.764766\pi\)
0.673556 + 0.739136i \(0.264766\pi\)
\(594\) 0 0
\(595\) 1.69055 + 0.976041i 0.0693059 + 0.0400138i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.71920i 0.192821i −0.995342 0.0964107i \(-0.969264\pi\)
0.995342 0.0964107i \(-0.0307362\pi\)
\(600\) 0 0
\(601\) −13.8054 + 23.9116i −0.563132 + 0.975374i 0.434088 + 0.900870i \(0.357071\pi\)
−0.997221 + 0.0745035i \(0.976263\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.68879 + 0.720458i 0.109315 + 0.0292908i
\(606\) 0 0
\(607\) −15.2581 26.4278i −0.619307 1.07267i −0.989612 0.143761i \(-0.954080\pi\)
0.370306 0.928910i \(-0.379253\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.15801 0.0218172i 0.289582 0.000882631i
\(612\) 0 0
\(613\) −8.23877 30.7475i −0.332761 1.24188i −0.906276 0.422686i \(-0.861087\pi\)
0.573516 0.819195i \(-0.305579\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.11071 + 7.87728i −0.0849741 + 0.317127i −0.995309 0.0967442i \(-0.969157\pi\)
0.910335 + 0.413872i \(0.135824\pi\)
\(618\) 0 0
\(619\) −9.45659 9.45659i −0.380093 0.380093i 0.491043 0.871135i \(-0.336616\pi\)
−0.871135 + 0.491043i \(0.836616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.83056 0.193532
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 33.8253 + 33.8253i 1.34870 + 1.34870i
\(630\) 0 0
\(631\) −6.88603 + 25.6990i −0.274129 + 1.02306i 0.682295 + 0.731077i \(0.260982\pi\)
−0.956423 + 0.291984i \(0.905685\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.40933 12.7238i −0.135295 0.504928i
\(636\) 0 0
\(637\) 6.48108 + 23.8961i 0.256790 + 0.946800i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.1230 + 34.8540i 0.794809 + 1.37665i 0.922960 + 0.384895i \(0.125762\pi\)
−0.128152 + 0.991755i \(0.540904\pi\)
\(642\) 0 0
\(643\) −0.868262 0.232650i −0.0342409 0.00917482i 0.241658 0.970362i \(-0.422309\pi\)
−0.275899 + 0.961187i \(0.588975\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.47623 6.02100i 0.136665 0.236710i −0.789568 0.613664i \(-0.789695\pi\)
0.926232 + 0.376954i \(0.123028\pi\)
\(648\) 0 0
\(649\) 15.2734i 0.599533i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −41.8416 24.1572i −1.63739 0.945345i −0.981728 0.190287i \(-0.939058\pi\)
−0.655658 0.755058i \(-0.727609\pi\)
\(654\) 0 0
\(655\) −7.41514 + 7.41514i −0.289733 + 0.289733i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.87776 + 2.23882i −0.151056 + 0.0872122i −0.573623 0.819120i \(-0.694462\pi\)
0.422567 + 0.906332i \(0.361129\pi\)
\(660\) 0 0
\(661\) −38.0839 + 10.2046i −1.48129 + 0.396911i −0.906787 0.421589i \(-0.861472\pi\)
−0.574506 + 0.818501i \(0.694806\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.160676 + 0.0430530i −0.00623074 + 0.00166952i
\(666\) 0 0
\(667\) 33.4502 19.3125i 1.29520 0.747782i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.7929 + 10.7929i −0.416656 + 0.416656i
\(672\) 0 0
\(673\) 15.4580 + 8.92469i 0.595863 + 0.344022i 0.767412 0.641154i \(-0.221544\pi\)
−0.171549 + 0.985176i \(0.554877\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.42183i 0.246811i −0.992356 0.123406i \(-0.960618\pi\)
0.992356 0.123406i \(-0.0393816\pi\)
\(678\) 0 0
\(679\) 1.14713 1.98689i 0.0440228 0.0762498i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.84317 + 1.83362i 0.261847 + 0.0701616i 0.387354 0.921931i \(-0.373389\pi\)
−0.125507 + 0.992093i \(0.540056\pi\)
\(684\) 0 0
\(685\) −3.94023 6.82468i −0.150548 0.260758i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 23.6982 23.8431i 0.902829 0.908350i
\(690\) 0 0
\(691\) 2.10851 + 7.86908i 0.0802117 + 0.299354i 0.994364 0.106016i \(-0.0338094\pi\)
−0.914153 + 0.405370i \(0.867143\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.21450 + 4.53256i −0.0460685 + 0.171930i
\(696\) 0 0
\(697\) 19.3018 + 19.3018i 0.731109 + 0.731109i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11.4270 0.431593 0.215796 0.976438i \(-0.430765\pi\)
0.215796 + 0.976438i \(0.430765\pi\)
\(702\) 0 0
\(703\) −4.07629 −0.153740
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.28919 + 3.28919i 0.123703 + 0.123703i
\(708\) 0 0
\(709\) −5.12896 + 19.1415i −0.192622 + 0.718876i 0.800247 + 0.599670i \(0.204701\pi\)
−0.992870 + 0.119206i \(0.961965\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −18.5193 69.1150i −0.693553 2.58838i
\(714\) 0 0
\(715\) 9.97467 2.70532i 0.373031 0.101173i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.0442 34.7175i −0.747521 1.29475i −0.949007 0.315254i \(-0.897910\pi\)
0.201486 0.979491i \(-0.435423\pi\)
\(720\) 0 0
\(721\) −3.94635 1.05742i −0.146970 0.0393804i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.27999 3.94905i 0.0846765 0.146664i
\(726\) 0 0
\(727\) 4.19951i 0.155751i 0.996963 + 0.0778755i \(0.0248137\pi\)
−0.996963 + 0.0778755i \(0.975186\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 20.6298 + 11.9106i 0.763021 + 0.440530i
\(732\) 0 0
\(733\) −3.94126 + 3.94126i −0.145574 + 0.145574i −0.776137 0.630564i \(-0.782824\pi\)
0.630564 + 0.776137i \(0.282824\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 34.6935 20.0303i 1.27795 0.737825i
\(738\) 0 0
\(739\) −26.8799 + 7.20245i −0.988794 + 0.264946i −0.716744 0.697337i \(-0.754368\pi\)
−0.272050 + 0.962283i \(0.587702\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 25.0468 6.71128i 0.918879 0.246213i 0.231773 0.972770i \(-0.425547\pi\)
0.687106 + 0.726557i \(0.258881\pi\)
\(744\) 0 0
\(745\) −3.24038 + 1.87084i −0.118718 + 0.0685422i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.28431 + 3.28431i −0.120006 + 0.120006i
\(750\) 0 0
\(751\) −24.7819 14.3079i −0.904306 0.522101i −0.0257111 0.999669i \(-0.508185\pi\)
−0.878595 + 0.477568i \(0.841518\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18.6778i 0.679753i
\(756\) 0 0
\(757\) 23.4332 40.5875i 0.851694 1.47518i −0.0279844 0.999608i \(-0.508909\pi\)
0.879678 0.475569i \(-0.157758\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.7826 + 2.88919i 0.390869 + 0.104733i 0.448901 0.893582i \(-0.351816\pi\)
−0.0580315 + 0.998315i \(0.518482\pi\)
\(762\) 0 0
\(763\) −2.43017 4.20917i −0.0879780 0.152382i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.65656 16.6085i −0.348678 0.599699i
\(768\) 0 0
\(769\) 11.3385 + 42.3157i 0.408876 + 1.52594i 0.796794 + 0.604251i \(0.206527\pi\)
−0.387919 + 0.921694i \(0.626806\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.44957 + 5.40985i −0.0521373 + 0.194579i −0.987082 0.160213i \(-0.948782\pi\)
0.934945 + 0.354792i \(0.115448\pi\)
\(774\) 0 0
\(775\) −5.97321 5.97321i −0.214564 0.214564i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.32607 −0.0833400
\(780\) 0 0
\(781\) 41.0250 1.46799
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.5500 + 13.5500i 0.483622 + 0.483622i
\(786\) 0 0
\(787\) 10.4823 39.1205i 0.373654 1.39450i −0.481647 0.876365i \(-0.659961\pi\)
0.855301 0.518131i \(-0.173372\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.51840 + 5.66673i 0.0539879 + 0.201486i
\(792\) 0 0
\(793\) 4.91260 18.5602i 0.174452 0.659091i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.465021 + 0.805441i 0.0164719 + 0.0285302i 0.874144 0.485667i \(-0.161423\pi\)
−0.857672 + 0.514197i \(0.828090\pi\)
\(798\) 0 0
\(799\) 10.2658 + 2.75072i 0.363178 + 0.0973134i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.5836 23.5274i 0.479354 0.830265i
\(804\) 0 0
\(805\) 3.08871i 0.108863i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.15315 + 3.55252i 0.216333 + 0.124900i 0.604251 0.796794i \(-0.293472\pi\)
−0.387918 + 0.921694i \(0.626806\pi\)
\(810\) 0 0
\(811\) 2.95262 2.95262i 0.103681 0.103681i −0.653364 0.757044i \(-0.726643\pi\)
0.757044 + 0.653364i \(0.226643\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.32233 + 3.07285i −0.186433 + 0.107637i
\(816\) 0 0
\(817\) −1.96073 + 0.525375i −0.0685971 + 0.0183805i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −39.4238 + 10.5636i −1.37590 + 0.368671i −0.869630 0.493704i \(-0.835643\pi\)
−0.506270 + 0.862375i \(0.668976\pi\)
\(822\) 0 0
\(823\) −39.2644 + 22.6693i −1.36867 + 0.790202i −0.990758 0.135640i \(-0.956691\pi\)
−0.377912 + 0.925842i \(0.623358\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.6636 14.6636i 0.509903 0.509903i −0.404593 0.914497i \(-0.632587\pi\)
0.914497 + 0.404593i \(0.132587\pi\)
\(828\) 0 0
\(829\) −27.3885 15.8128i −0.951242 0.549200i −0.0577756 0.998330i \(-0.518401\pi\)
−0.893467 + 0.449130i \(0.851734\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 36.7618i 1.27372i
\(834\) 0 0
\(835\) 5.87578 10.1772i 0.203340 0.352195i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −32.2463 8.64036i −1.11326 0.298298i −0.345110 0.938562i \(-0.612158\pi\)
−0.768155 + 0.640264i \(0.778825\pi\)
\(840\) 0 0
\(841\) −4.10333 7.10718i −0.141494 0.245075i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −9.13618 + 9.24825i −0.314294 + 0.318150i
\(846\) 0 0
\(847\) −0.262712 0.980455i −0.00902689 0.0336888i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −19.5898 + 73.1103i −0.671531 + 2.50619i
\(852\) 0 0
\(853\) 32.7512 + 32.7512i 1.12138 + 1.12138i 0.991534 + 0.129845i \(0.0414479\pi\)
0.129845 + 0.991534i \(0.458552\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −47.2081 −1.61260 −0.806299 0.591509i \(-0.798532\pi\)
−0.806299 + 0.591509i \(0.798532\pi\)
\(858\) 0 0
\(859\) 45.6328 1.55697 0.778486 0.627662i \(-0.215988\pi\)
0.778486 + 0.627662i \(0.215988\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.5583 + 36.5583i 1.24446 + 1.24446i 0.958132 + 0.286326i \(0.0924340\pi\)
0.286326 + 0.958132i \(0.407566\pi\)
\(864\) 0 0
\(865\) −0.751705 + 2.80540i −0.0255587 + 0.0953865i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −6.52280 24.3434i −0.221271 0.825793i
\(870\) 0 0
\(871\) −25.0621 + 43.7161i −0.849198 + 1.48126i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.182323 + 0.315793i 0.00616364 + 0.0106757i
\(876\) 0 0
\(877\) 19.2133 + 5.14819i 0.648787 + 0.173842i 0.568180 0.822904i \(-0.307648\pi\)
0.0806066 + 0.996746i \(0.474314\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16.6875 28.9035i 0.562215 0.973785i −0.435088 0.900388i \(-0.643283\pi\)
0.997303 0.0733970i \(-0.0233840\pi\)
\(882\) 0 0
\(883\) 12.8119i 0.431155i −0.976487 0.215577i \(-0.930837\pi\)
0.976487 0.215577i \(-0.0691633\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −27.5297 15.8943i −0.924358 0.533678i −0.0393350 0.999226i \(-0.512524\pi\)
−0.885023 + 0.465548i \(0.845857\pi\)
\(888\) 0 0
\(889\) −3.39648 + 3.39648i −0.113914 + 0.113914i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.784312 + 0.452823i −0.0262460 + 0.0151531i
\(894\) 0 0
\(895\) 12.7411 3.41396i 0.425887 0.114116i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 37.2073 9.96967i 1.24093 0.332507i
\(900\) 0 0
\(901\) 43.2259 24.9565i 1.44006 0.831421i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16.3854 + 16.3854i −0.544671 + 0.544671i
\(906\) 0 0
\(907\) 11.9402 + 6.89370i 0.396469 + 0.228902i 0.684959 0.728581i \(-0.259820\pi\)
−0.288490 + 0.957483i \(0.593153\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 11.4607i 0.379709i 0.981812 + 0.189855i \(0.0608016\pi\)
−0.981812 + 0.189855i \(0.939198\pi\)
\(912\) 0 0
\(913\) 11.6564 20.1894i 0.385769 0.668171i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.69359 + 0.989695i 0.121973 + 0.0326826i
\(918\) 0 0
\(919\) 0.380145 + 0.658430i 0.0125398 + 0.0217196i 0.872227 0.489101i \(-0.162675\pi\)
−0.859687 + 0.510820i \(0.829342\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −44.6112 + 25.9379i −1.46840 + 0.853757i
\(924\) 0 0
\(925\) 2.31273 + 8.63123i 0.0760422 + 0.283793i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6.84747 + 25.5551i −0.224658 + 0.838436i 0.757883 + 0.652391i \(0.226234\pi\)
−0.982541 + 0.186045i \(0.940433\pi\)
\(930\) 0 0
\(931\) −2.21508 2.21508i −0.0725964 0.0725964i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 15.3450 0.501835
\(936\) 0 0
\(937\) −11.1139 −0.363076 −0.181538 0.983384i \(-0.558108\pi\)
−0.181538 + 0.983384i \(0.558108\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.32739 + 1.32739i 0.0432716 + 0.0432716i 0.728412 0.685140i \(-0.240259\pi\)
−0.685140 + 0.728412i \(0.740259\pi\)
\(942\) 0 0
\(943\) −11.1786 + 41.7192i −0.364026 + 1.35856i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.64195 6.12785i −0.0533562 0.199128i 0.934103 0.357005i \(-0.116202\pi\)
−0.987459 + 0.157876i \(0.949535\pi\)
\(948\) 0 0
\(949\) 0.104155 + 34.1723i 0.00338102 + 1.10928i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.7384 + 42.8482i 0.801355 + 1.38799i 0.918724 + 0.394900i \(0.129221\pi\)
−0.117369 + 0.993088i \(0.537446\pi\)
\(954\) 0 0
\(955\) 21.3494 + 5.72056i 0.690851 + 0.185113i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.43679 + 2.48859i −0.0463963 + 0.0803608i
\(960\) 0 0
\(961\) 40.3584i 1.30188i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −17.7786 10.2645i −0.572312 0.330424i
\(966\) 0 0
\(967\) −23.3987 + 23.3987i −0.752452 + 0.752452i −0.974936 0.222484i \(-0.928583\pi\)
0.222484 + 0.974936i \(0.428583\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.38401 4.26316i 0.236964 0.136811i −0.376816 0.926288i \(-0.622981\pi\)
0.613781 + 0.789477i \(0.289648\pi\)
\(972\) 0 0
\(973\) 1.65278 0.442861i 0.0529857 0.0141975i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.05268 2.42566i 0.289621 0.0776037i −0.111084 0.993811i \(-0.535432\pi\)
0.400704 + 0.916207i \(0.368765\pi\)
\(978\) 0 0
\(979\) 32.8849 18.9861i 1.05101 0.606798i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −8.80808 + 8.80808i −0.280934 + 0.280934i −0.833481 0.552547i \(-0.813656\pi\)
0.552547 + 0.833481i \(0.313656\pi\)
\(984\) 0 0
\(985\) −7.06752 4.08044i −0.225190 0.130014i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 37.6915i 1.19852i
\(990\) 0 0
\(991\) −21.2481 + 36.8028i −0.674968 + 1.16908i 0.301510 + 0.953463i \(0.402509\pi\)
−0.976478 + 0.215616i \(0.930824\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −7.68646 2.05958i −0.243677 0.0652931i
\(996\) 0 0
\(997\) −9.11451 15.7868i −0.288660 0.499973i 0.684831 0.728702i \(-0.259876\pi\)
−0.973490 + 0.228729i \(0.926543\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.fo.b.1241.9 yes 40
3.2 odd 2 inner 2340.2.fo.b.1241.1 40
13.11 odd 12 inner 2340.2.fo.b.1961.1 yes 40
39.11 even 12 inner 2340.2.fo.b.1961.9 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.fo.b.1241.1 40 3.2 odd 2 inner
2340.2.fo.b.1241.9 yes 40 1.1 even 1 trivial
2340.2.fo.b.1961.1 yes 40 13.11 odd 12 inner
2340.2.fo.b.1961.9 yes 40 39.11 even 12 inner