Properties

Label 2340.2.fo.a.1961.3
Level $2340$
Weight $2$
Character 2340.1961
Analytic conductor $18.685$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1241,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.fo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1961.3
Character \(\chi\) \(=\) 2340.1961
Dual form 2340.2.fo.a.1241.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{5} +(-0.420712 - 1.57012i) q^{7} +(0.0781861 - 0.291794i) q^{11} +(0.635992 + 3.54902i) q^{13} +(1.26811 - 2.19643i) q^{17} +(-4.60232 + 1.23319i) q^{19} +(-2.25419 - 3.90437i) q^{23} -1.00000i q^{25} +(8.42481 - 4.86407i) q^{29} +(6.01033 + 6.01033i) q^{31} +(1.40773 + 0.812752i) q^{35} +(9.00020 + 2.41160i) q^{37} +(-3.76339 - 1.00840i) q^{41} +(-2.10913 - 1.21771i) q^{43} +(4.45078 + 4.45078i) q^{47} +(3.77391 - 2.17887i) q^{49} -5.50999i q^{53} +(0.151044 + 0.261616i) q^{55} +(-6.04535 + 1.61985i) q^{59} +(-1.78181 + 3.08619i) q^{61} +(-2.95925 - 2.05982i) q^{65} +(-0.318095 + 1.18715i) q^{67} +(1.47669 + 5.51107i) q^{71} +(1.50185 - 1.50185i) q^{73} -0.491045 q^{77} +13.6526 q^{79} +(5.60322 - 5.60322i) q^{83} +(0.656423 + 2.44980i) q^{85} +(3.34186 - 12.4720i) q^{89} +(5.30480 - 2.49169i) q^{91} +(2.38234 - 4.12633i) q^{95} +(12.5306 - 3.35757i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{13} - 20 q^{19} - 28 q^{31} + 12 q^{49} + 16 q^{55} + 48 q^{61} + 16 q^{67} - 20 q^{73} + 80 q^{79} + 20 q^{85} + 4 q^{91} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) −0.420712 1.57012i −0.159014 0.593448i −0.998728 0.0504196i \(-0.983944\pi\)
0.839714 0.543029i \(-0.182723\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.0781861 0.291794i 0.0235740 0.0879793i −0.953137 0.302540i \(-0.902165\pi\)
0.976711 + 0.214561i \(0.0688320\pi\)
\(12\) 0 0
\(13\) 0.635992 + 3.54902i 0.176392 + 0.984320i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.26811 2.19643i 0.307562 0.532713i −0.670266 0.742121i \(-0.733820\pi\)
0.977828 + 0.209407i \(0.0671535\pi\)
\(18\) 0 0
\(19\) −4.60232 + 1.23319i −1.05584 + 0.282913i −0.744665 0.667438i \(-0.767391\pi\)
−0.311180 + 0.950351i \(0.600724\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.25419 3.90437i −0.470031 0.814117i 0.529382 0.848383i \(-0.322424\pi\)
−0.999413 + 0.0342667i \(0.989090\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.42481 4.86407i 1.56445 0.903235i 0.567651 0.823270i \(-0.307852\pi\)
0.996798 0.0799649i \(-0.0254808\pi\)
\(30\) 0 0
\(31\) 6.01033 + 6.01033i 1.07949 + 1.07949i 0.996555 + 0.0829327i \(0.0264287\pi\)
0.0829327 + 0.996555i \(0.473571\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.40773 + 0.812752i 0.237949 + 0.137380i
\(36\) 0 0
\(37\) 9.00020 + 2.41160i 1.47962 + 0.396464i 0.906219 0.422809i \(-0.138956\pi\)
0.573404 + 0.819272i \(0.305622\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.76339 1.00840i −0.587743 0.157485i −0.0473216 0.998880i \(-0.515069\pi\)
−0.540422 + 0.841394i \(0.681735\pi\)
\(42\) 0 0
\(43\) −2.10913 1.21771i −0.321640 0.185699i 0.330483 0.943812i \(-0.392788\pi\)
−0.652123 + 0.758113i \(0.726122\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.45078 + 4.45078i 0.649213 + 0.649213i 0.952803 0.303590i \(-0.0981853\pi\)
−0.303590 + 0.952803i \(0.598185\pi\)
\(48\) 0 0
\(49\) 3.77391 2.17887i 0.539130 0.311267i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.50999i 0.756855i −0.925631 0.378428i \(-0.876465\pi\)
0.925631 0.378428i \(-0.123535\pi\)
\(54\) 0 0
\(55\) 0.151044 + 0.261616i 0.0203668 + 0.0352763i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.04535 + 1.61985i −0.787038 + 0.210886i −0.629885 0.776688i \(-0.716898\pi\)
−0.157153 + 0.987574i \(0.550231\pi\)
\(60\) 0 0
\(61\) −1.78181 + 3.08619i −0.228138 + 0.395146i −0.957256 0.289241i \(-0.906597\pi\)
0.729118 + 0.684388i \(0.239930\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.95925 2.05982i −0.367049 0.255489i
\(66\) 0 0
\(67\) −0.318095 + 1.18715i −0.0388614 + 0.145033i −0.982631 0.185572i \(-0.940586\pi\)
0.943769 + 0.330605i \(0.107253\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.47669 + 5.51107i 0.175250 + 0.654043i 0.996509 + 0.0834870i \(0.0266057\pi\)
−0.821258 + 0.570556i \(0.806728\pi\)
\(72\) 0 0
\(73\) 1.50185 1.50185i 0.175778 0.175778i −0.613734 0.789513i \(-0.710333\pi\)
0.789513 + 0.613734i \(0.210333\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.491045 −0.0559598
\(78\) 0 0
\(79\) 13.6526 1.53604 0.768019 0.640427i \(-0.221243\pi\)
0.768019 + 0.640427i \(0.221243\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.60322 5.60322i 0.615033 0.615033i −0.329220 0.944253i \(-0.606786\pi\)
0.944253 + 0.329220i \(0.106786\pi\)
\(84\) 0 0
\(85\) 0.656423 + 2.44980i 0.0711990 + 0.265718i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.34186 12.4720i 0.354236 1.32203i −0.527207 0.849737i \(-0.676761\pi\)
0.881443 0.472290i \(-0.156573\pi\)
\(90\) 0 0
\(91\) 5.30480 2.49169i 0.556094 0.261200i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.38234 4.12633i 0.244423 0.423352i
\(96\) 0 0
\(97\) 12.5306 3.35757i 1.27229 0.340909i 0.441383 0.897319i \(-0.354488\pi\)
0.830908 + 0.556409i \(0.187821\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.14827 8.91706i −0.512272 0.887280i −0.999899 0.0142285i \(-0.995471\pi\)
0.487627 0.873052i \(-0.337863\pi\)
\(102\) 0 0
\(103\) 7.50125i 0.739120i −0.929207 0.369560i \(-0.879508\pi\)
0.929207 0.369560i \(-0.120492\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.759642 0.438579i 0.0734373 0.0423991i −0.462832 0.886446i \(-0.653167\pi\)
0.536269 + 0.844047i \(0.319833\pi\)
\(108\) 0 0
\(109\) 8.00205 + 8.00205i 0.766458 + 0.766458i 0.977481 0.211023i \(-0.0676796\pi\)
−0.211023 + 0.977481i \(0.567680\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.58293 + 4.37801i 0.713342 + 0.411848i 0.812297 0.583244i \(-0.198217\pi\)
−0.0989551 + 0.995092i \(0.531550\pi\)
\(114\) 0 0
\(115\) 4.35476 + 1.16685i 0.406083 + 0.108810i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.98217 1.06702i −0.365045 0.0978134i
\(120\) 0 0
\(121\) 9.44725 + 5.45437i 0.858841 + 0.495852i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) −1.03801 + 0.599294i −0.0921083 + 0.0531788i −0.545347 0.838211i \(-0.683602\pi\)
0.453238 + 0.891389i \(0.350269\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.59841i 0.838617i 0.907844 + 0.419309i \(0.137727\pi\)
−0.907844 + 0.419309i \(0.862273\pi\)
\(132\) 0 0
\(133\) 3.87250 + 6.70736i 0.335788 + 0.581602i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.6056 4.98537i 1.58959 0.425929i 0.647711 0.761886i \(-0.275727\pi\)
0.941877 + 0.335957i \(0.109060\pi\)
\(138\) 0 0
\(139\) 2.45541 4.25289i 0.208265 0.360726i −0.742903 0.669399i \(-0.766552\pi\)
0.951168 + 0.308673i \(0.0998850\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.08531 + 0.0919048i 0.0907581 + 0.00768547i
\(144\) 0 0
\(145\) −2.51783 + 9.39666i −0.209094 + 0.780350i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.09098 + 4.07160i 0.0893767 + 0.333558i 0.996107 0.0881526i \(-0.0280963\pi\)
−0.906730 + 0.421711i \(0.861430\pi\)
\(150\) 0 0
\(151\) −0.324656 + 0.324656i −0.0264202 + 0.0264202i −0.720193 0.693773i \(-0.755947\pi\)
0.693773 + 0.720193i \(0.255947\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.49990 −0.682728
\(156\) 0 0
\(157\) −24.2736 −1.93725 −0.968623 0.248535i \(-0.920051\pi\)
−0.968623 + 0.248535i \(0.920051\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −5.18195 + 5.18195i −0.408395 + 0.408395i
\(162\) 0 0
\(163\) 4.58873 + 17.1254i 0.359417 + 1.34136i 0.874834 + 0.484422i \(0.160970\pi\)
−0.515418 + 0.856939i \(0.672363\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.01928 22.4643i 0.465786 1.73834i −0.188484 0.982076i \(-0.560357\pi\)
0.654270 0.756261i \(-0.272976\pi\)
\(168\) 0 0
\(169\) −12.1910 + 4.51429i −0.937771 + 0.347253i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.800773 1.38698i 0.0608816 0.105450i −0.833978 0.551798i \(-0.813942\pi\)
0.894860 + 0.446347i \(0.147275\pi\)
\(174\) 0 0
\(175\) −1.57012 + 0.420712i −0.118690 + 0.0318028i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.30134 + 16.1104i 0.695215 + 1.20415i 0.970108 + 0.242673i \(0.0780242\pi\)
−0.274893 + 0.961475i \(0.588642\pi\)
\(180\) 0 0
\(181\) 0.370426i 0.0275335i −0.999905 0.0137668i \(-0.995618\pi\)
0.999905 0.0137668i \(-0.00438224\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.06936 + 4.65885i −0.593271 + 0.342525i
\(186\) 0 0
\(187\) −0.541758 0.541758i −0.0396173 0.0396173i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.0379 9.83683i −1.23282 0.711768i −0.265202 0.964193i \(-0.585439\pi\)
−0.967617 + 0.252424i \(0.918772\pi\)
\(192\) 0 0
\(193\) 15.0040 + 4.02031i 1.08001 + 0.289388i 0.754600 0.656185i \(-0.227831\pi\)
0.325411 + 0.945573i \(0.394497\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.3449 + 3.84371i 1.02203 + 0.273853i 0.730649 0.682754i \(-0.239218\pi\)
0.291383 + 0.956606i \(0.405884\pi\)
\(198\) 0 0
\(199\) −11.8297 6.82985i −0.838582 0.484156i 0.0181999 0.999834i \(-0.494206\pi\)
−0.856782 + 0.515679i \(0.827540\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −11.1816 11.1816i −0.784792 0.784792i
\(204\) 0 0
\(205\) 3.37417 1.94808i 0.235662 0.136059i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.43935i 0.0995619i
\(210\) 0 0
\(211\) 8.58519 + 14.8700i 0.591029 + 1.02369i 0.994094 + 0.108521i \(0.0346115\pi\)
−0.403065 + 0.915171i \(0.632055\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.35243 0.630333i 0.160435 0.0429883i
\(216\) 0 0
\(217\) 6.90831 11.9655i 0.468967 0.812274i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.60168 + 3.10363i 0.578612 + 0.208773i
\(222\) 0 0
\(223\) 6.36076 23.7387i 0.425948 1.58966i −0.335895 0.941899i \(-0.609039\pi\)
0.761843 0.647761i \(-0.224295\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.59352 5.94710i −0.105766 0.394723i 0.892665 0.450720i \(-0.148833\pi\)
−0.998431 + 0.0559975i \(0.982166\pi\)
\(228\) 0 0
\(229\) 2.54915 2.54915i 0.168453 0.168453i −0.617846 0.786299i \(-0.711995\pi\)
0.786299 + 0.617846i \(0.211995\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27.0259 1.77053 0.885263 0.465091i \(-0.153978\pi\)
0.885263 + 0.465091i \(0.153978\pi\)
\(234\) 0 0
\(235\) −6.29435 −0.410598
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.65404 8.65404i 0.559783 0.559783i −0.369462 0.929246i \(-0.620458\pi\)
0.929246 + 0.369462i \(0.120458\pi\)
\(240\) 0 0
\(241\) 7.39942 + 27.6150i 0.476639 + 1.77884i 0.615075 + 0.788469i \(0.289126\pi\)
−0.138436 + 0.990371i \(0.544208\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.12786 + 4.20925i −0.0720566 + 0.268919i
\(246\) 0 0
\(247\) −7.30364 15.5494i −0.464719 0.989385i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.3346 + 19.6321i −0.715433 + 1.23917i 0.247360 + 0.968924i \(0.420437\pi\)
−0.962792 + 0.270242i \(0.912896\pi\)
\(252\) 0 0
\(253\) −1.31552 + 0.352492i −0.0827059 + 0.0221610i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.2115 21.1510i −0.761733 1.31936i −0.941957 0.335735i \(-0.891015\pi\)
0.180224 0.983626i \(-0.442318\pi\)
\(258\) 0 0
\(259\) 15.1459i 0.941123i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.9156 + 6.87949i −0.734749 + 0.424207i −0.820157 0.572139i \(-0.806114\pi\)
0.0854082 + 0.996346i \(0.472781\pi\)
\(264\) 0 0
\(265\) 3.89615 + 3.89615i 0.239339 + 0.239339i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.79742 + 1.61509i 0.170562 + 0.0984739i 0.582851 0.812579i \(-0.301937\pi\)
−0.412289 + 0.911053i \(0.635271\pi\)
\(270\) 0 0
\(271\) −9.32074 2.49749i −0.566195 0.151711i −0.0356439 0.999365i \(-0.511348\pi\)
−0.530551 + 0.847653i \(0.678015\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.291794 0.0781861i −0.0175959 0.00471480i
\(276\) 0 0
\(277\) −3.39445 1.95978i −0.203952 0.117752i 0.394545 0.918877i \(-0.370902\pi\)
−0.598498 + 0.801124i \(0.704235\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.0443 15.0443i −0.897466 0.897466i 0.0977457 0.995211i \(-0.468837\pi\)
−0.995211 + 0.0977457i \(0.968837\pi\)
\(282\) 0 0
\(283\) −12.3539 + 7.13255i −0.734365 + 0.423986i −0.820017 0.572339i \(-0.806036\pi\)
0.0856516 + 0.996325i \(0.472703\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.33321i 0.373838i
\(288\) 0 0
\(289\) 5.28379 + 9.15179i 0.310811 + 0.538341i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.99230 + 2.67743i −0.583756 + 0.156417i −0.538598 0.842563i \(-0.681046\pi\)
−0.0451582 + 0.998980i \(0.514379\pi\)
\(294\) 0 0
\(295\) 3.12931 5.42012i 0.182195 0.315571i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.4230 10.4833i 0.718442 0.606264i
\(300\) 0 0
\(301\) −1.02461 + 3.82389i −0.0590575 + 0.220405i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.922335 3.44220i −0.0528127 0.197100i
\(306\) 0 0
\(307\) 7.31436 7.31436i 0.417452 0.417452i −0.466872 0.884325i \(-0.654619\pi\)
0.884325 + 0.466872i \(0.154619\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −31.4363 −1.78259 −0.891296 0.453422i \(-0.850203\pi\)
−0.891296 + 0.453422i \(0.850203\pi\)
\(312\) 0 0
\(313\) −8.29498 −0.468860 −0.234430 0.972133i \(-0.575322\pi\)
−0.234430 + 0.972133i \(0.575322\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.133879 + 0.133879i −0.00751938 + 0.00751938i −0.710856 0.703337i \(-0.751692\pi\)
0.703337 + 0.710856i \(0.251692\pi\)
\(318\) 0 0
\(319\) −0.760605 2.83862i −0.0425857 0.158932i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.12764 + 11.6725i −0.174026 + 0.649476i
\(324\) 0 0
\(325\) 3.54902 0.635992i 0.196864 0.0352785i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.11575 8.86073i 0.282040 0.488508i
\(330\) 0 0
\(331\) −12.3195 + 3.30101i −0.677143 + 0.181440i −0.580970 0.813925i \(-0.697327\pi\)
−0.0961728 + 0.995365i \(0.530660\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.614512 1.06437i −0.0335744 0.0581525i
\(336\) 0 0
\(337\) 12.4924i 0.680504i 0.940334 + 0.340252i \(0.110512\pi\)
−0.940334 + 0.340252i \(0.889488\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.22371 1.28386i 0.120420 0.0695248i
\(342\) 0 0
\(343\) −13.0546 13.0546i −0.704884 0.704884i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.72792 + 5.61642i 0.522222 + 0.301505i 0.737843 0.674972i \(-0.235844\pi\)
−0.215621 + 0.976477i \(0.569178\pi\)
\(348\) 0 0
\(349\) 3.03532 + 0.813312i 0.162477 + 0.0435356i 0.339141 0.940736i \(-0.389864\pi\)
−0.176664 + 0.984271i \(0.556530\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.19720 2.19643i −0.436293 0.116904i 0.0339857 0.999422i \(-0.489180\pi\)
−0.470279 + 0.882518i \(0.655847\pi\)
\(354\) 0 0
\(355\) −4.94109 2.85274i −0.262246 0.151408i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.9016 + 12.9016i 0.680920 + 0.680920i 0.960208 0.279287i \(-0.0900982\pi\)
−0.279287 + 0.960208i \(0.590098\pi\)
\(360\) 0 0
\(361\) 3.20611 1.85105i 0.168743 0.0974236i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.12394i 0.111172i
\(366\) 0 0
\(367\) −16.0090 27.7284i −0.835663 1.44741i −0.893489 0.449085i \(-0.851750\pi\)
0.0578258 0.998327i \(-0.481583\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.65133 + 2.31812i −0.449155 + 0.120351i
\(372\) 0 0
\(373\) 6.99741 12.1199i 0.362312 0.627543i −0.626029 0.779800i \(-0.715321\pi\)
0.988341 + 0.152257i \(0.0486541\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 22.6208 + 26.8063i 1.16503 + 1.38059i
\(378\) 0 0
\(379\) 7.46212 27.8490i 0.383303 1.43051i −0.457521 0.889199i \(-0.651262\pi\)
0.840824 0.541309i \(-0.182071\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.79864 + 29.1049i 0.398492 + 1.48719i 0.815750 + 0.578405i \(0.196325\pi\)
−0.417258 + 0.908788i \(0.637009\pi\)
\(384\) 0 0
\(385\) 0.347221 0.347221i 0.0176960 0.0176960i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.4861 −0.937285 −0.468642 0.883388i \(-0.655257\pi\)
−0.468642 + 0.883388i \(0.655257\pi\)
\(390\) 0 0
\(391\) −11.4342 −0.578254
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −9.65385 + 9.65385i −0.485738 + 0.485738i
\(396\) 0 0
\(397\) −2.13821 7.97990i −0.107314 0.400499i 0.891284 0.453446i \(-0.149805\pi\)
−0.998597 + 0.0529463i \(0.983139\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.18126 + 4.40851i −0.0589892 + 0.220151i −0.989128 0.147058i \(-0.953020\pi\)
0.930139 + 0.367208i \(0.119686\pi\)
\(402\) 0 0
\(403\) −17.5082 + 25.1533i −0.872148 + 1.25297i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.40738 2.43765i 0.0697613 0.120830i
\(408\) 0 0
\(409\) −22.6073 + 6.05760i −1.11786 + 0.299529i −0.770016 0.638024i \(-0.779752\pi\)
−0.347842 + 0.937553i \(0.613085\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.08670 + 8.81042i 0.250300 + 0.433533i
\(414\) 0 0
\(415\) 7.92415i 0.388981i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.3201 5.95834i 0.504172 0.291084i −0.226263 0.974066i \(-0.572651\pi\)
0.730435 + 0.682982i \(0.239317\pi\)
\(420\) 0 0
\(421\) −2.93825 2.93825i −0.143202 0.143202i 0.631871 0.775073i \(-0.282287\pi\)
−0.775073 + 0.631871i \(0.782287\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.19643 1.26811i −0.106543 0.0615124i
\(426\) 0 0
\(427\) 5.59531 + 1.49926i 0.270776 + 0.0725542i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.5055 5.49445i −0.987718 0.264658i −0.271426 0.962459i \(-0.587495\pi\)
−0.716291 + 0.697801i \(0.754162\pi\)
\(432\) 0 0
\(433\) −9.34080 5.39291i −0.448890 0.259167i 0.258471 0.966019i \(-0.416781\pi\)
−0.707361 + 0.706852i \(0.750115\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.1893 + 15.1893i 0.726603 + 0.726603i
\(438\) 0 0
\(439\) −9.89837 + 5.71482i −0.472423 + 0.272754i −0.717254 0.696812i \(-0.754601\pi\)
0.244830 + 0.969566i \(0.421268\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17.1103i 0.812933i 0.913666 + 0.406467i \(0.133239\pi\)
−0.913666 + 0.406467i \(0.866761\pi\)
\(444\) 0 0
\(445\) 6.45597 + 11.1821i 0.306042 + 0.530081i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.50000 + 1.74167i −0.306754 + 0.0821945i −0.408912 0.912574i \(-0.634092\pi\)
0.102158 + 0.994768i \(0.467425\pi\)
\(450\) 0 0
\(451\) −0.588490 + 1.01929i −0.0277109 + 0.0479967i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.98917 + 5.51295i −0.0932536 + 0.258451i
\(456\) 0 0
\(457\) 2.76840 10.3318i 0.129500 0.483301i −0.870460 0.492239i \(-0.836178\pi\)
0.999960 + 0.00893821i \(0.00284516\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.12588 + 19.1300i 0.238736 + 0.890975i 0.976429 + 0.215838i \(0.0692485\pi\)
−0.737693 + 0.675136i \(0.764085\pi\)
\(462\) 0 0
\(463\) 8.24595 8.24595i 0.383222 0.383222i −0.489040 0.872262i \(-0.662653\pi\)
0.872262 + 0.489040i \(0.162653\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.7618 0.729369 0.364685 0.931131i \(-0.381177\pi\)
0.364685 + 0.931131i \(0.381177\pi\)
\(468\) 0 0
\(469\) 1.99778 0.0922490
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.520226 + 0.520226i −0.0239200 + 0.0239200i
\(474\) 0 0
\(475\) 1.23319 + 4.60232i 0.0565825 + 0.211169i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.49788 5.59016i 0.0684398 0.255421i −0.923226 0.384257i \(-0.874458\pi\)
0.991666 + 0.128836i \(0.0411242\pi\)
\(480\) 0 0
\(481\) −2.83474 + 33.4756i −0.129253 + 1.52636i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.48632 + 11.2346i −0.294529 + 0.510139i
\(486\) 0 0
\(487\) −34.8084 + 9.32688i −1.57732 + 0.422641i −0.938094 0.346380i \(-0.887411\pi\)
−0.639224 + 0.769021i \(0.720744\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.2965 19.5662i −0.509805 0.883008i −0.999935 0.0113593i \(-0.996384\pi\)
0.490130 0.871649i \(-0.336949\pi\)
\(492\) 0 0
\(493\) 24.6727i 1.11120i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.03176 4.63714i 0.360274 0.208004i
\(498\) 0 0
\(499\) −23.9443 23.9443i −1.07189 1.07189i −0.997207 0.0746867i \(-0.976204\pi\)
−0.0746867 0.997207i \(-0.523796\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −29.4162 16.9834i −1.31160 0.757254i −0.329241 0.944246i \(-0.606793\pi\)
−0.982362 + 0.186991i \(0.940126\pi\)
\(504\) 0 0
\(505\) 9.94569 + 2.66494i 0.442577 + 0.118588i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.54032 2.55632i −0.422867 0.113307i 0.0411089 0.999155i \(-0.486911\pi\)
−0.463976 + 0.885848i \(0.653578\pi\)
\(510\) 0 0
\(511\) −2.98993 1.72623i −0.132267 0.0763641i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.30418 + 5.30418i 0.233730 + 0.233730i
\(516\) 0 0
\(517\) 1.64670 0.950723i 0.0724218 0.0418128i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 25.7050i 1.12616i 0.826404 + 0.563078i \(0.190383\pi\)
−0.826404 + 0.563078i \(0.809617\pi\)
\(522\) 0 0
\(523\) 3.70723 + 6.42111i 0.162106 + 0.280775i 0.935624 0.352999i \(-0.114838\pi\)
−0.773518 + 0.633774i \(0.781505\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.8231 5.57952i 0.907067 0.243048i
\(528\) 0 0
\(529\) 1.33728 2.31624i 0.0581426 0.100706i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.18533 13.9977i 0.0513425 0.606307i
\(534\) 0 0
\(535\) −0.227025 + 0.847270i −0.00981516 + 0.0366307i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.340714 1.27156i −0.0146756 0.0547701i
\(540\) 0 0
\(541\) −4.25112 + 4.25112i −0.182770 + 0.182770i −0.792562 0.609792i \(-0.791253\pi\)
0.609792 + 0.792562i \(0.291253\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −11.3166 −0.484750
\(546\) 0 0
\(547\) −9.95059 −0.425457 −0.212728 0.977111i \(-0.568235\pi\)
−0.212728 + 0.977111i \(0.568235\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −32.7754 + 32.7754i −1.39628 + 1.39628i
\(552\) 0 0
\(553\) −5.74381 21.4362i −0.244252 0.911559i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.88622 10.7715i 0.122293 0.456404i −0.877436 0.479694i \(-0.840748\pi\)
0.999729 + 0.0232903i \(0.00741421\pi\)
\(558\) 0 0
\(559\) 2.98028 8.25980i 0.126052 0.349353i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.61327 13.1866i 0.320861 0.555747i −0.659805 0.751437i \(-0.729361\pi\)
0.980666 + 0.195690i \(0.0626945\pi\)
\(564\) 0 0
\(565\) −8.45766 + 2.26622i −0.355816 + 0.0953407i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.358823 0.621499i −0.0150426 0.0260546i 0.858406 0.512971i \(-0.171455\pi\)
−0.873449 + 0.486916i \(0.838122\pi\)
\(570\) 0 0
\(571\) 16.1777i 0.677017i −0.940963 0.338508i \(-0.890078\pi\)
0.940963 0.338508i \(-0.109922\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.90437 + 2.25419i −0.162823 + 0.0940061i
\(576\) 0 0
\(577\) −13.9025 13.9025i −0.578767 0.578767i 0.355797 0.934563i \(-0.384210\pi\)
−0.934563 + 0.355797i \(0.884210\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −11.1550 6.44037i −0.462789 0.267192i
\(582\) 0 0
\(583\) −1.60778 0.430804i −0.0665876 0.0178421i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.63709 1.77840i −0.273942 0.0734026i 0.119233 0.992866i \(-0.461957\pi\)
−0.393175 + 0.919464i \(0.628623\pi\)
\(588\) 0 0
\(589\) −35.0733 20.2496i −1.44517 0.834371i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.4449 + 24.4449i 1.00383 + 1.00383i 0.999993 + 0.00384061i \(0.00122251\pi\)
0.00384061 + 0.999993i \(0.498777\pi\)
\(594\) 0 0
\(595\) 3.57031 2.06132i 0.146369 0.0845059i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 36.8655i 1.50628i 0.657859 + 0.753141i \(0.271462\pi\)
−0.657859 + 0.753141i \(0.728538\pi\)
\(600\) 0 0
\(601\) −3.70418 6.41582i −0.151097 0.261707i 0.780534 0.625113i \(-0.214947\pi\)
−0.931631 + 0.363406i \(0.881614\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10.5370 + 2.82339i −0.428391 + 0.114787i
\(606\) 0 0
\(607\) 23.8138 41.2467i 0.966571 1.67415i 0.261238 0.965274i \(-0.415869\pi\)
0.705333 0.708876i \(-0.250797\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.9652 + 18.6265i −0.524517 + 0.753549i
\(612\) 0 0
\(613\) −7.08397 + 26.4377i −0.286119 + 1.06781i 0.661899 + 0.749593i \(0.269751\pi\)
−0.948018 + 0.318217i \(0.896916\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.364815 + 1.36151i 0.0146869 + 0.0548122i 0.972880 0.231309i \(-0.0743008\pi\)
−0.958194 + 0.286121i \(0.907634\pi\)
\(618\) 0 0
\(619\) −21.4931 + 21.4931i −0.863882 + 0.863882i −0.991786 0.127905i \(-0.959175\pi\)
0.127905 + 0.991786i \(0.459175\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −20.9884 −0.840884
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.7102 16.7102i 0.666278 0.666278i
\(630\) 0 0
\(631\) 3.38949 + 12.6498i 0.134933 + 0.503579i 0.999998 + 0.00191829i \(0.000610612\pi\)
−0.865065 + 0.501660i \(0.832723\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.310218 1.15775i 0.0123106 0.0459438i
\(636\) 0 0
\(637\) 10.1330 + 12.0079i 0.401485 + 0.475771i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.54227 + 11.3315i −0.258404 + 0.447569i −0.965815 0.259234i \(-0.916530\pi\)
0.707411 + 0.706803i \(0.249863\pi\)
\(642\) 0 0
\(643\) 13.8580 3.71325i 0.546508 0.146436i 0.0250072 0.999687i \(-0.492039\pi\)
0.521500 + 0.853251i \(0.325372\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.3014 + 26.5028i 0.601561 + 1.04193i 0.992585 + 0.121554i \(0.0387877\pi\)
−0.391024 + 0.920381i \(0.627879\pi\)
\(648\) 0 0
\(649\) 1.89065i 0.0742145i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.0233 17.3340i 1.17490 0.678331i 0.220073 0.975483i \(-0.429370\pi\)
0.954830 + 0.297153i \(0.0960371\pi\)
\(654\) 0 0
\(655\) −6.78710 6.78710i −0.265194 0.265194i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −22.8484 13.1916i −0.890049 0.513870i −0.0160904 0.999871i \(-0.505122\pi\)
−0.873958 + 0.486001i \(0.838455\pi\)
\(660\) 0 0
\(661\) 30.6023 + 8.19987i 1.19029 + 0.318938i 0.799002 0.601329i \(-0.205362\pi\)
0.391291 + 0.920267i \(0.372028\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.48109 2.00455i −0.290104 0.0777332i
\(666\) 0 0
\(667\) −37.9822 21.9290i −1.47068 0.849096i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.761221 + 0.761221i 0.0293866 + 0.0293866i
\(672\) 0 0
\(673\) 14.1791 8.18631i 0.546564 0.315559i −0.201171 0.979556i \(-0.564475\pi\)
0.747735 + 0.663997i \(0.231141\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 30.6337i 1.17735i −0.808370 0.588675i \(-0.799650\pi\)
0.808370 0.588675i \(-0.200350\pi\)
\(678\) 0 0
\(679\) −10.5435 18.2620i −0.404624 0.700830i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 35.5382 9.52243i 1.35983 0.364365i 0.496076 0.868279i \(-0.334774\pi\)
0.863754 + 0.503913i \(0.168107\pi\)
\(684\) 0 0
\(685\) −9.63099 + 16.6814i −0.367981 + 0.637362i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 19.5550 3.50431i 0.744988 0.133503i
\(690\) 0 0
\(691\) −6.32813 + 23.6169i −0.240733 + 0.898430i 0.734747 + 0.678342i \(0.237301\pi\)
−0.975480 + 0.220088i \(0.929366\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.27101 + 4.74348i 0.0482123 + 0.179931i
\(696\) 0 0
\(697\) −6.98728 + 6.98728i −0.264662 + 0.264662i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −16.4448 −0.621113 −0.310556 0.950555i \(-0.600515\pi\)
−0.310556 + 0.950555i \(0.600515\pi\)
\(702\) 0 0
\(703\) −44.3957 −1.67442
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11.8349 + 11.8349i −0.445097 + 0.445097i
\(708\) 0 0
\(709\) 6.24975 + 23.3244i 0.234714 + 0.875966i 0.978277 + 0.207300i \(0.0664677\pi\)
−0.743563 + 0.668666i \(0.766866\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.91813 37.0150i 0.371437 1.38622i
\(714\) 0 0
\(715\) −0.832416 + 0.702443i −0.0311306 + 0.0262699i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.0640 + 33.0198i −0.710967 + 1.23143i 0.253528 + 0.967328i \(0.418409\pi\)
−0.964495 + 0.264103i \(0.914924\pi\)
\(720\) 0 0
\(721\) −11.7778 + 3.15586i −0.438629 + 0.117530i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.86407 8.42481i −0.180647 0.312890i
\(726\) 0 0
\(727\) 42.9583i 1.59324i −0.604483 0.796618i \(-0.706620\pi\)
0.604483 0.796618i \(-0.293380\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.34923 + 3.08838i −0.197849 + 0.114228i
\(732\) 0 0
\(733\) 8.28937 + 8.28937i 0.306175 + 0.306175i 0.843424 0.537249i \(-0.180536\pi\)
−0.537249 + 0.843424i \(0.680536\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.321532 + 0.185636i 0.0118438 + 0.00683801i
\(738\) 0 0
\(739\) 36.0666 + 9.66403i 1.32673 + 0.355497i 0.851496 0.524361i \(-0.175696\pi\)
0.475237 + 0.879858i \(0.342362\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16.9775 4.54912i −0.622846 0.166891i −0.0664246 0.997791i \(-0.521159\pi\)
−0.556421 + 0.830900i \(0.687826\pi\)
\(744\) 0 0
\(745\) −3.65050 2.10762i −0.133744 0.0772171i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.00821 1.00821i −0.0368392 0.0368392i
\(750\) 0 0
\(751\) −16.3665 + 9.44923i −0.597224 + 0.344807i −0.767949 0.640512i \(-0.778722\pi\)
0.170725 + 0.985319i \(0.445389\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.459133i 0.0167096i
\(756\) 0 0
\(757\) 10.4334 + 18.0713i 0.379210 + 0.656811i 0.990948 0.134250i \(-0.0428625\pi\)
−0.611738 + 0.791061i \(0.709529\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −39.7865 + 10.6608i −1.44226 + 0.386453i −0.893325 0.449412i \(-0.851634\pi\)
−0.548936 + 0.835864i \(0.684967\pi\)
\(762\) 0 0
\(763\) 9.19760 15.9307i 0.332976 0.576731i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.59366 20.4248i −0.346407 0.737498i
\(768\) 0 0
\(769\) −4.60484 + 17.1855i −0.166055 + 0.619725i 0.831848 + 0.555003i \(0.187283\pi\)
−0.997903 + 0.0647223i \(0.979384\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.66423 + 28.6033i 0.275663 + 1.02879i 0.955396 + 0.295329i \(0.0954293\pi\)
−0.679732 + 0.733460i \(0.737904\pi\)
\(774\) 0 0
\(775\) 6.01033 6.01033i 0.215898 0.215898i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.5639 0.665120
\(780\) 0 0
\(781\) 1.72355 0.0616736
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.1640 17.1640i 0.612611 0.612611i
\(786\) 0 0
\(787\) 2.96313 + 11.0585i 0.105624 + 0.394194i 0.998415 0.0562765i \(-0.0179229\pi\)
−0.892791 + 0.450471i \(0.851256\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.68376 13.7480i 0.130979 0.488821i
\(792\) 0 0
\(793\) −12.0862 4.36089i −0.429192 0.154860i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.04417 + 1.80855i −0.0369864 + 0.0640622i −0.883926 0.467627i \(-0.845109\pi\)
0.846940 + 0.531689i \(0.178442\pi\)
\(798\) 0 0
\(799\) 15.4199 4.13175i 0.545517 0.146171i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.320808 0.555655i −0.0113211 0.0196087i
\(804\) 0 0
\(805\) 7.32838i 0.258292i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −13.8915 + 8.02025i −0.488399 + 0.281977i −0.723910 0.689895i \(-0.757657\pi\)
0.235511 + 0.971872i \(0.424324\pi\)
\(810\) 0 0
\(811\) 18.6035 + 18.6035i 0.653256 + 0.653256i 0.953776 0.300519i \(-0.0971600\pi\)
−0.300519 + 0.953776i \(0.597160\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.3542 8.86474i −0.537833 0.310518i
\(816\) 0 0
\(817\) 11.2086 + 3.00333i 0.392138 + 0.105073i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.2462 + 4.08522i 0.532098 + 0.142575i 0.514857 0.857276i \(-0.327845\pi\)
0.0172409 + 0.999851i \(0.494512\pi\)
\(822\) 0 0
\(823\) 8.10520 + 4.67954i 0.282530 + 0.163119i 0.634568 0.772867i \(-0.281178\pi\)
−0.352038 + 0.935986i \(0.614511\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.91823 4.91823i −0.171023 0.171023i 0.616405 0.787429i \(-0.288588\pi\)
−0.787429 + 0.616405i \(0.788588\pi\)
\(828\) 0 0
\(829\) 40.8552 23.5878i 1.41896 0.819238i 0.422754 0.906245i \(-0.361064\pi\)
0.996208 + 0.0870069i \(0.0277302\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 11.0522i 0.382936i
\(834\) 0 0
\(835\) 11.6284 + 20.1409i 0.402416 + 0.697005i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 27.0792 7.25585i 0.934878 0.250500i 0.240944 0.970539i \(-0.422543\pi\)
0.693933 + 0.720039i \(0.255876\pi\)
\(840\) 0 0
\(841\) 32.8183 56.8430i 1.13167 1.96010i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.42827 11.8124i 0.186738 0.406360i
\(846\) 0 0
\(847\) 4.58943 17.1280i 0.157695 0.588525i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −10.8724 40.5763i −0.372700 1.39094i
\(852\) 0 0
\(853\) −20.8964 + 20.8964i −0.715479 + 0.715479i −0.967676 0.252197i \(-0.918847\pi\)
0.252197 + 0.967676i \(0.418847\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.02510 0.205813 0.102907 0.994691i \(-0.467186\pi\)
0.102907 + 0.994691i \(0.467186\pi\)
\(858\) 0 0
\(859\) −16.2184 −0.553365 −0.276682 0.960961i \(-0.589235\pi\)
−0.276682 + 0.960961i \(0.589235\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −37.4312 + 37.4312i −1.27417 + 1.27417i −0.330293 + 0.943878i \(0.607148\pi\)
−0.943878 + 0.330293i \(0.892852\pi\)
\(864\) 0 0
\(865\) 0.414510 + 1.54697i 0.0140938 + 0.0525987i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.06744 3.98375i 0.0362105 0.135140i
\(870\) 0 0
\(871\) −4.41550 0.373908i −0.149614 0.0126694i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.812752 1.40773i 0.0274760 0.0475899i
\(876\) 0 0
\(877\) −20.9684 + 5.61847i −0.708052 + 0.189722i −0.594835 0.803848i \(-0.702782\pi\)
−0.113218 + 0.993570i \(0.536116\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 19.2171 + 33.2850i 0.647441 + 1.12140i 0.983732 + 0.179643i \(0.0574942\pi\)
−0.336291 + 0.941758i \(0.609173\pi\)
\(882\) 0 0
\(883\) 1.98458i 0.0667865i 0.999442 + 0.0333933i \(0.0106314\pi\)
−0.999442 + 0.0333933i \(0.989369\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33.5671 19.3799i 1.12707 0.650715i 0.183875 0.982950i \(-0.441136\pi\)
0.943197 + 0.332235i \(0.107803\pi\)
\(888\) 0 0
\(889\) 1.37766 + 1.37766i 0.0462054 + 0.0462054i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −25.9725 14.9953i −0.869138 0.501797i
\(894\) 0 0
\(895\) −17.9688 4.81473i −0.600631 0.160939i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 79.8706 + 21.4013i 2.66383 + 0.713772i
\(900\) 0 0
\(901\) −12.1023 6.98728i −0.403187 0.232780i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.261931 + 0.261931i 0.00870687 + 0.00870687i
\(906\) 0 0
\(907\) −9.03950 + 5.21896i −0.300152 + 0.173293i −0.642511 0.766276i \(-0.722107\pi\)
0.342359 + 0.939569i \(0.388774\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 29.0318i 0.961867i −0.876757 0.480934i \(-0.840298\pi\)
0.876757 0.480934i \(-0.159702\pi\)
\(912\) 0 0
\(913\) −1.19689 2.07308i −0.0396114 0.0686090i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.0706 4.03816i 0.497676 0.133352i
\(918\) 0 0
\(919\) 26.0364 45.0963i 0.858861 1.48759i −0.0141548 0.999900i \(-0.504506\pi\)
0.873016 0.487691i \(-0.162161\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −18.6197 + 8.74578i −0.612875 + 0.287871i
\(924\) 0 0
\(925\) 2.41160 9.00020i 0.0792928 0.295925i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −5.00843 18.6917i −0.164321 0.613255i −0.998126 0.0611956i \(-0.980509\pi\)
0.833804 0.552060i \(-0.186158\pi\)
\(930\) 0 0
\(931\) −14.6818 + 14.6818i −0.481176 + 0.481176i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.766162 0.0250562
\(936\) 0 0
\(937\) 10.6914 0.349274 0.174637 0.984633i \(-0.444125\pi\)
0.174637 + 0.984633i \(0.444125\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −11.7460 + 11.7460i −0.382908 + 0.382908i −0.872149 0.489241i \(-0.837274\pi\)
0.489241 + 0.872149i \(0.337274\pi\)
\(942\) 0 0
\(943\) 4.54624 + 16.9668i 0.148046 + 0.552515i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.83997 14.3310i 0.124782 0.465693i −0.875050 0.484033i \(-0.839171\pi\)
0.999832 + 0.0183398i \(0.00583806\pi\)
\(948\) 0 0
\(949\) 6.28526 + 4.37493i 0.204028 + 0.142016i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −18.8452 + 32.6409i −0.610457 + 1.05734i 0.380706 + 0.924696i \(0.375681\pi\)
−0.991163 + 0.132646i \(0.957652\pi\)
\(954\) 0 0
\(955\) 19.0033 5.09192i 0.614933 0.164771i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −15.6552 27.1156i −0.505533 0.875610i
\(960\) 0 0
\(961\) 41.2482i 1.33059i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −13.4522 + 7.76664i −0.433042 + 0.250017i
\(966\) 0 0
\(967\) 2.05564 + 2.05564i 0.0661048 + 0.0661048i 0.739386 0.673281i \(-0.235116\pi\)
−0.673281 + 0.739386i \(0.735116\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 36.8798 + 21.2926i 1.18353 + 0.683311i 0.956829 0.290653i \(-0.0938725\pi\)
0.226702 + 0.973964i \(0.427206\pi\)
\(972\) 0 0
\(973\) −7.71055 2.06604i −0.247189 0.0662341i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.11542 0.834774i −0.0996711 0.0267068i 0.208639 0.977993i \(-0.433097\pi\)
−0.308310 + 0.951286i \(0.599763\pi\)
\(978\) 0 0
\(979\) −3.37797 1.95027i −0.107960 0.0623309i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −21.2041 21.2041i −0.676305 0.676305i 0.282857 0.959162i \(-0.408718\pi\)
−0.959162 + 0.282857i \(0.908718\pi\)
\(984\) 0 0
\(985\) −12.8613 + 7.42547i −0.409795 + 0.236595i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.9798i 0.349137i
\(990\) 0 0
\(991\) 13.4162 + 23.2376i 0.426180 + 0.738165i 0.996530 0.0832365i \(-0.0265257\pi\)
−0.570350 + 0.821402i \(0.693192\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 13.1943 3.53539i 0.418286 0.112079i
\(996\) 0 0
\(997\) 9.30538 16.1174i 0.294704 0.510443i −0.680212 0.733016i \(-0.738112\pi\)
0.974916 + 0.222573i \(0.0714455\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.fo.a.1961.3 yes 40
3.2 odd 2 inner 2340.2.fo.a.1961.7 yes 40
13.6 odd 12 inner 2340.2.fo.a.1241.7 yes 40
39.32 even 12 inner 2340.2.fo.a.1241.3 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.fo.a.1241.3 40 39.32 even 12 inner
2340.2.fo.a.1241.7 yes 40 13.6 odd 12 inner
2340.2.fo.a.1961.3 yes 40 1.1 even 1 trivial
2340.2.fo.a.1961.7 yes 40 3.2 odd 2 inner