Properties

Label 2340.2.fo.b.1601.10
Level $2340$
Weight $2$
Character 2340.1601
Analytic conductor $18.685$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1241,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.fo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1601.10
Character \(\chi\) \(=\) 2340.1601
Dual form 2340.2.fo.b.2321.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{5} +(4.91520 - 1.31702i) q^{7} +(-3.41018 - 0.913756i) q^{11} +(3.41097 - 1.16846i) q^{13} +(-3.88518 + 6.72932i) q^{17} +(1.75838 + 6.56236i) q^{19} +(3.13407 + 5.42838i) q^{23} +1.00000i q^{25} +(1.62296 - 0.937019i) q^{29} +(-1.00592 + 1.00592i) q^{31} +(4.40685 + 2.54429i) q^{35} +(-1.83424 + 6.84546i) q^{37} +(1.55232 - 5.79335i) q^{41} +(-6.96335 - 4.02029i) q^{43} +(6.57647 - 6.57647i) q^{47} +(16.3624 - 9.44686i) q^{49} +10.5138i q^{53} +(-1.76524 - 3.05749i) q^{55} +(-2.73047 - 10.1903i) q^{59} +(-0.963040 + 1.66803i) q^{61} +(3.23815 + 1.58569i) q^{65} +(14.0158 + 3.75552i) q^{67} +(0.328790 - 0.0880990i) q^{71} +(-1.98760 - 1.98760i) q^{73} -17.9652 q^{77} -5.53894 q^{79} +(9.81723 + 9.81723i) q^{83} +(-7.50558 + 2.01112i) q^{85} +(-6.68489 - 1.79121i) q^{89} +(15.2267 - 10.2355i) q^{91} +(-3.39693 + 5.88365i) q^{95} +(-4.47916 - 16.7164i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 8 q^{7} + 12 q^{13} + 28 q^{19} + 36 q^{31} - 40 q^{37} - 72 q^{43} - 36 q^{49} - 32 q^{61} + 16 q^{67} + 28 q^{73} + 48 q^{79} - 20 q^{85} + 132 q^{91} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) 4.91520 1.31702i 1.85777 0.497788i 0.857899 0.513819i \(-0.171770\pi\)
0.999872 + 0.0160306i \(0.00510292\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.41018 0.913756i −1.02821 0.275508i −0.294990 0.955500i \(-0.595316\pi\)
−0.733219 + 0.679993i \(0.761983\pi\)
\(12\) 0 0
\(13\) 3.41097 1.16846i 0.946032 0.324073i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.88518 + 6.72932i −0.942294 + 1.63210i −0.181212 + 0.983444i \(0.558002\pi\)
−0.761081 + 0.648656i \(0.775331\pi\)
\(18\) 0 0
\(19\) 1.75838 + 6.56236i 0.403400 + 1.50551i 0.806988 + 0.590568i \(0.201096\pi\)
−0.403588 + 0.914941i \(0.632237\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.13407 + 5.42838i 0.653500 + 1.13189i 0.982268 + 0.187484i \(0.0600332\pi\)
−0.328768 + 0.944411i \(0.606633\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.62296 0.937019i 0.301377 0.174000i −0.341684 0.939815i \(-0.610997\pi\)
0.643061 + 0.765815i \(0.277664\pi\)
\(30\) 0 0
\(31\) −1.00592 + 1.00592i −0.180668 + 0.180668i −0.791647 0.610979i \(-0.790776\pi\)
0.610979 + 0.791647i \(0.290776\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.40685 + 2.54429i 0.744893 + 0.430064i
\(36\) 0 0
\(37\) −1.83424 + 6.84546i −0.301547 + 1.12539i 0.634331 + 0.773062i \(0.281276\pi\)
−0.935877 + 0.352326i \(0.885391\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.55232 5.79335i 0.242432 0.904769i −0.732225 0.681063i \(-0.761518\pi\)
0.974657 0.223706i \(-0.0718155\pi\)
\(42\) 0 0
\(43\) −6.96335 4.02029i −1.06190 0.613089i −0.135943 0.990717i \(-0.543406\pi\)
−0.925957 + 0.377628i \(0.876740\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.57647 6.57647i 0.959277 0.959277i −0.0399256 0.999203i \(-0.512712\pi\)
0.999203 + 0.0399256i \(0.0127121\pi\)
\(48\) 0 0
\(49\) 16.3624 9.44686i 2.33749 1.34955i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.5138i 1.44418i 0.691799 + 0.722090i \(0.256818\pi\)
−0.691799 + 0.722090i \(0.743182\pi\)
\(54\) 0 0
\(55\) −1.76524 3.05749i −0.238025 0.412271i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.73047 10.1903i −0.355477 1.32666i −0.879883 0.475190i \(-0.842379\pi\)
0.524406 0.851468i \(-0.324287\pi\)
\(60\) 0 0
\(61\) −0.963040 + 1.66803i −0.123305 + 0.213570i −0.921069 0.389400i \(-0.872683\pi\)
0.797764 + 0.602969i \(0.206016\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.23815 + 1.58569i 0.401642 + 0.196681i
\(66\) 0 0
\(67\) 14.0158 + 3.75552i 1.71230 + 0.458810i 0.975987 0.217829i \(-0.0698975\pi\)
0.736315 + 0.676639i \(0.236564\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.328790 0.0880990i 0.0390202 0.0104554i −0.239256 0.970956i \(-0.576904\pi\)
0.278276 + 0.960501i \(0.410237\pi\)
\(72\) 0 0
\(73\) −1.98760 1.98760i −0.232631 0.232631i 0.581159 0.813790i \(-0.302599\pi\)
−0.813790 + 0.581159i \(0.802599\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −17.9652 −2.04732
\(78\) 0 0
\(79\) −5.53894 −0.623180 −0.311590 0.950217i \(-0.600862\pi\)
−0.311590 + 0.950217i \(0.600862\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.81723 + 9.81723i 1.07758 + 1.07758i 0.996726 + 0.0808547i \(0.0257650\pi\)
0.0808547 + 0.996726i \(0.474235\pi\)
\(84\) 0 0
\(85\) −7.50558 + 2.01112i −0.814095 + 0.218136i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.68489 1.79121i −0.708597 0.189868i −0.113519 0.993536i \(-0.536212\pi\)
−0.595078 + 0.803668i \(0.702879\pi\)
\(90\) 0 0
\(91\) 15.2267 10.2355i 1.59619 1.07298i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.39693 + 5.88365i −0.348517 + 0.603650i
\(96\) 0 0
\(97\) −4.47916 16.7164i −0.454790 1.69730i −0.688706 0.725041i \(-0.741821\pi\)
0.233916 0.972257i \(-0.424846\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.886502 + 1.53547i 0.0882102 + 0.152785i 0.906755 0.421659i \(-0.138552\pi\)
−0.818544 + 0.574443i \(0.805219\pi\)
\(102\) 0 0
\(103\) 9.63862i 0.949721i 0.880061 + 0.474861i \(0.157502\pi\)
−0.880061 + 0.474861i \(0.842498\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.97946 2.29754i 0.384709 0.222112i −0.295156 0.955449i \(-0.595372\pi\)
0.679865 + 0.733337i \(0.262038\pi\)
\(108\) 0 0
\(109\) −2.16464 + 2.16464i −0.207335 + 0.207335i −0.803134 0.595799i \(-0.796835\pi\)
0.595799 + 0.803134i \(0.296835\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.81298 1.62408i −0.264623 0.152780i 0.361818 0.932249i \(-0.382156\pi\)
−0.626442 + 0.779468i \(0.715489\pi\)
\(114\) 0 0
\(115\) −1.62232 + 6.05457i −0.151282 + 0.564591i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.2337 + 38.1928i −0.938125 + 3.50113i
\(120\) 0 0
\(121\) 1.26812 + 0.732149i 0.115284 + 0.0665590i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 9.82773 5.67404i 0.872070 0.503490i 0.00403443 0.999992i \(-0.498716\pi\)
0.868036 + 0.496502i \(0.165382\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.30632i 0.114134i 0.998370 + 0.0570670i \(0.0181749\pi\)
−0.998370 + 0.0570670i \(0.981825\pi\)
\(132\) 0 0
\(133\) 17.2856 + 29.9395i 1.49885 + 2.59608i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.81041 6.75655i −0.154674 0.577251i −0.999133 0.0416311i \(-0.986745\pi\)
0.844459 0.535620i \(-0.179922\pi\)
\(138\) 0 0
\(139\) 4.67361 8.09494i 0.396411 0.686603i −0.596869 0.802338i \(-0.703589\pi\)
0.993280 + 0.115735i \(0.0369223\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −12.6997 + 0.867877i −1.06200 + 0.0725755i
\(144\) 0 0
\(145\) 1.81018 + 0.485037i 0.150327 + 0.0402801i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.1927 2.73112i 0.835018 0.223742i 0.184116 0.982904i \(-0.441058\pi\)
0.650902 + 0.759162i \(0.274391\pi\)
\(150\) 0 0
\(151\) −0.397738 0.397738i −0.0323675 0.0323675i 0.690738 0.723105i \(-0.257286\pi\)
−0.723105 + 0.690738i \(0.757286\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.42258 −0.114265
\(156\) 0 0
\(157\) 4.16188 0.332154 0.166077 0.986113i \(-0.446890\pi\)
0.166077 + 0.986113i \(0.446890\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.5539 + 22.5539i 1.77750 + 1.77750i
\(162\) 0 0
\(163\) −2.29310 + 0.614433i −0.179609 + 0.0481261i −0.347503 0.937679i \(-0.612970\pi\)
0.167893 + 0.985805i \(0.446304\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.36269 1.16898i −0.337595 0.0904584i 0.0860388 0.996292i \(-0.472579\pi\)
−0.423634 + 0.905833i \(0.639246\pi\)
\(168\) 0 0
\(169\) 10.2694 7.97117i 0.789953 0.613167i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.31182 2.27214i 0.0997360 0.172748i −0.811839 0.583881i \(-0.801534\pi\)
0.911575 + 0.411133i \(0.134867\pi\)
\(174\) 0 0
\(175\) 1.31702 + 4.91520i 0.0995576 + 0.371554i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.25552 + 5.63872i 0.243329 + 0.421458i 0.961660 0.274243i \(-0.0884273\pi\)
−0.718332 + 0.695701i \(0.755094\pi\)
\(180\) 0 0
\(181\) 9.87330i 0.733876i 0.930245 + 0.366938i \(0.119594\pi\)
−0.930245 + 0.366938i \(0.880406\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.13747 + 3.54347i −0.451236 + 0.260521i
\(186\) 0 0
\(187\) 19.3981 19.3981i 1.41853 1.41853i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.92073 + 5.72774i 0.717839 + 0.414444i 0.813957 0.580926i \(-0.197309\pi\)
−0.0961179 + 0.995370i \(0.530643\pi\)
\(192\) 0 0
\(193\) 3.56621 13.3093i 0.256702 0.958023i −0.710434 0.703764i \(-0.751501\pi\)
0.967136 0.254260i \(-0.0818319\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.72023 21.3482i 0.407549 1.52099i −0.391756 0.920069i \(-0.628132\pi\)
0.799305 0.600926i \(-0.205201\pi\)
\(198\) 0 0
\(199\) 5.45174 + 3.14756i 0.386463 + 0.223125i 0.680627 0.732630i \(-0.261708\pi\)
−0.294163 + 0.955755i \(0.595041\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.74311 6.74311i 0.473274 0.473274i
\(204\) 0 0
\(205\) 5.19417 2.99886i 0.362777 0.209449i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 23.9856i 1.65912i
\(210\) 0 0
\(211\) 8.67159 + 15.0196i 0.596977 + 1.03399i 0.993265 + 0.115868i \(0.0369649\pi\)
−0.396288 + 0.918126i \(0.629702\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.08106 7.76661i −0.141927 0.529678i
\(216\) 0 0
\(217\) −3.61947 + 6.26911i −0.245706 + 0.425575i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5.38925 + 27.4932i −0.362520 + 1.84939i
\(222\) 0 0
\(223\) −2.48941 0.667035i −0.166703 0.0446679i 0.174502 0.984657i \(-0.444168\pi\)
−0.341205 + 0.939989i \(0.610835\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −21.0657 + 5.64454i −1.39818 + 0.374641i −0.877691 0.479227i \(-0.840917\pi\)
−0.520489 + 0.853868i \(0.674250\pi\)
\(228\) 0 0
\(229\) −3.71218 3.71218i −0.245308 0.245308i 0.573734 0.819042i \(-0.305494\pi\)
−0.819042 + 0.573734i \(0.805494\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.1730 0.731968 0.365984 0.930621i \(-0.380733\pi\)
0.365984 + 0.930621i \(0.380733\pi\)
\(234\) 0 0
\(235\) 9.30054 0.606700
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.2925 14.2925i −0.924505 0.924505i 0.0728388 0.997344i \(-0.476794\pi\)
−0.997344 + 0.0728388i \(0.976794\pi\)
\(240\) 0 0
\(241\) −5.79026 + 1.55149i −0.372983 + 0.0999405i −0.440441 0.897782i \(-0.645178\pi\)
0.0674578 + 0.997722i \(0.478511\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 18.2499 + 4.89006i 1.16595 + 0.312414i
\(246\) 0 0
\(247\) 13.6656 + 20.3294i 0.869524 + 1.29353i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.47750 + 14.6835i −0.535095 + 0.926812i 0.464064 + 0.885802i \(0.346391\pi\)
−0.999159 + 0.0410100i \(0.986942\pi\)
\(252\) 0 0
\(253\) −5.72756 21.3755i −0.360088 1.34387i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.06559 + 12.2380i 0.440739 + 0.763383i 0.997745 0.0671261i \(-0.0213830\pi\)
−0.557005 + 0.830509i \(0.688050\pi\)
\(258\) 0 0
\(259\) 36.0625i 2.24082i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.74258 + 3.89283i −0.415765 + 0.240042i −0.693264 0.720684i \(-0.743828\pi\)
0.277499 + 0.960726i \(0.410495\pi\)
\(264\) 0 0
\(265\) −7.43437 + 7.43437i −0.456690 + 0.456690i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.34421 5.39488i −0.569726 0.328932i 0.187314 0.982300i \(-0.440022\pi\)
−0.757040 + 0.653368i \(0.773355\pi\)
\(270\) 0 0
\(271\) −6.59816 + 24.6247i −0.400810 + 1.49584i 0.410846 + 0.911705i \(0.365234\pi\)
−0.811655 + 0.584137i \(0.801433\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.913756 3.41018i 0.0551015 0.205642i
\(276\) 0 0
\(277\) −27.4764 15.8635i −1.65090 0.953145i −0.976705 0.214587i \(-0.931160\pi\)
−0.674190 0.738558i \(-0.735507\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.57802 8.57802i 0.511722 0.511722i −0.403332 0.915054i \(-0.632148\pi\)
0.915054 + 0.403332i \(0.132148\pi\)
\(282\) 0 0
\(283\) −4.18008 + 2.41337i −0.248480 + 0.143460i −0.619068 0.785337i \(-0.712489\pi\)
0.370588 + 0.928797i \(0.379156\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 30.5199i 1.80153i
\(288\) 0 0
\(289\) −21.6892 37.5668i −1.27583 2.20981i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.72872 13.9158i −0.217834 0.812969i −0.985150 0.171699i \(-0.945074\pi\)
0.767315 0.641270i \(-0.221592\pi\)
\(294\) 0 0
\(295\) 5.27487 9.13633i 0.307115 0.531938i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 17.0331 + 14.8540i 0.985048 + 0.859027i
\(300\) 0 0
\(301\) −39.5211 10.5896i −2.27796 0.610376i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.86045 + 0.498506i −0.106529 + 0.0285444i
\(306\) 0 0
\(307\) −2.35939 2.35939i −0.134657 0.134657i 0.636565 0.771223i \(-0.280355\pi\)
−0.771223 + 0.636565i \(0.780355\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.6010 1.11147 0.555736 0.831359i \(-0.312437\pi\)
0.555736 + 0.831359i \(0.312437\pi\)
\(312\) 0 0
\(313\) −15.2645 −0.862798 −0.431399 0.902161i \(-0.641980\pi\)
−0.431399 + 0.902161i \(0.641980\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.7945 + 10.7945i 0.606277 + 0.606277i 0.941971 0.335694i \(-0.108971\pi\)
−0.335694 + 0.941971i \(0.608971\pi\)
\(318\) 0 0
\(319\) −6.39081 + 1.71241i −0.357817 + 0.0958767i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −50.9919 13.6632i −2.83726 0.760242i
\(324\) 0 0
\(325\) 1.16846 + 3.41097i 0.0648146 + 0.189206i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 23.6633 40.9860i 1.30460 2.25963i
\(330\) 0 0
\(331\) 3.58052 + 13.3627i 0.196803 + 0.734479i 0.991793 + 0.127856i \(0.0408096\pi\)
−0.794990 + 0.606623i \(0.792524\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.25511 + 12.5662i 0.396389 + 0.686566i
\(336\) 0 0
\(337\) 14.8786i 0.810490i −0.914208 0.405245i \(-0.867186\pi\)
0.914208 0.405245i \(-0.132814\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.34953 2.51120i 0.235540 0.135989i
\(342\) 0 0
\(343\) 42.7957 42.7957i 2.31075 2.31075i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −27.8810 16.0971i −1.49673 0.864138i −0.496737 0.867901i \(-0.665469\pi\)
−0.999993 + 0.00376328i \(0.998802\pi\)
\(348\) 0 0
\(349\) −9.13898 + 34.1071i −0.489198 + 1.82571i 0.0711640 + 0.997465i \(0.477329\pi\)
−0.560362 + 0.828248i \(0.689338\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5.89877 22.0145i 0.313960 1.17171i −0.610994 0.791635i \(-0.709230\pi\)
0.924954 0.380079i \(-0.124103\pi\)
\(354\) 0 0
\(355\) 0.294785 + 0.170194i 0.0156456 + 0.00903297i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.83163 + 6.83163i −0.360560 + 0.360560i −0.864019 0.503459i \(-0.832060\pi\)
0.503459 + 0.864019i \(0.332060\pi\)
\(360\) 0 0
\(361\) −23.5182 + 13.5782i −1.23780 + 0.714644i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.81089i 0.147129i
\(366\) 0 0
\(367\) −5.52736 9.57367i −0.288526 0.499742i 0.684932 0.728607i \(-0.259832\pi\)
−0.973458 + 0.228865i \(0.926499\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.8469 + 51.6774i 0.718896 + 2.68295i
\(372\) 0 0
\(373\) 11.6015 20.0944i 0.600703 1.04045i −0.392012 0.919960i \(-0.628221\pi\)
0.992715 0.120488i \(-0.0384459\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.44101 5.09251i 0.228723 0.262278i
\(378\) 0 0
\(379\) −13.5502 3.63077i −0.696029 0.186500i −0.106578 0.994304i \(-0.533989\pi\)
−0.589451 + 0.807804i \(0.700656\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.5614 4.43760i 0.846246 0.226751i 0.190457 0.981695i \(-0.439003\pi\)
0.655789 + 0.754944i \(0.272336\pi\)
\(384\) 0 0
\(385\) −12.7033 12.7033i −0.647420 0.647420i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.68999 −0.288494 −0.144247 0.989542i \(-0.546076\pi\)
−0.144247 + 0.989542i \(0.546076\pi\)
\(390\) 0 0
\(391\) −48.7057 −2.46315
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.91662 3.91662i −0.197067 0.197067i
\(396\) 0 0
\(397\) −5.64065 + 1.51141i −0.283096 + 0.0758553i −0.397573 0.917571i \(-0.630147\pi\)
0.114477 + 0.993426i \(0.463481\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.50765 + 2.01167i 0.374914 + 0.100458i 0.441355 0.897332i \(-0.354498\pi\)
−0.0664412 + 0.997790i \(0.521164\pi\)
\(402\) 0 0
\(403\) −2.25578 + 4.60653i −0.112368 + 0.229468i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.5102 21.6682i 0.620106 1.07405i
\(408\) 0 0
\(409\) −7.51693 28.0536i −0.371688 1.38716i −0.858124 0.513443i \(-0.828370\pi\)
0.486436 0.873716i \(-0.338297\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −26.8416 46.4910i −1.32079 2.28767i
\(414\) 0 0
\(415\) 13.8837i 0.681522i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −17.1629 + 9.90900i −0.838462 + 0.484086i −0.856741 0.515746i \(-0.827515\pi\)
0.0182789 + 0.999833i \(0.494181\pi\)
\(420\) 0 0
\(421\) −8.01546 + 8.01546i −0.390650 + 0.390650i −0.874919 0.484269i \(-0.839086\pi\)
0.484269 + 0.874919i \(0.339086\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.72932 3.88518i −0.326420 0.188459i
\(426\) 0 0
\(427\) −2.53669 + 9.46706i −0.122759 + 0.458143i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.62197 6.05329i 0.0781278 0.291577i −0.915797 0.401643i \(-0.868439\pi\)
0.993924 + 0.110066i \(0.0351061\pi\)
\(432\) 0 0
\(433\) −26.0659 15.0492i −1.25265 0.723217i −0.281014 0.959704i \(-0.590671\pi\)
−0.971635 + 0.236486i \(0.924004\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −30.1121 + 30.1121i −1.44046 + 1.44046i
\(438\) 0 0
\(439\) 13.6256 7.86674i 0.650314 0.375459i −0.138262 0.990396i \(-0.544152\pi\)
0.788577 + 0.614937i \(0.210818\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.6529i 0.696180i −0.937461 0.348090i \(-0.886830\pi\)
0.937461 0.348090i \(-0.113170\pi\)
\(444\) 0 0
\(445\) −3.46035 5.99351i −0.164037 0.284120i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8.84623 33.0146i −0.417480 1.55805i −0.779817 0.626008i \(-0.784688\pi\)
0.362337 0.932047i \(-0.381979\pi\)
\(450\) 0 0
\(451\) −10.5874 + 18.3379i −0.498542 + 0.863500i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 18.0045 + 3.52927i 0.844065 + 0.165455i
\(456\) 0 0
\(457\) 3.08340 + 0.826195i 0.144236 + 0.0386478i 0.330214 0.943906i \(-0.392879\pi\)
−0.185979 + 0.982554i \(0.559546\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.54114 + 1.48474i −0.258077 + 0.0691514i −0.385537 0.922692i \(-0.625984\pi\)
0.127461 + 0.991844i \(0.459317\pi\)
\(462\) 0 0
\(463\) 26.1825 + 26.1825i 1.21680 + 1.21680i 0.968745 + 0.248060i \(0.0797930\pi\)
0.248060 + 0.968745i \(0.420207\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.6072 −0.953586 −0.476793 0.879016i \(-0.658201\pi\)
−0.476793 + 0.879016i \(0.658201\pi\)
\(468\) 0 0
\(469\) 73.8365 3.40945
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20.0727 + 20.0727i 0.922945 + 0.922945i
\(474\) 0 0
\(475\) −6.56236 + 1.75838i −0.301102 + 0.0806800i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 33.8617 + 9.07322i 1.54718 + 0.414566i 0.928578 0.371137i \(-0.121032\pi\)
0.618603 + 0.785703i \(0.287699\pi\)
\(480\) 0 0
\(481\) 1.74214 + 25.4929i 0.0794348 + 1.16238i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.65307 14.9876i 0.392916 0.680550i
\(486\) 0 0
\(487\) 3.08456 + 11.5117i 0.139775 + 0.521646i 0.999933 + 0.0116181i \(0.00369823\pi\)
−0.860158 + 0.510028i \(0.829635\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.20961 + 14.2195i 0.370494 + 0.641715i 0.989642 0.143560i \(-0.0458549\pi\)
−0.619147 + 0.785275i \(0.712522\pi\)
\(492\) 0 0
\(493\) 14.5619i 0.655836i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.50004 0.866048i 0.0672860 0.0388476i
\(498\) 0 0
\(499\) 16.3880 16.3880i 0.733625 0.733625i −0.237711 0.971336i \(-0.576397\pi\)
0.971336 + 0.237711i \(0.0763970\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 37.2392 + 21.5001i 1.66041 + 0.958641i 0.972517 + 0.232834i \(0.0747998\pi\)
0.687898 + 0.725807i \(0.258534\pi\)
\(504\) 0 0
\(505\) −0.458887 + 1.71259i −0.0204202 + 0.0762093i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.90063 + 10.8253i −0.128568 + 0.479824i −0.999942 0.0107968i \(-0.996563\pi\)
0.871373 + 0.490621i \(0.163230\pi\)
\(510\) 0 0
\(511\) −12.3872 7.15174i −0.547976 0.316374i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.81553 + 6.81553i −0.300328 + 0.300328i
\(516\) 0 0
\(517\) −28.4363 + 16.4177i −1.25063 + 0.722049i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.421232i 0.0184545i −0.999957 0.00922726i \(-0.997063\pi\)
0.999957 0.00922726i \(-0.00293717\pi\)
\(522\) 0 0
\(523\) 14.2808 + 24.7350i 0.624454 + 1.08159i 0.988646 + 0.150262i \(0.0480118\pi\)
−0.364192 + 0.931324i \(0.618655\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.86098 10.6773i −0.124626 0.465112i
\(528\) 0 0
\(529\) −8.14484 + 14.1073i −0.354124 + 0.613360i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.47438 21.5748i −0.0638626 0.934506i
\(534\) 0 0
\(535\) 4.43851 + 1.18930i 0.191894 + 0.0514178i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −64.4311 + 17.2643i −2.77524 + 0.743624i
\(540\) 0 0
\(541\) −6.18704 6.18704i −0.266002 0.266002i 0.561485 0.827487i \(-0.310230\pi\)
−0.827487 + 0.561485i \(0.810230\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.06126 −0.131130
\(546\) 0 0
\(547\) −5.98071 −0.255717 −0.127858 0.991792i \(-0.540810\pi\)
−0.127858 + 0.991792i \(0.540810\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.00284 + 9.00284i 0.383534 + 0.383534i
\(552\) 0 0
\(553\) −27.2250 + 7.29492i −1.15772 + 0.310211i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11.6228 3.11431i −0.492472 0.131957i 0.00403211 0.999992i \(-0.498717\pi\)
−0.496504 + 0.868034i \(0.665383\pi\)
\(558\) 0 0
\(559\) −28.4493 5.57668i −1.20328 0.235868i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.15030 + 8.92058i −0.217059 + 0.375958i −0.953908 0.300100i \(-0.902980\pi\)
0.736848 + 0.676058i \(0.236313\pi\)
\(564\) 0 0
\(565\) −0.840684 3.13748i −0.0353678 0.131995i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14.0379 24.3144i −0.588501 1.01931i −0.994429 0.105409i \(-0.966385\pi\)
0.405928 0.913905i \(-0.366948\pi\)
\(570\) 0 0
\(571\) 17.9916i 0.752924i −0.926432 0.376462i \(-0.877140\pi\)
0.926432 0.376462i \(-0.122860\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.42838 + 3.13407i −0.226379 + 0.130700i
\(576\) 0 0
\(577\) −2.85046 + 2.85046i −0.118666 + 0.118666i −0.763946 0.645280i \(-0.776741\pi\)
0.645280 + 0.763946i \(0.276741\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 61.1831 + 35.3241i 2.53830 + 1.46549i
\(582\) 0 0
\(583\) 9.60704 35.8539i 0.397883 1.48492i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.08005 + 7.76284i −0.0858527 + 0.320407i −0.995474 0.0950312i \(-0.969705\pi\)
0.909622 + 0.415438i \(0.136372\pi\)
\(588\) 0 0
\(589\) −8.36999 4.83242i −0.344879 0.199116i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19.9507 + 19.9507i −0.819276 + 0.819276i −0.986003 0.166727i \(-0.946680\pi\)
0.166727 + 0.986003i \(0.446680\pi\)
\(594\) 0 0
\(595\) −34.2427 + 19.7701i −1.40382 + 0.810493i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.01691i 0.204986i −0.994734 0.102493i \(-0.967318\pi\)
0.994734 0.102493i \(-0.0326819\pi\)
\(600\) 0 0
\(601\) −11.4153 19.7719i −0.465641 0.806514i 0.533589 0.845744i \(-0.320843\pi\)
−0.999230 + 0.0392296i \(0.987510\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.378988 + 1.41440i 0.0154081 + 0.0575037i
\(606\) 0 0
\(607\) 11.5814 20.0596i 0.470074 0.814193i −0.529340 0.848410i \(-0.677560\pi\)
0.999414 + 0.0342171i \(0.0108938\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.7478 30.1165i 0.596631 1.21838i
\(612\) 0 0
\(613\) 5.92571 + 1.58779i 0.239337 + 0.0641302i 0.376494 0.926419i \(-0.377130\pi\)
−0.137157 + 0.990549i \(0.543796\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 45.0349 12.0671i 1.81304 0.485802i 0.817152 0.576422i \(-0.195552\pi\)
0.995886 + 0.0906201i \(0.0288849\pi\)
\(618\) 0 0
\(619\) −4.91074 4.91074i −0.197379 0.197379i 0.601496 0.798876i \(-0.294571\pi\)
−0.798876 + 0.601496i \(0.794571\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −35.2166 −1.41092
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −38.9390 38.9390i −1.55260 1.55260i
\(630\) 0 0
\(631\) −15.7564 + 4.22192i −0.627252 + 0.168072i −0.558423 0.829557i \(-0.688593\pi\)
−0.0688299 + 0.997628i \(0.521927\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.9614 + 2.93710i 0.434990 + 0.116555i
\(636\) 0 0
\(637\) 44.7735 51.3418i 1.77399 2.03424i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21.2110 36.7385i 0.837784 1.45108i −0.0539589 0.998543i \(-0.517184\pi\)
0.891743 0.452542i \(-0.149483\pi\)
\(642\) 0 0
\(643\) 4.87370 + 18.1889i 0.192200 + 0.717300i 0.992974 + 0.118334i \(0.0377552\pi\)
−0.800774 + 0.598967i \(0.795578\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.1488 29.7025i −0.674188 1.16773i −0.976706 0.214583i \(-0.931161\pi\)
0.302518 0.953144i \(-0.402173\pi\)
\(648\) 0 0
\(649\) 37.2456i 1.46202i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.9677 8.06426i 0.546598 0.315579i −0.201150 0.979560i \(-0.564468\pi\)
0.747749 + 0.663982i \(0.231135\pi\)
\(654\) 0 0
\(655\) −0.923710 + 0.923710i −0.0360923 + 0.0360923i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.23701 + 1.29154i 0.0871417 + 0.0503113i 0.542938 0.839773i \(-0.317312\pi\)
−0.455796 + 0.890084i \(0.650645\pi\)
\(660\) 0 0
\(661\) 12.8478 47.9485i 0.499720 1.86498i −0.00208455 0.999998i \(-0.500664\pi\)
0.501804 0.864981i \(-0.332670\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.94767 + 33.3931i −0.346976 + 1.29493i
\(666\) 0 0
\(667\) 10.1730 + 5.87337i 0.393899 + 0.227418i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.80832 4.80832i 0.185623 0.185623i
\(672\) 0 0
\(673\) −33.4345 + 19.3034i −1.28881 + 0.744092i −0.978441 0.206526i \(-0.933784\pi\)
−0.310364 + 0.950618i \(0.600451\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.9996i 0.691782i −0.938275 0.345891i \(-0.887577\pi\)
0.938275 0.345891i \(-0.112423\pi\)
\(678\) 0 0
\(679\) −44.0319 76.2655i −1.68979 2.92680i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.4871 39.1383i −0.401277 1.49759i −0.810820 0.585296i \(-0.800978\pi\)
0.409543 0.912291i \(-0.365688\pi\)
\(684\) 0 0
\(685\) 3.49745 6.05776i 0.133631 0.231455i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.2850 + 35.8622i 0.468020 + 1.36624i
\(690\) 0 0
\(691\) −11.9737 3.20834i −0.455501 0.122051i 0.0237713 0.999717i \(-0.492433\pi\)
−0.479272 + 0.877666i \(0.659099\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.02873 2.41924i 0.342479 0.0917670i
\(696\) 0 0
\(697\) 32.9543 + 32.9543i 1.24823 + 1.24823i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −46.7452 −1.76554 −0.882772 0.469802i \(-0.844325\pi\)
−0.882772 + 0.469802i \(0.844325\pi\)
\(702\) 0 0
\(703\) −48.1477 −1.81592
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.37958 + 6.37958i 0.239929 + 0.239929i
\(708\) 0 0
\(709\) −33.9244 + 9.09001i −1.27406 + 0.341382i −0.831584 0.555399i \(-0.812565\pi\)
−0.442473 + 0.896782i \(0.645899\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.61313 2.30788i −0.322564 0.0864308i
\(714\) 0 0
\(715\) −9.59373 8.36637i −0.358785 0.312885i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.7948 29.0895i 0.626341 1.08485i −0.361939 0.932202i \(-0.617885\pi\)
0.988280 0.152652i \(-0.0487814\pi\)
\(720\) 0 0
\(721\) 12.6943 + 47.3757i 0.472760 + 1.76436i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.937019 + 1.62296i 0.0348000 + 0.0602754i
\(726\) 0 0
\(727\) 25.3263i 0.939300i −0.882853 0.469650i \(-0.844380\pi\)
0.882853 0.469650i \(-0.155620\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 54.1077 31.2391i 2.00124 1.15542i
\(732\) 0 0
\(733\) −36.4588 + 36.4588i −1.34664 + 1.34664i −0.457352 + 0.889286i \(0.651202\pi\)
−0.889286 + 0.457352i \(0.848798\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −44.3648 25.6140i −1.63420 0.943505i
\(738\) 0 0
\(739\) 1.09790 4.09742i 0.0403869 0.150726i −0.942788 0.333393i \(-0.891806\pi\)
0.983175 + 0.182667i \(0.0584731\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.1045 37.7106i 0.370699 1.38347i −0.488828 0.872380i \(-0.662576\pi\)
0.859528 0.511089i \(-0.170758\pi\)
\(744\) 0 0
\(745\) 9.13852 + 5.27613i 0.334809 + 0.193302i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 16.5339 16.5339i 0.604137 0.604137i
\(750\) 0 0
\(751\) −15.0174 + 8.67029i −0.547992 + 0.316383i −0.748312 0.663347i \(-0.769135\pi\)
0.200320 + 0.979731i \(0.435802\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.562487i 0.0204710i
\(756\) 0 0
\(757\) −14.0002 24.2491i −0.508847 0.881349i −0.999948 0.0102463i \(-0.996738\pi\)
0.491100 0.871103i \(-0.336595\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.835105 3.11666i −0.0302725 0.112979i 0.949136 0.314865i \(-0.101959\pi\)
−0.979409 + 0.201887i \(0.935293\pi\)
\(762\) 0 0
\(763\) −7.78874 + 13.4905i −0.281971 + 0.488389i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −21.2205 31.5682i −0.766227 1.13986i
\(768\) 0 0
\(769\) 13.9819 + 3.74644i 0.504201 + 0.135100i 0.501949 0.864897i \(-0.332617\pi\)
0.00225181 + 0.999997i \(0.499283\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 26.1785 7.01452i 0.941576 0.252295i 0.244792 0.969576i \(-0.421280\pi\)
0.696784 + 0.717281i \(0.254614\pi\)
\(774\) 0 0
\(775\) −1.00592 1.00592i −0.0361337 0.0361337i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 40.7476 1.45993
\(780\) 0 0
\(781\) −1.20174 −0.0430015
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.94289 + 2.94289i 0.105036 + 0.105036i
\(786\) 0 0
\(787\) 1.15360 0.309107i 0.0411216 0.0110185i −0.238200 0.971216i \(-0.576557\pi\)
0.279321 + 0.960198i \(0.409891\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −15.9653 4.27790i −0.567662 0.152104i
\(792\) 0 0
\(793\) −1.33586 + 6.81488i −0.0474379 + 0.242004i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.2193 19.4324i 0.397408 0.688331i −0.595997 0.802987i \(-0.703243\pi\)
0.993405 + 0.114655i \(0.0365764\pi\)
\(798\) 0 0
\(799\) 18.7044 + 69.8060i 0.661716 + 2.46956i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.96190 + 8.59427i 0.175102 + 0.303285i
\(804\) 0 0
\(805\) 31.8960i 1.12419i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −4.13097 + 2.38501i −0.145237 + 0.0838526i −0.570858 0.821049i \(-0.693389\pi\)
0.425621 + 0.904902i \(0.360056\pi\)
\(810\) 0 0
\(811\) 24.0283 24.0283i 0.843749 0.843749i −0.145595 0.989344i \(-0.546510\pi\)
0.989344 + 0.145595i \(0.0465096\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.05593 1.18699i −0.0720162 0.0415786i
\(816\) 0 0
\(817\) 14.1384 52.7652i 0.494640 1.84602i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.55836 + 13.2800i −0.124188 + 0.463474i −0.999809 0.0195230i \(-0.993785\pi\)
0.875622 + 0.482997i \(0.160452\pi\)
\(822\) 0 0
\(823\) −21.9728 12.6860i −0.765923 0.442206i 0.0654951 0.997853i \(-0.479137\pi\)
−0.831418 + 0.555647i \(0.812471\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −12.4353 + 12.4353i −0.432416 + 0.432416i −0.889450 0.457033i \(-0.848912\pi\)
0.457033 + 0.889450i \(0.348912\pi\)
\(828\) 0 0
\(829\) −7.25977 + 4.19143i −0.252142 + 0.145574i −0.620745 0.784013i \(-0.713170\pi\)
0.368603 + 0.929587i \(0.379836\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 146.811i 5.08670i
\(834\) 0 0
\(835\) −2.25830 3.91148i −0.0781516 0.135362i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7.74456 + 28.9031i 0.267372 + 0.997846i 0.960783 + 0.277303i \(0.0894406\pi\)
−0.693411 + 0.720543i \(0.743893\pi\)
\(840\) 0 0
\(841\) −12.7440 + 22.0732i −0.439448 + 0.761146i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.8980 + 1.62509i 0.443706 + 0.0559048i
\(846\) 0 0
\(847\) 7.19732 + 1.92852i 0.247303 + 0.0662646i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −42.9084 + 11.4973i −1.47088 + 0.394121i
\(852\) 0 0
\(853\) 17.1892 + 17.1892i 0.588546 + 0.588546i 0.937238 0.348692i \(-0.113374\pi\)
−0.348692 + 0.937238i \(0.613374\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19.1765 −0.655056 −0.327528 0.944842i \(-0.606216\pi\)
−0.327528 + 0.944842i \(0.606216\pi\)
\(858\) 0 0
\(859\) 11.1892 0.381772 0.190886 0.981612i \(-0.438864\pi\)
0.190886 + 0.981612i \(0.438864\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.6324 + 16.6324i 0.566174 + 0.566174i 0.931055 0.364880i \(-0.118890\pi\)
−0.364880 + 0.931055i \(0.618890\pi\)
\(864\) 0 0
\(865\) 2.53425 0.679049i 0.0861669 0.0230884i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 18.8888 + 5.06124i 0.640759 + 0.171691i
\(870\) 0 0
\(871\) 52.1956 3.56696i 1.76858 0.120862i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.54429 + 4.40685i −0.0860128 + 0.148979i
\(876\) 0 0
\(877\) 9.60712 + 35.8542i 0.324409 + 1.21071i 0.914904 + 0.403671i \(0.132266\pi\)
−0.590495 + 0.807041i \(0.701067\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.20525 2.08755i −0.0406059 0.0703315i 0.845008 0.534753i \(-0.179595\pi\)
−0.885614 + 0.464422i \(0.846262\pi\)
\(882\) 0 0
\(883\) 4.59885i 0.154764i −0.997002 0.0773818i \(-0.975344\pi\)
0.997002 0.0773818i \(-0.0246560\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33.3187 19.2366i 1.11873 0.645901i 0.177656 0.984093i \(-0.443149\pi\)
0.941077 + 0.338192i \(0.109815\pi\)
\(888\) 0 0
\(889\) 40.8324 40.8324i 1.36947 1.36947i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 54.7211 + 31.5932i 1.83117 + 1.05723i
\(894\) 0 0
\(895\) −1.68518 + 6.28917i −0.0563293 + 0.210224i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.690005 + 2.57514i −0.0230130 + 0.0858856i
\(900\) 0 0
\(901\) −70.7507 40.8479i −2.35705 1.36084i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.98147 + 6.98147i −0.232072 + 0.232072i
\(906\) 0 0
\(907\) 9.70812 5.60499i 0.322353 0.186111i −0.330088 0.943950i \(-0.607078\pi\)
0.652441 + 0.757840i \(0.273745\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 49.4370i 1.63792i 0.573850 + 0.818960i \(0.305449\pi\)
−0.573850 + 0.818960i \(0.694551\pi\)
\(912\) 0 0
\(913\) −24.5080 42.4491i −0.811096 1.40486i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.72046 + 6.42083i 0.0568145 + 0.212035i
\(918\) 0 0
\(919\) 5.53040 9.57893i 0.182431 0.315980i −0.760277 0.649599i \(-0.774937\pi\)
0.942708 + 0.333619i \(0.108270\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.01855 0.684681i 0.0335260 0.0225366i
\(924\) 0 0
\(925\) −6.84546 1.83424i −0.225077 0.0603093i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22.4548 + 6.01674i −0.736717 + 0.197403i −0.607618 0.794229i \(-0.707875\pi\)
−0.129098 + 0.991632i \(0.541208\pi\)
\(930\) 0 0
\(931\) 90.7651 + 90.7651i 2.97471 + 2.97471i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 27.4331 0.897158
\(936\) 0 0
\(937\) 31.9584 1.04404 0.522018 0.852935i \(-0.325179\pi\)
0.522018 + 0.852935i \(0.325179\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12.9529 + 12.9529i 0.422253 + 0.422253i 0.885979 0.463726i \(-0.153488\pi\)
−0.463726 + 0.885979i \(0.653488\pi\)
\(942\) 0 0
\(943\) 36.3136 9.73019i 1.18253 0.316859i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.6968 8.22520i −0.997514 0.267283i −0.277110 0.960838i \(-0.589377\pi\)
−0.720403 + 0.693555i \(0.756043\pi\)
\(948\) 0 0
\(949\) −9.10208 4.45721i −0.295466 0.144687i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −29.8931 + 51.7765i −0.968334 + 1.67720i −0.267957 + 0.963431i \(0.586348\pi\)
−0.700377 + 0.713773i \(0.746985\pi\)
\(954\) 0 0
\(955\) 2.96489 + 11.0651i 0.0959417 + 0.358059i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −17.7971 30.8254i −0.574698 0.995405i
\(960\) 0 0
\(961\) 28.9763i 0.934718i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11.9328 6.88939i 0.384130 0.221777i
\(966\) 0 0
\(967\) −3.30610 + 3.30610i −0.106317 + 0.106317i −0.758264 0.651947i \(-0.773952\pi\)
0.651947 + 0.758264i \(0.273952\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −28.6405 16.5356i −0.919118 0.530653i −0.0357644 0.999360i \(-0.511387\pi\)
−0.883354 + 0.468707i \(0.844720\pi\)
\(972\) 0 0
\(973\) 12.3105 45.9435i 0.394657 1.47288i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10.3704 38.7030i 0.331780 1.23822i −0.575538 0.817775i \(-0.695208\pi\)
0.907318 0.420444i \(-0.138126\pi\)
\(978\) 0 0
\(979\) 21.1600 + 12.2167i 0.676276 + 0.390448i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.6658 + 22.6658i −0.722927 + 0.722927i −0.969200 0.246274i \(-0.920794\pi\)
0.246274 + 0.969200i \(0.420794\pi\)
\(984\) 0 0
\(985\) 19.1403 11.0506i 0.609859 0.352102i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 50.3996i 1.60261i
\(990\) 0 0
\(991\) −22.9438 39.7398i −0.728834 1.26238i −0.957377 0.288843i \(-0.906729\pi\)
0.228543 0.973534i \(-0.426604\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.62930 + 6.08062i 0.0516522 + 0.192769i
\(996\) 0 0
\(997\) 9.14139 15.8333i 0.289511 0.501447i −0.684182 0.729311i \(-0.739841\pi\)
0.973693 + 0.227864i \(0.0731741\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.fo.b.1601.10 yes 40
3.2 odd 2 inner 2340.2.fo.b.1601.1 40
13.7 odd 12 inner 2340.2.fo.b.2321.1 yes 40
39.20 even 12 inner 2340.2.fo.b.2321.10 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.fo.b.1601.1 40 3.2 odd 2 inner
2340.2.fo.b.1601.10 yes 40 1.1 even 1 trivial
2340.2.fo.b.2321.1 yes 40 13.7 odd 12 inner
2340.2.fo.b.2321.10 yes 40 39.20 even 12 inner