Properties

Label 2340.2.fo.a.2321.3
Level $2340$
Weight $2$
Character 2340.2321
Analytic conductor $18.685$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1241,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.fo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 2321.3
Character \(\chi\) \(=\) 2340.2321
Dual form 2340.2.fo.a.1601.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{5} +(1.13373 + 0.303782i) q^{7} +(-5.67905 + 1.52170i) q^{11} +(1.18813 - 3.40417i) q^{13} +(1.54614 + 2.67800i) q^{17} +(0.197693 - 0.737799i) q^{19} +(0.483360 - 0.837203i) q^{23} -1.00000i q^{25} +(-1.50966 - 0.871605i) q^{29} +(-6.73314 - 6.73314i) q^{31} +(-1.01647 + 0.586862i) q^{35} +(1.40322 + 5.23688i) q^{37} +(1.24298 + 4.63886i) q^{41} +(-0.193895 + 0.111945i) q^{43} +(-5.91426 - 5.91426i) q^{47} +(-4.86912 - 2.81119i) q^{49} -6.79176i q^{53} +(2.93969 - 5.09170i) q^{55} +(2.39404 - 8.93468i) q^{59} +(-5.59287 - 9.68714i) q^{61} +(1.56697 + 3.24724i) q^{65} +(1.68534 - 0.451587i) q^{67} +(0.138897 + 0.0372173i) q^{71} +(1.76023 - 1.76023i) q^{73} -6.90078 q^{77} +3.45768 q^{79} +(-10.0218 + 10.0218i) q^{83} +(-2.98692 - 0.800342i) q^{85} +(-8.76560 + 2.34874i) q^{89} +(2.38114 - 3.49847i) q^{91} +(0.381913 + 0.661493i) q^{95} +(0.444398 - 1.65852i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{13} - 20 q^{19} - 28 q^{31} + 12 q^{49} + 16 q^{55} + 48 q^{61} + 16 q^{67} - 20 q^{73} + 80 q^{79} + 20 q^{85} + 4 q^{91} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) 1.13373 + 0.303782i 0.428510 + 0.114819i 0.466626 0.884454i \(-0.345469\pi\)
−0.0381169 + 0.999273i \(0.512136\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.67905 + 1.52170i −1.71230 + 0.458809i −0.975986 0.217832i \(-0.930102\pi\)
−0.736313 + 0.676641i \(0.763435\pi\)
\(12\) 0 0
\(13\) 1.18813 3.40417i 0.329528 0.944146i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.54614 + 2.67800i 0.374994 + 0.649509i 0.990326 0.138759i \(-0.0443113\pi\)
−0.615332 + 0.788268i \(0.710978\pi\)
\(18\) 0 0
\(19\) 0.197693 0.737799i 0.0453538 0.169263i −0.939534 0.342455i \(-0.888742\pi\)
0.984888 + 0.173192i \(0.0554082\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.483360 0.837203i 0.100787 0.174569i −0.811222 0.584738i \(-0.801197\pi\)
0.912009 + 0.410170i \(0.134530\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.50966 0.871605i −0.280338 0.161853i 0.353239 0.935533i \(-0.385080\pi\)
−0.633576 + 0.773680i \(0.718414\pi\)
\(30\) 0 0
\(31\) −6.73314 6.73314i −1.20931 1.20931i −0.971251 0.238056i \(-0.923490\pi\)
−0.238056 0.971251i \(-0.576510\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.01647 + 0.586862i −0.171816 + 0.0991977i
\(36\) 0 0
\(37\) 1.40322 + 5.23688i 0.230687 + 0.860937i 0.980046 + 0.198772i \(0.0636955\pi\)
−0.749358 + 0.662165i \(0.769638\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.24298 + 4.63886i 0.194121 + 0.724468i 0.992493 + 0.122304i \(0.0390282\pi\)
−0.798372 + 0.602165i \(0.794305\pi\)
\(42\) 0 0
\(43\) −0.193895 + 0.111945i −0.0295686 + 0.0170715i −0.514711 0.857363i \(-0.672101\pi\)
0.485143 + 0.874435i \(0.338768\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.91426 5.91426i −0.862683 0.862683i 0.128966 0.991649i \(-0.458834\pi\)
−0.991649 + 0.128966i \(0.958834\pi\)
\(48\) 0 0
\(49\) −4.86912 2.81119i −0.695588 0.401598i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.79176i 0.932921i −0.884542 0.466460i \(-0.845529\pi\)
0.884542 0.466460i \(-0.154471\pi\)
\(54\) 0 0
\(55\) 2.93969 5.09170i 0.396388 0.686565i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.39404 8.93468i 0.311678 1.16320i −0.615366 0.788242i \(-0.710992\pi\)
0.927043 0.374955i \(-0.122342\pi\)
\(60\) 0 0
\(61\) −5.59287 9.68714i −0.716094 1.24031i −0.962536 0.271154i \(-0.912595\pi\)
0.246442 0.969158i \(-0.420739\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.56697 + 3.24724i 0.194359 + 0.402771i
\(66\) 0 0
\(67\) 1.68534 0.451587i 0.205898 0.0551701i −0.154396 0.988009i \(-0.549343\pi\)
0.360294 + 0.932839i \(0.382676\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.138897 + 0.0372173i 0.0164840 + 0.00441689i 0.267052 0.963682i \(-0.413951\pi\)
−0.250568 + 0.968099i \(0.580617\pi\)
\(72\) 0 0
\(73\) 1.76023 1.76023i 0.206019 0.206019i −0.596554 0.802573i \(-0.703464\pi\)
0.802573 + 0.596554i \(0.203464\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.90078 −0.786417
\(78\) 0 0
\(79\) 3.45768 0.389020 0.194510 0.980901i \(-0.437688\pi\)
0.194510 + 0.980901i \(0.437688\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.0218 + 10.0218i −1.10003 + 1.10003i −0.105625 + 0.994406i \(0.533684\pi\)
−0.994406 + 0.105625i \(0.966316\pi\)
\(84\) 0 0
\(85\) −2.98692 0.800342i −0.323977 0.0868093i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.76560 + 2.34874i −0.929152 + 0.248965i −0.691493 0.722383i \(-0.743047\pi\)
−0.237659 + 0.971349i \(0.576380\pi\)
\(90\) 0 0
\(91\) 2.38114 3.49847i 0.249612 0.366740i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.381913 + 0.661493i 0.0391834 + 0.0678677i
\(96\) 0 0
\(97\) 0.444398 1.65852i 0.0451218 0.168397i −0.939688 0.342032i \(-0.888885\pi\)
0.984810 + 0.173636i \(0.0555515\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.271625 0.470468i 0.0270277 0.0468133i −0.852195 0.523224i \(-0.824729\pi\)
0.879223 + 0.476411i \(0.158062\pi\)
\(102\) 0 0
\(103\) 11.2343i 1.10695i −0.832866 0.553474i \(-0.813302\pi\)
0.832866 0.553474i \(-0.186698\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.65278 2.68629i −0.449802 0.259693i 0.257945 0.966160i \(-0.416955\pi\)
−0.707746 + 0.706467i \(0.750288\pi\)
\(108\) 0 0
\(109\) 5.32031 + 5.32031i 0.509594 + 0.509594i 0.914402 0.404808i \(-0.132662\pi\)
−0.404808 + 0.914402i \(0.632662\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.40694 5.43110i 0.884931 0.510915i 0.0126497 0.999920i \(-0.495973\pi\)
0.872281 + 0.489005i \(0.162640\pi\)
\(114\) 0 0
\(115\) 0.250205 + 0.933779i 0.0233318 + 0.0870753i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.939380 + 3.50581i 0.0861128 + 0.321377i
\(120\) 0 0
\(121\) 20.4098 11.7836i 1.85544 1.07124i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) −5.16094 2.97967i −0.457960 0.264403i 0.253226 0.967407i \(-0.418508\pi\)
−0.711186 + 0.703004i \(0.751842\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.88342i 0.776148i 0.921628 + 0.388074i \(0.126859\pi\)
−0.921628 + 0.388074i \(0.873141\pi\)
\(132\) 0 0
\(133\) 0.448260 0.776410i 0.0388691 0.0673233i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.45265 9.15341i 0.209544 0.782029i −0.778472 0.627679i \(-0.784005\pi\)
0.988016 0.154350i \(-0.0493282\pi\)
\(138\) 0 0
\(139\) −5.68647 9.84925i −0.482320 0.835402i 0.517474 0.855699i \(-0.326872\pi\)
−0.999794 + 0.0202965i \(0.993539\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.56734 + 21.1404i −0.131067 + 1.76785i
\(144\) 0 0
\(145\) 1.68381 0.451176i 0.139833 0.0374681i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −15.1009 4.04627i −1.23711 0.331483i −0.419768 0.907632i \(-0.637888\pi\)
−0.817345 + 0.576148i \(0.804555\pi\)
\(150\) 0 0
\(151\) 5.06855 5.06855i 0.412473 0.412473i −0.470126 0.882599i \(-0.655792\pi\)
0.882599 + 0.470126i \(0.155792\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.52210 0.764833
\(156\) 0 0
\(157\) −10.4700 −0.835594 −0.417797 0.908540i \(-0.637198\pi\)
−0.417797 + 0.908540i \(0.637198\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.802327 0.802327i 0.0632322 0.0632322i
\(162\) 0 0
\(163\) −21.1260 5.66069i −1.65471 0.443379i −0.693786 0.720181i \(-0.744059\pi\)
−0.960927 + 0.276802i \(0.910725\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −15.0023 + 4.01985i −1.16091 + 0.311066i −0.787330 0.616532i \(-0.788537\pi\)
−0.373582 + 0.927597i \(0.621871\pi\)
\(168\) 0 0
\(169\) −10.1767 8.08918i −0.782823 0.622245i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.09287 14.0173i −0.615289 1.06571i −0.990334 0.138705i \(-0.955706\pi\)
0.375044 0.927007i \(-0.377627\pi\)
\(174\) 0 0
\(175\) 0.303782 1.13373i 0.0229638 0.0857019i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.31122 + 4.00315i −0.172749 + 0.299210i −0.939380 0.342878i \(-0.888598\pi\)
0.766631 + 0.642088i \(0.221932\pi\)
\(180\) 0 0
\(181\) 16.5937i 1.23340i 0.787198 + 0.616700i \(0.211531\pi\)
−0.787198 + 0.616700i \(0.788469\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.69526 2.71081i −0.345202 0.199302i
\(186\) 0 0
\(187\) −12.8557 12.8557i −0.940103 0.940103i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.57704 3.79725i 0.475898 0.274760i −0.242808 0.970074i \(-0.578068\pi\)
0.718705 + 0.695315i \(0.244735\pi\)
\(192\) 0 0
\(193\) 3.22758 + 12.0455i 0.232327 + 0.867054i 0.979336 + 0.202241i \(0.0648224\pi\)
−0.747009 + 0.664814i \(0.768511\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.61312 13.4843i −0.257424 0.960720i −0.966726 0.255815i \(-0.917656\pi\)
0.709302 0.704905i \(-0.249010\pi\)
\(198\) 0 0
\(199\) 8.63320 4.98438i 0.611991 0.353333i −0.161753 0.986831i \(-0.551715\pi\)
0.773744 + 0.633498i \(0.218381\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.44677 1.44677i −0.101544 0.101544i
\(204\) 0 0
\(205\) −4.15909 2.40125i −0.290483 0.167711i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.49083i 0.310637i
\(210\) 0 0
\(211\) −2.53786 + 4.39571i −0.174714 + 0.302613i −0.940062 0.341003i \(-0.889233\pi\)
0.765348 + 0.643616i \(0.222567\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.0579470 0.216261i 0.00395195 0.0147489i
\(216\) 0 0
\(217\) −5.58816 9.67897i −0.379349 0.657051i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.9534 2.08152i 0.736803 0.140018i
\(222\) 0 0
\(223\) 14.3790 3.85285i 0.962891 0.258006i 0.257067 0.966394i \(-0.417244\pi\)
0.705823 + 0.708388i \(0.250577\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.6176 4.18473i −1.03658 0.277750i −0.299883 0.953976i \(-0.596948\pi\)
−0.736694 + 0.676226i \(0.763614\pi\)
\(228\) 0 0
\(229\) −10.0529 + 10.0529i −0.664313 + 0.664313i −0.956394 0.292080i \(-0.905653\pi\)
0.292080 + 0.956394i \(0.405653\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.1088 0.793272 0.396636 0.917976i \(-0.370178\pi\)
0.396636 + 0.917976i \(0.370178\pi\)
\(234\) 0 0
\(235\) 8.36402 0.545609
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.03894 1.03894i 0.0672037 0.0672037i −0.672706 0.739910i \(-0.734868\pi\)
0.739910 + 0.672706i \(0.234868\pi\)
\(240\) 0 0
\(241\) 26.7924 + 7.17901i 1.72585 + 0.462441i 0.979221 0.202796i \(-0.0650028\pi\)
0.746632 + 0.665237i \(0.231669\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.43080 1.45518i 0.346961 0.0929679i
\(246\) 0 0
\(247\) −2.27671 1.54958i −0.144863 0.0985974i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.8938 + 18.8687i 0.687614 + 1.19098i 0.972608 + 0.232452i \(0.0746750\pi\)
−0.284994 + 0.958529i \(0.591992\pi\)
\(252\) 0 0
\(253\) −1.47105 + 5.49005i −0.0924844 + 0.345157i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.86167 11.8848i 0.428019 0.741351i −0.568678 0.822560i \(-0.692545\pi\)
0.996697 + 0.0812092i \(0.0258782\pi\)
\(258\) 0 0
\(259\) 6.36348i 0.395407i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −27.9418 16.1322i −1.72296 0.994753i −0.912636 0.408774i \(-0.865956\pi\)
−0.810327 0.585978i \(-0.800710\pi\)
\(264\) 0 0
\(265\) 4.80250 + 4.80250i 0.295015 + 0.295015i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.48371 + 4.89807i −0.517261 + 0.298641i −0.735813 0.677185i \(-0.763200\pi\)
0.218552 + 0.975825i \(0.429867\pi\)
\(270\) 0 0
\(271\) −1.73449 6.47322i −0.105363 0.393220i 0.893023 0.450011i \(-0.148580\pi\)
−0.998386 + 0.0567907i \(0.981913\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.52170 + 5.67905i 0.0917618 + 0.342460i
\(276\) 0 0
\(277\) 2.04724 1.18198i 0.123007 0.0710180i −0.437234 0.899348i \(-0.644042\pi\)
0.560241 + 0.828330i \(0.310709\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.52176 + 9.52176i 0.568021 + 0.568021i 0.931574 0.363553i \(-0.118436\pi\)
−0.363553 + 0.931574i \(0.618436\pi\)
\(282\) 0 0
\(283\) 3.62127 + 2.09074i 0.215262 + 0.124282i 0.603754 0.797170i \(-0.293671\pi\)
−0.388493 + 0.921452i \(0.627004\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.63681i 0.332730i
\(288\) 0 0
\(289\) 3.71889 6.44131i 0.218758 0.378901i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.64517 + 21.0681i −0.329794 + 1.23081i 0.579609 + 0.814894i \(0.303205\pi\)
−0.909404 + 0.415915i \(0.863462\pi\)
\(294\) 0 0
\(295\) 4.62493 + 8.01062i 0.269274 + 0.466396i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.27569 2.64014i −0.131606 0.152683i
\(300\) 0 0
\(301\) −0.253831 + 0.0680138i −0.0146306 + 0.00392025i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.8046 + 2.89508i 0.618670 + 0.165772i
\(306\) 0 0
\(307\) −14.4907 + 14.4907i −0.827031 + 0.827031i −0.987105 0.160074i \(-0.948827\pi\)
0.160074 + 0.987105i \(0.448827\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.6627 0.604624 0.302312 0.953209i \(-0.402242\pi\)
0.302312 + 0.953209i \(0.402242\pi\)
\(312\) 0 0
\(313\) 11.6939 0.660976 0.330488 0.943810i \(-0.392787\pi\)
0.330488 + 0.943810i \(0.392787\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.36308 + 3.36308i −0.188889 + 0.188889i −0.795216 0.606327i \(-0.792642\pi\)
0.606327 + 0.795216i \(0.292642\pi\)
\(318\) 0 0
\(319\) 9.89979 + 2.65264i 0.554282 + 0.148519i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.28148 0.611322i 0.126945 0.0340149i
\(324\) 0 0
\(325\) −3.40417 1.18813i −0.188829 0.0659055i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.90853 8.50182i −0.270616 0.468720i
\(330\) 0 0
\(331\) 6.15844 22.9836i 0.338498 1.26329i −0.561528 0.827457i \(-0.689786\pi\)
0.900027 0.435835i \(-0.143547\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.872399 + 1.51104i −0.0476642 + 0.0825569i
\(336\) 0 0
\(337\) 33.7290i 1.83733i 0.395033 + 0.918667i \(0.370733\pi\)
−0.395033 + 0.918667i \(0.629267\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 48.4837 + 27.9921i 2.62554 + 1.51586i
\(342\) 0 0
\(343\) −10.4759 10.4759i −0.565646 0.565646i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.5063 + 6.64314i −0.617688 + 0.356622i −0.775968 0.630772i \(-0.782738\pi\)
0.158280 + 0.987394i \(0.449405\pi\)
\(348\) 0 0
\(349\) 2.75606 + 10.2858i 0.147529 + 0.550584i 0.999630 + 0.0272072i \(0.00866140\pi\)
−0.852101 + 0.523377i \(0.824672\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.06465 15.1695i −0.216340 0.807391i −0.985691 0.168565i \(-0.946087\pi\)
0.769351 0.638826i \(-0.220580\pi\)
\(354\) 0 0
\(355\) −0.124532 + 0.0718984i −0.00660945 + 0.00381597i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.93861 3.93861i −0.207872 0.207872i 0.595491 0.803362i \(-0.296958\pi\)
−0.803362 + 0.595491i \(0.796958\pi\)
\(360\) 0 0
\(361\) 15.9492 + 9.20828i 0.839432 + 0.484647i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.48934i 0.130298i
\(366\) 0 0
\(367\) −10.0127 + 17.3426i −0.522661 + 0.905276i 0.476991 + 0.878908i \(0.341727\pi\)
−0.999652 + 0.0263676i \(0.991606\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.06322 7.70003i 0.107117 0.399765i
\(372\) 0 0
\(373\) 15.8687 + 27.4854i 0.821650 + 1.42314i 0.904453 + 0.426573i \(0.140279\pi\)
−0.0828034 + 0.996566i \(0.526387\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.76077 + 4.10357i −0.245192 + 0.211345i
\(378\) 0 0
\(379\) −21.9570 + 5.88337i −1.12786 + 0.302208i −0.774059 0.633113i \(-0.781777\pi\)
−0.353798 + 0.935322i \(0.615110\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 25.5676 + 6.85081i 1.30644 + 0.350060i 0.843883 0.536528i \(-0.180264\pi\)
0.462560 + 0.886588i \(0.346931\pi\)
\(384\) 0 0
\(385\) 4.87959 4.87959i 0.248687 0.248687i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 23.8866 1.21110 0.605550 0.795807i \(-0.292953\pi\)
0.605550 + 0.795807i \(0.292953\pi\)
\(390\) 0 0
\(391\) 2.98937 0.151179
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.44495 + 2.44495i −0.123019 + 0.123019i
\(396\) 0 0
\(397\) 29.9528 + 8.02584i 1.50329 + 0.402805i 0.914200 0.405262i \(-0.132820\pi\)
0.589090 + 0.808068i \(0.299487\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 21.2106 5.68338i 1.05921 0.283814i 0.313157 0.949701i \(-0.398613\pi\)
0.746052 + 0.665887i \(0.231947\pi\)
\(402\) 0 0
\(403\) −30.9206 + 14.9209i −1.54026 + 0.743262i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −15.9379 27.6052i −0.790012 1.36834i
\(408\) 0 0
\(409\) −10.3011 + 38.4442i −0.509357 + 1.90094i −0.0825886 + 0.996584i \(0.526319\pi\)
−0.426768 + 0.904361i \(0.640348\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.42839 9.40225i 0.267114 0.462654i
\(414\) 0 0
\(415\) 14.1729i 0.695721i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −23.9716 13.8400i −1.17109 0.676129i −0.217153 0.976137i \(-0.569677\pi\)
−0.953937 + 0.300008i \(0.903011\pi\)
\(420\) 0 0
\(421\) −17.5972 17.5972i −0.857636 0.857636i 0.133423 0.991059i \(-0.457403\pi\)
−0.991059 + 0.133423i \(0.957403\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.67800 1.54614i 0.129902 0.0749989i
\(426\) 0 0
\(427\) −3.39803 12.6816i −0.164442 0.613706i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.94492 + 18.4547i 0.238189 + 0.888932i 0.976686 + 0.214675i \(0.0688693\pi\)
−0.738497 + 0.674257i \(0.764464\pi\)
\(432\) 0 0
\(433\) −7.43829 + 4.29450i −0.357462 + 0.206381i −0.667967 0.744191i \(-0.732835\pi\)
0.310505 + 0.950572i \(0.399502\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.522131 0.522131i −0.0249769 0.0249769i
\(438\) 0 0
\(439\) 2.94438 + 1.69994i 0.140528 + 0.0811336i 0.568615 0.822603i \(-0.307479\pi\)
−0.428088 + 0.903737i \(0.640813\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 23.4089i 1.11219i −0.831118 0.556096i \(-0.812299\pi\)
0.831118 0.556096i \(-0.187701\pi\)
\(444\) 0 0
\(445\) 4.53741 7.85902i 0.215094 0.372553i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.08592 7.78476i 0.0984407 0.367386i −0.899078 0.437789i \(-0.855762\pi\)
0.997519 + 0.0704029i \(0.0224285\pi\)
\(450\) 0 0
\(451\) −14.1179 24.4529i −0.664786 1.15144i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.790072 + 4.15752i 0.0370392 + 0.194907i
\(456\) 0 0
\(457\) −37.3815 + 10.0164i −1.74863 + 0.468545i −0.984334 0.176315i \(-0.943582\pi\)
−0.764301 + 0.644860i \(0.776916\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.24005 0.600218i −0.104329 0.0279550i 0.206277 0.978494i \(-0.433865\pi\)
−0.310606 + 0.950539i \(0.600532\pi\)
\(462\) 0 0
\(463\) −15.1607 + 15.1607i −0.704578 + 0.704578i −0.965390 0.260812i \(-0.916010\pi\)
0.260812 + 0.965390i \(0.416010\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0039 0.555474 0.277737 0.960657i \(-0.410416\pi\)
0.277737 + 0.960657i \(0.410416\pi\)
\(468\) 0 0
\(469\) 2.04791 0.0945637
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.930791 0.930791i 0.0427978 0.0427978i
\(474\) 0 0
\(475\) −0.737799 0.197693i −0.0338526 0.00907076i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 36.3400 9.73727i 1.66042 0.444907i 0.697914 0.716181i \(-0.254112\pi\)
0.962502 + 0.271274i \(0.0874449\pi\)
\(480\) 0 0
\(481\) 19.4944 + 1.44530i 0.888868 + 0.0659001i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.858511 + 1.48698i 0.0389830 + 0.0675205i
\(486\) 0 0
\(487\) −10.3835 + 38.7519i −0.470523 + 1.75601i 0.167376 + 0.985893i \(0.446471\pi\)
−0.637898 + 0.770121i \(0.720196\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.39910 + 5.88742i −0.153399 + 0.265696i −0.932475 0.361234i \(-0.882355\pi\)
0.779076 + 0.626930i \(0.215689\pi\)
\(492\) 0 0
\(493\) 5.39050i 0.242776i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.146166 + 0.0843888i 0.00655643 + 0.00378536i
\(498\) 0 0
\(499\) −18.8104 18.8104i −0.842071 0.842071i 0.147057 0.989128i \(-0.453020\pi\)
−0.989128 + 0.147057i \(0.953020\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.30951 + 2.48810i −0.192152 + 0.110939i −0.592989 0.805210i \(-0.702052\pi\)
0.400838 + 0.916149i \(0.368719\pi\)
\(504\) 0 0
\(505\) 0.140603 + 0.524739i 0.00625677 + 0.0233506i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.63306 32.2190i −0.382654 1.42808i −0.841832 0.539739i \(-0.818523\pi\)
0.459179 0.888344i \(-0.348144\pi\)
\(510\) 0 0
\(511\) 2.53035 1.46090i 0.111936 0.0646263i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.94385 + 7.94385i 0.350048 + 0.350048i
\(516\) 0 0
\(517\) 42.5871 + 24.5877i 1.87298 + 1.08136i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.2554i 1.50076i 0.661008 + 0.750378i \(0.270129\pi\)
−0.661008 + 0.750378i \(0.729871\pi\)
\(522\) 0 0
\(523\) 16.7587 29.0269i 0.732807 1.26926i −0.222872 0.974848i \(-0.571543\pi\)
0.955679 0.294411i \(-0.0951234\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.62093 28.4417i 0.331973 1.23894i
\(528\) 0 0
\(529\) 11.0327 + 19.1092i 0.479684 + 0.830837i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.2683 + 1.28026i 0.747972 + 0.0554541i
\(534\) 0 0
\(535\) 5.18951 1.39052i 0.224362 0.0601176i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 31.9298 + 8.55555i 1.37531 + 0.368514i
\(540\) 0 0
\(541\) −8.41949 + 8.41949i −0.361982 + 0.361982i −0.864542 0.502560i \(-0.832392\pi\)
0.502560 + 0.864542i \(0.332392\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.52406 −0.322295
\(546\) 0 0
\(547\) 24.7118 1.05660 0.528301 0.849057i \(-0.322829\pi\)
0.528301 + 0.849057i \(0.322829\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.941519 + 0.941519i −0.0401101 + 0.0401101i
\(552\) 0 0
\(553\) 3.92008 + 1.05038i 0.166699 + 0.0446668i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 25.3132 6.78265i 1.07255 0.287390i 0.321012 0.947075i \(-0.395977\pi\)
0.751542 + 0.659685i \(0.229310\pi\)
\(558\) 0 0
\(559\) 0.150708 + 0.793055i 0.00637426 + 0.0335426i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −19.2227 33.2947i −0.810141 1.40320i −0.912765 0.408485i \(-0.866057\pi\)
0.102624 0.994720i \(-0.467276\pi\)
\(564\) 0 0
\(565\) −2.81134 + 10.4921i −0.118274 + 0.441405i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.91258 10.2409i 0.247868 0.429321i −0.715066 0.699057i \(-0.753603\pi\)
0.962934 + 0.269737i \(0.0869366\pi\)
\(570\) 0 0
\(571\) 2.11878i 0.0886680i 0.999017 + 0.0443340i \(0.0141166\pi\)
−0.999017 + 0.0443340i \(0.985883\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.837203 0.483360i −0.0349138 0.0201575i
\(576\) 0 0
\(577\) −3.65033 3.65033i −0.151965 0.151965i 0.627030 0.778995i \(-0.284270\pi\)
−0.778995 + 0.627030i \(0.784270\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −14.4064 + 8.31754i −0.597678 + 0.345070i
\(582\) 0 0
\(583\) 10.3350 + 38.5708i 0.428033 + 1.59744i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.42609 + 9.05429i 0.100135 + 0.373710i 0.997748 0.0670750i \(-0.0213667\pi\)
−0.897613 + 0.440785i \(0.854700\pi\)
\(588\) 0 0
\(589\) −6.29880 + 3.63661i −0.259537 + 0.149844i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.5139 + 28.5139i 1.17093 + 1.17093i 0.981989 + 0.188937i \(0.0605041\pi\)
0.188937 + 0.981989i \(0.439496\pi\)
\(594\) 0 0
\(595\) −3.14323 1.81474i −0.128860 0.0743972i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.8078i 0.686749i 0.939199 + 0.343374i \(0.111570\pi\)
−0.939199 + 0.343374i \(0.888430\pi\)
\(600\) 0 0
\(601\) 4.48665 7.77111i 0.183014 0.316990i −0.759891 0.650050i \(-0.774748\pi\)
0.942906 + 0.333060i \(0.108081\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.09965 + 22.7642i −0.247986 + 0.925496i
\(606\) 0 0
\(607\) 0.117780 + 0.204001i 0.00478054 + 0.00828014i 0.868406 0.495854i \(-0.165145\pi\)
−0.863625 + 0.504134i \(0.831812\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −27.1600 + 13.1062i −1.09878 + 0.530221i
\(612\) 0 0
\(613\) 27.9862 7.49887i 1.13035 0.302877i 0.355285 0.934758i \(-0.384384\pi\)
0.775065 + 0.631881i \(0.217717\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.7886 3.69465i −0.555109 0.148741i −0.0296504 0.999560i \(-0.509439\pi\)
−0.525458 + 0.850819i \(0.676106\pi\)
\(618\) 0 0
\(619\) 4.14846 4.14846i 0.166740 0.166740i −0.618805 0.785545i \(-0.712383\pi\)
0.785545 + 0.618805i \(0.212383\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.6513 −0.426736
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11.8548 + 11.8548i −0.472680 + 0.472680i
\(630\) 0 0
\(631\) 26.3618 + 7.06362i 1.04945 + 0.281198i 0.742023 0.670375i \(-0.233867\pi\)
0.307423 + 0.951573i \(0.400533\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.75628 1.54239i 0.228431 0.0612079i
\(636\) 0 0
\(637\) −15.3549 + 13.2352i −0.608383 + 0.524399i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.82715 13.5570i −0.309154 0.535470i 0.669024 0.743241i \(-0.266712\pi\)
−0.978177 + 0.207771i \(0.933379\pi\)
\(642\) 0 0
\(643\) −11.8967 + 44.3990i −0.469159 + 1.75093i 0.173560 + 0.984823i \(0.444473\pi\)
−0.642719 + 0.766102i \(0.722194\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.40387 + 5.89567i −0.133820 + 0.231783i −0.925146 0.379611i \(-0.876058\pi\)
0.791326 + 0.611394i \(0.209391\pi\)
\(648\) 0 0
\(649\) 54.3835i 2.13474i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.1249 + 8.15499i 0.552748 + 0.319129i 0.750230 0.661177i \(-0.229943\pi\)
−0.197481 + 0.980307i \(0.563276\pi\)
\(654\) 0 0
\(655\) −6.28153 6.28153i −0.245440 0.245440i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.0483 + 6.95612i −0.469337 + 0.270972i −0.715962 0.698139i \(-0.754012\pi\)
0.246625 + 0.969111i \(0.420678\pi\)
\(660\) 0 0
\(661\) −9.29375 34.6847i −0.361485 1.34908i −0.872124 0.489285i \(-0.837258\pi\)
0.510639 0.859795i \(-0.329409\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.232037 + 0.865972i 0.00899799 + 0.0335810i
\(666\) 0 0
\(667\) −1.45942 + 0.842597i −0.0565090 + 0.0326255i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 46.5031 + 46.5031i 1.79523 + 1.79523i
\(672\) 0 0
\(673\) −21.4063 12.3589i −0.825151 0.476401i 0.0270385 0.999634i \(-0.491392\pi\)
−0.852190 + 0.523233i \(0.824726\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 31.3290i 1.20407i −0.798469 0.602036i \(-0.794356\pi\)
0.798469 0.602036i \(-0.205644\pi\)
\(678\) 0 0
\(679\) 1.00765 1.74531i 0.0386702 0.0669788i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.3532 + 42.3707i −0.434418 + 1.62127i 0.308037 + 0.951374i \(0.400328\pi\)
−0.742455 + 0.669896i \(0.766339\pi\)
\(684\) 0 0
\(685\) 4.73815 + 8.20672i 0.181036 + 0.313563i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −23.1203 8.06949i −0.880813 0.307423i
\(690\) 0 0
\(691\) −3.53837 + 0.948103i −0.134606 + 0.0360676i −0.325493 0.945544i \(-0.605530\pi\)
0.190887 + 0.981612i \(0.438864\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.9854 + 2.94353i 0.416700 + 0.111654i
\(696\) 0 0
\(697\) −10.5010 + 10.5010i −0.397755 + 0.397755i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 45.3964 1.71460 0.857298 0.514820i \(-0.172141\pi\)
0.857298 + 0.514820i \(0.172141\pi\)
\(702\) 0 0
\(703\) 4.14117 0.156187
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.450869 0.450869i 0.0169567 0.0169567i
\(708\) 0 0
\(709\) 25.7328 + 6.89508i 0.966415 + 0.258950i 0.707313 0.706900i \(-0.249907\pi\)
0.259101 + 0.965850i \(0.416574\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.89154 + 2.38248i −0.332991 + 0.0892246i
\(714\) 0 0
\(715\) −13.8403 16.0568i −0.517596 0.600491i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.72876 11.6546i −0.250940 0.434642i 0.712845 0.701322i \(-0.247406\pi\)
−0.963785 + 0.266681i \(0.914073\pi\)
\(720\) 0 0
\(721\) 3.41278 12.7367i 0.127099 0.474338i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.871605 + 1.50966i −0.0323706 + 0.0560675i
\(726\) 0 0
\(727\) 44.7131i 1.65832i 0.559014 + 0.829158i \(0.311180\pi\)
−0.559014 + 0.829158i \(0.688820\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.599577 0.346166i −0.0221761 0.0128034i
\(732\) 0 0
\(733\) −13.0888 13.0888i −0.483444 0.483444i 0.422785 0.906230i \(-0.361052\pi\)
−0.906230 + 0.422785i \(0.861052\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.88398 + 5.12917i −0.327246 + 0.188935i
\(738\) 0 0
\(739\) −2.75261 10.2729i −0.101256 0.377894i 0.896637 0.442766i \(-0.146003\pi\)
−0.997894 + 0.0648721i \(0.979336\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.54705 9.50571i −0.0934421 0.348731i 0.903337 0.428932i \(-0.141110\pi\)
−0.996779 + 0.0802018i \(0.974444\pi\)
\(744\) 0 0
\(745\) 13.5391 7.81679i 0.496034 0.286385i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.45896 4.45896i −0.162927 0.162927i
\(750\) 0 0
\(751\) 43.2940 + 24.9958i 1.57982 + 0.912109i 0.994883 + 0.101029i \(0.0322134\pi\)
0.584935 + 0.811080i \(0.301120\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.16801i 0.260871i
\(756\) 0 0
\(757\) −5.05039 + 8.74753i −0.183560 + 0.317934i −0.943090 0.332537i \(-0.892095\pi\)
0.759531 + 0.650472i \(0.225429\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.7707 40.1967i 0.390437 1.45713i −0.438978 0.898498i \(-0.644659\pi\)
0.829415 0.558633i \(-0.188674\pi\)
\(762\) 0 0
\(763\) 4.41558 + 7.64801i 0.159855 + 0.276877i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −27.5707 18.7653i −0.995521 0.677575i
\(768\) 0 0
\(769\) −17.3911 + 4.65992i −0.627137 + 0.168041i −0.558370 0.829592i \(-0.688573\pi\)
−0.0687670 + 0.997633i \(0.521907\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 18.4344 + 4.93949i 0.663040 + 0.177661i 0.574617 0.818422i \(-0.305151\pi\)
0.0884223 + 0.996083i \(0.471818\pi\)
\(774\) 0 0
\(775\) −6.73314 + 6.73314i −0.241862 + 0.241862i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.66828 0.131430
\(780\) 0 0
\(781\) −0.845437 −0.0302521
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.40338 7.40338i 0.264238 0.264238i
\(786\) 0 0
\(787\) −38.2403 10.2465i −1.36312 0.365247i −0.498159 0.867086i \(-0.665990\pi\)
−0.864961 + 0.501839i \(0.832657\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.3148 3.29974i 0.437864 0.117325i
\(792\) 0 0
\(793\) −39.6217 + 7.52950i −1.40701 + 0.267380i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24.6196 42.6424i −0.872071 1.51047i −0.859851 0.510545i \(-0.829444\pi\)
−0.0122200 0.999925i \(-0.503890\pi\)
\(798\) 0 0
\(799\) 6.69408 24.9826i 0.236819 0.883822i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.31789 + 12.6750i −0.258243 + 0.447290i
\(804\) 0 0
\(805\) 1.13466i 0.0399916i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −4.92177 2.84158i −0.173040 0.0999048i 0.410978 0.911645i \(-0.365187\pi\)
−0.584019 + 0.811740i \(0.698520\pi\)
\(810\) 0 0
\(811\) −3.73383 3.73383i −0.131113 0.131113i 0.638505 0.769618i \(-0.279553\pi\)
−0.769618 + 0.638505i \(0.779553\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 18.9410 10.9356i 0.663475 0.383058i
\(816\) 0 0
\(817\) 0.0442615 + 0.165186i 0.00154851 + 0.00577913i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.07964 + 7.76133i 0.0725800 + 0.270872i 0.992674 0.120826i \(-0.0385543\pi\)
−0.920094 + 0.391698i \(0.871888\pi\)
\(822\) 0 0
\(823\) 30.5320 17.6277i 1.06428 0.614462i 0.137667 0.990479i \(-0.456040\pi\)
0.926613 + 0.376016i \(0.122706\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.3633 + 12.3633i 0.429914 + 0.429914i 0.888599 0.458685i \(-0.151679\pi\)
−0.458685 + 0.888599i \(0.651679\pi\)
\(828\) 0 0
\(829\) 33.7255 + 19.4714i 1.17134 + 0.676271i 0.953994 0.299825i \(-0.0969283\pi\)
0.217341 + 0.976096i \(0.430262\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 17.3860i 0.602388i
\(834\) 0 0
\(835\) 7.76576 13.4507i 0.268745 0.465480i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −3.92058 + 14.6318i −0.135354 + 0.505146i 0.864643 + 0.502387i \(0.167545\pi\)
−0.999996 + 0.00275889i \(0.999122\pi\)
\(840\) 0 0
\(841\) −12.9806 22.4831i −0.447607 0.775278i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.9159 1.47610i 0.444321 0.0507794i
\(846\) 0 0
\(847\) 26.7189 7.15930i 0.918071 0.245996i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.06259 + 1.35652i 0.173543 + 0.0465008i
\(852\) 0 0
\(853\) −19.8670 + 19.8670i −0.680234 + 0.680234i −0.960053 0.279819i \(-0.909726\pi\)
0.279819 + 0.960053i \(0.409726\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.1391 −0.380503 −0.190251 0.981735i \(-0.560930\pi\)
−0.190251 + 0.981735i \(0.560930\pi\)
\(858\) 0 0
\(859\) −46.6796 −1.59269 −0.796343 0.604845i \(-0.793235\pi\)
−0.796343 + 0.604845i \(0.793235\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.7535 12.7535i 0.434134 0.434134i −0.455898 0.890032i \(-0.650682\pi\)
0.890032 + 0.455898i \(0.150682\pi\)
\(864\) 0 0
\(865\) 15.6342 + 4.18918i 0.531579 + 0.142436i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −19.6364 + 5.26155i −0.666118 + 0.178486i
\(870\) 0 0
\(871\) 0.465131 6.27374i 0.0157604 0.212577i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.586862 + 1.01647i 0.0198395 + 0.0343631i
\(876\) 0 0
\(877\) 9.37679 34.9947i 0.316632 1.18169i −0.605829 0.795595i \(-0.707158\pi\)
0.922461 0.386091i \(-0.126175\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20.9715 36.3237i 0.706547 1.22378i −0.259583 0.965721i \(-0.583585\pi\)
0.966130 0.258055i \(-0.0830816\pi\)
\(882\) 0 0
\(883\) 8.28843i 0.278928i −0.990227 0.139464i \(-0.955462\pi\)
0.990227 0.139464i \(-0.0445379\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −9.21496 5.32026i −0.309408 0.178637i 0.337253 0.941414i \(-0.390502\pi\)
−0.646662 + 0.762777i \(0.723835\pi\)
\(888\) 0 0
\(889\) −4.94594 4.94594i −0.165882 0.165882i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.53274 + 3.19433i −0.185146 + 0.106894i
\(894\) 0 0
\(895\) −1.19638 4.46494i −0.0399905 0.149246i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.29614 + 16.0334i 0.143284 + 0.534745i
\(900\) 0 0
\(901\) 18.1883 10.5010i 0.605941 0.349840i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11.7335 11.7335i −0.390035 0.390035i
\(906\) 0 0
\(907\) −35.0965 20.2630i −1.16536 0.672821i −0.212777 0.977101i \(-0.568251\pi\)
−0.952583 + 0.304280i \(0.901584\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.99976i 0.265044i 0.991180 + 0.132522i \(0.0423075\pi\)
−0.991180 + 0.132522i \(0.957693\pi\)
\(912\) 0 0
\(913\) 41.6640 72.1642i 1.37888 2.38829i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.69862 + 10.0714i −0.0891164 + 0.332587i
\(918\) 0 0
\(919\) −10.4768 18.1464i −0.345598 0.598593i 0.639864 0.768488i \(-0.278990\pi\)
−0.985462 + 0.169895i \(0.945657\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.291722 0.428610i 0.00960214 0.0141079i
\(924\) 0 0
\(925\) 5.23688 1.40322i 0.172187 0.0461375i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −25.4791 6.82710i −0.835942 0.223990i −0.184638 0.982807i \(-0.559111\pi\)
−0.651304 + 0.758817i \(0.725778\pi\)
\(930\) 0 0
\(931\) −3.03668 + 3.03668i −0.0995232 + 0.0995232i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 18.1807 0.594574
\(936\) 0 0
\(937\) −55.5630 −1.81516 −0.907582 0.419875i \(-0.862074\pi\)
−0.907582 + 0.419875i \(0.862074\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −25.7216 + 25.7216i −0.838499 + 0.838499i −0.988661 0.150162i \(-0.952020\pi\)
0.150162 + 0.988661i \(0.452020\pi\)
\(942\) 0 0
\(943\) 4.48448 + 1.20161i 0.146035 + 0.0391299i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −38.9094 + 10.4257i −1.26439 + 0.338791i −0.827877 0.560909i \(-0.810452\pi\)
−0.436508 + 0.899700i \(0.643785\pi\)
\(948\) 0 0
\(949\) −3.90073 8.08349i −0.126623 0.262401i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7.08429 + 12.2703i 0.229483 + 0.397475i 0.957655 0.287919i \(-0.0929633\pi\)
−0.728172 + 0.685394i \(0.759630\pi\)
\(954\) 0 0
\(955\) −1.96560 + 7.33573i −0.0636054 + 0.237379i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.56128 9.63242i 0.179583 0.311047i
\(960\) 0 0
\(961\) 59.6704i 1.92485i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −10.7997 6.23521i −0.347655 0.200719i
\(966\) 0 0
\(967\) −10.7941 10.7941i −0.347115 0.347115i 0.511919 0.859034i \(-0.328935\pi\)
−0.859034 + 0.511919i \(0.828935\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −24.9093 + 14.3814i −0.799379 + 0.461522i −0.843254 0.537515i \(-0.819363\pi\)
0.0438751 + 0.999037i \(0.486030\pi\)
\(972\) 0 0
\(973\) −3.45489 12.8938i −0.110759 0.413357i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.23226 8.33091i −0.0714164 0.266530i 0.920980 0.389609i \(-0.127390\pi\)
−0.992397 + 0.123079i \(0.960723\pi\)
\(978\) 0 0
\(979\) 46.2063 26.6772i 1.47676 0.852607i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −43.9278 43.9278i −1.40108 1.40108i −0.796687 0.604392i \(-0.793416\pi\)
−0.604392 0.796687i \(-0.706584\pi\)
\(984\) 0 0
\(985\) 12.0897 + 6.98001i 0.385211 + 0.222402i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.216439i 0.00688236i
\(990\) 0 0
\(991\) 8.85788 15.3423i 0.281380 0.487364i −0.690345 0.723480i \(-0.742541\pi\)
0.971725 + 0.236116i \(0.0758746\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.58010 + 9.62908i −0.0817948 + 0.305262i
\(996\) 0 0
\(997\) −19.0469 32.9901i −0.603220 1.04481i −0.992330 0.123617i \(-0.960551\pi\)
0.389110 0.921191i \(-0.372783\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.fo.a.2321.3 yes 40
3.2 odd 2 inner 2340.2.fo.a.2321.6 yes 40
13.2 odd 12 inner 2340.2.fo.a.1601.6 yes 40
39.2 even 12 inner 2340.2.fo.a.1601.3 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.fo.a.1601.3 40 39.2 even 12 inner
2340.2.fo.a.1601.6 yes 40 13.2 odd 12 inner
2340.2.fo.a.2321.3 yes 40 1.1 even 1 trivial
2340.2.fo.a.2321.6 yes 40 3.2 odd 2 inner