L(s) = 1 | + (0.707 + 0.707i)5-s + (4.91 − 1.31i)7-s + (−3.41 − 0.913i)11-s + (3.41 − 1.16i)13-s + (−3.88 + 6.72i)17-s + (1.75 + 6.56i)19-s + (3.13 + 5.42i)23-s + 1.00i·25-s + (1.62 − 0.937i)29-s + (−1.00 + 1.00i)31-s + (4.40 + 2.54i)35-s + (−1.83 + 6.84i)37-s + (1.55 − 5.79i)41-s + (−6.96 − 4.02i)43-s + (6.57 − 6.57i)47-s + ⋯ |
L(s) = 1 | + (0.316 + 0.316i)5-s + (1.85 − 0.497i)7-s + (−1.02 − 0.275i)11-s + (0.946 − 0.324i)13-s + (−0.942 + 1.63i)17-s + (0.403 + 1.50i)19-s + (0.653 + 1.13i)23-s + 0.200i·25-s + (0.301 − 0.174i)29-s + (−0.180 + 0.180i)31-s + (0.744 + 0.430i)35-s + (−0.301 + 1.12i)37-s + (0.242 − 0.904i)41-s + (−1.06 − 0.613i)43-s + (0.959 − 0.959i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.791 - 0.611i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.791 - 0.611i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.304077546\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.304077546\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 13 | \( 1 + (-3.41 + 1.16i)T \) |
good | 7 | \( 1 + (-4.91 + 1.31i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (3.41 + 0.913i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (3.88 - 6.72i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.75 - 6.56i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-3.13 - 5.42i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.62 + 0.937i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.00 - 1.00i)T - 31iT^{2} \) |
| 37 | \( 1 + (1.83 - 6.84i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-1.55 + 5.79i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (6.96 + 4.02i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.57 + 6.57i)T - 47iT^{2} \) |
| 53 | \( 1 - 10.5iT - 53T^{2} \) |
| 59 | \( 1 + (2.73 + 10.1i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (0.963 - 1.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-14.0 - 3.75i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-0.328 + 0.0880i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (1.98 + 1.98i)T + 73iT^{2} \) |
| 79 | \( 1 + 5.53T + 79T^{2} \) |
| 83 | \( 1 + (-9.81 - 9.81i)T + 83iT^{2} \) |
| 89 | \( 1 + (6.68 + 1.79i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (4.47 + 16.7i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.760501316838769539241401180738, −8.221791500801167649766242329084, −7.77583399044376512811982617922, −6.80940213876300413178046011656, −5.70712235024193875478082291919, −5.30278795910266196773290009990, −4.19420440815592901190698406575, −3.44067474032416590067965353417, −2.00360763406509366089786766926, −1.33531468887092804660378555588,
0.862325343301061345333045559284, 2.13598651314672016922202163729, 2.76829950072622560466394225804, 4.52490688010424516576831070588, 4.84928550965754246273283489802, 5.49396210491841775145871018401, 6.68044482525561402192868281450, 7.43561563406892433713338747998, 8.266535452135831011652113431578, 8.864818248220899563126608755971