Properties

Label 2340.2.fo.a.1601.9
Level $2340$
Weight $2$
Character 2340.1601
Analytic conductor $18.685$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1241,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.fo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1601.9
Character \(\chi\) \(=\) 2340.1601
Dual form 2340.2.fo.a.2321.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{5} +(2.53048 - 0.678039i) q^{7} +(-3.89061 - 1.04249i) q^{11} +(-0.754020 - 3.52583i) q^{13} +(-0.545887 + 0.945504i) q^{17} +(-1.52046 - 5.67442i) q^{19} +(-3.15269 - 5.46062i) q^{23} +1.00000i q^{25} +(-5.81377 + 3.35658i) q^{29} +(-6.97310 + 6.97310i) q^{31} +(2.26876 + 1.30987i) q^{35} +(1.62994 - 6.08303i) q^{37} +(-0.202944 + 0.757396i) q^{41} +(-6.73137 - 3.88636i) q^{43} +(-2.91596 + 2.91596i) q^{47} +(-0.118605 + 0.0684765i) q^{49} -1.10890i q^{53} +(-2.01393 - 3.48823i) q^{55} +(-0.878261 - 3.27771i) q^{59} +(4.21393 - 7.29874i) q^{61} +(1.95996 - 3.02631i) q^{65} +(3.83062 + 1.02641i) q^{67} +(6.28238 - 1.68336i) q^{71} +(3.24844 + 3.24844i) q^{73} -10.5520 q^{77} +10.6689 q^{79} +(1.60450 + 1.60450i) q^{83} +(-1.05457 + 0.282572i) q^{85} +(-8.10685 - 2.17222i) q^{89} +(-4.29868 - 8.41077i) q^{91} +(2.93730 - 5.08755i) q^{95} +(-1.20898 - 4.51198i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{13} - 20 q^{19} - 28 q^{31} + 12 q^{49} + 16 q^{55} + 48 q^{61} + 16 q^{67} - 20 q^{73} + 80 q^{79} + 20 q^{85} + 4 q^{91} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) 2.53048 0.678039i 0.956430 0.256275i 0.253341 0.967377i \(-0.418470\pi\)
0.703089 + 0.711102i \(0.251804\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.89061 1.04249i −1.17306 0.314322i −0.380892 0.924620i \(-0.624383\pi\)
−0.792172 + 0.610298i \(0.791050\pi\)
\(12\) 0 0
\(13\) −0.754020 3.52583i −0.209128 0.977888i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.545887 + 0.945504i −0.132397 + 0.229318i −0.924600 0.380939i \(-0.875601\pi\)
0.792203 + 0.610258i \(0.208934\pi\)
\(18\) 0 0
\(19\) −1.52046 5.67442i −0.348817 1.30180i −0.888089 0.459671i \(-0.847967\pi\)
0.539273 0.842131i \(-0.318699\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.15269 5.46062i −0.657382 1.13862i −0.981291 0.192530i \(-0.938331\pi\)
0.323909 0.946088i \(-0.395003\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.81377 + 3.35658i −1.07959 + 0.623301i −0.930786 0.365565i \(-0.880876\pi\)
−0.148804 + 0.988867i \(0.547542\pi\)
\(30\) 0 0
\(31\) −6.97310 + 6.97310i −1.25241 + 1.25241i −0.297767 + 0.954639i \(0.596242\pi\)
−0.954639 + 0.297767i \(0.903758\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.26876 + 1.30987i 0.383491 + 0.221409i
\(36\) 0 0
\(37\) 1.62994 6.08303i 0.267961 1.00004i −0.692452 0.721464i \(-0.743470\pi\)
0.960413 0.278580i \(-0.0898637\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.202944 + 0.757396i −0.0316945 + 0.118285i −0.979961 0.199191i \(-0.936169\pi\)
0.948266 + 0.317476i \(0.102835\pi\)
\(42\) 0 0
\(43\) −6.73137 3.88636i −1.02652 0.592664i −0.110537 0.993872i \(-0.535257\pi\)
−0.915987 + 0.401208i \(0.868591\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.91596 + 2.91596i −0.425336 + 0.425336i −0.887036 0.461700i \(-0.847240\pi\)
0.461700 + 0.887036i \(0.347240\pi\)
\(48\) 0 0
\(49\) −0.118605 + 0.0684765i −0.0169435 + 0.00978236i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.10890i 0.152320i −0.997096 0.0761599i \(-0.975734\pi\)
0.997096 0.0761599i \(-0.0242659\pi\)
\(54\) 0 0
\(55\) −2.01393 3.48823i −0.271558 0.470353i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.878261 3.27771i −0.114340 0.426722i 0.884897 0.465787i \(-0.154229\pi\)
−0.999237 + 0.0390651i \(0.987562\pi\)
\(60\) 0 0
\(61\) 4.21393 7.29874i 0.539538 0.934507i −0.459391 0.888234i \(-0.651932\pi\)
0.998929 0.0462731i \(-0.0147344\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.95996 3.02631i 0.243104 0.375367i
\(66\) 0 0
\(67\) 3.83062 + 1.02641i 0.467985 + 0.125396i 0.485103 0.874457i \(-0.338782\pi\)
−0.0171175 + 0.999853i \(0.505449\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.28238 1.68336i 0.745581 0.199778i 0.134024 0.990978i \(-0.457210\pi\)
0.611557 + 0.791200i \(0.290543\pi\)
\(72\) 0 0
\(73\) 3.24844 + 3.24844i 0.380201 + 0.380201i 0.871175 0.490973i \(-0.163359\pi\)
−0.490973 + 0.871175i \(0.663359\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.5520 −1.20251
\(78\) 0 0
\(79\) 10.6689 1.20035 0.600174 0.799869i \(-0.295098\pi\)
0.600174 + 0.799869i \(0.295098\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.60450 + 1.60450i 0.176117 + 0.176117i 0.789661 0.613544i \(-0.210257\pi\)
−0.613544 + 0.789661i \(0.710257\pi\)
\(84\) 0 0
\(85\) −1.05457 + 0.282572i −0.114384 + 0.0306492i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.10685 2.17222i −0.859324 0.230255i −0.197858 0.980231i \(-0.563399\pi\)
−0.661466 + 0.749975i \(0.730065\pi\)
\(90\) 0 0
\(91\) −4.29868 8.41077i −0.450624 0.881688i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.93730 5.08755i 0.301360 0.521972i
\(96\) 0 0
\(97\) −1.20898 4.51198i −0.122754 0.458123i 0.876996 0.480498i \(-0.159544\pi\)
−0.999750 + 0.0223750i \(0.992877\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.22194 + 10.7767i 0.619107 + 1.07232i 0.989649 + 0.143509i \(0.0458384\pi\)
−0.370543 + 0.928816i \(0.620828\pi\)
\(102\) 0 0
\(103\) 6.95186i 0.684987i −0.939520 0.342493i \(-0.888729\pi\)
0.939520 0.342493i \(-0.111271\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16.0738 + 9.28024i −1.55392 + 0.897154i −0.556100 + 0.831115i \(0.687703\pi\)
−0.997817 + 0.0660389i \(0.978964\pi\)
\(108\) 0 0
\(109\) −5.24202 + 5.24202i −0.502094 + 0.502094i −0.912088 0.409994i \(-0.865531\pi\)
0.409994 + 0.912088i \(0.365531\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.35897 + 3.09401i 0.504130 + 0.291060i 0.730417 0.683001i \(-0.239326\pi\)
−0.226288 + 0.974061i \(0.572659\pi\)
\(114\) 0 0
\(115\) 1.63195 6.09053i 0.152180 0.567945i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.740265 + 2.76271i −0.0678600 + 0.253257i
\(120\) 0 0
\(121\) 4.52381 + 2.61183i 0.411256 + 0.237439i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 3.84853 2.22195i 0.341502 0.197166i −0.319434 0.947608i \(-0.603493\pi\)
0.660936 + 0.750442i \(0.270159\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.01421i 0.700205i −0.936711 0.350102i \(-0.886147\pi\)
0.936711 0.350102i \(-0.113853\pi\)
\(132\) 0 0
\(133\) −7.69496 13.3281i −0.667238 1.15569i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.41989 + 16.4953i 0.377617 + 1.40929i 0.849483 + 0.527615i \(0.176914\pi\)
−0.471867 + 0.881670i \(0.656420\pi\)
\(138\) 0 0
\(139\) 6.64826 11.5151i 0.563898 0.976700i −0.433253 0.901272i \(-0.642634\pi\)
0.997151 0.0754279i \(-0.0240323\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.742027 + 14.5037i −0.0620514 + 1.21286i
\(144\) 0 0
\(145\) −6.48442 1.73749i −0.538501 0.144291i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.848793 + 0.227433i −0.0695358 + 0.0186321i −0.293419 0.955984i \(-0.594793\pi\)
0.223883 + 0.974616i \(0.428127\pi\)
\(150\) 0 0
\(151\) −12.2620 12.2620i −0.997870 0.997870i 0.00212755 0.999998i \(-0.499323\pi\)
−0.999998 + 0.00212755i \(0.999323\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.86145 −0.792091
\(156\) 0 0
\(157\) 2.05163 0.163738 0.0818690 0.996643i \(-0.473911\pi\)
0.0818690 + 0.996643i \(0.473911\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −11.6803 11.6803i −0.920539 0.920539i
\(162\) 0 0
\(163\) 20.7802 5.56803i 1.62763 0.436122i 0.674399 0.738367i \(-0.264403\pi\)
0.953230 + 0.302245i \(0.0977360\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.79950 2.35782i −0.680926 0.182453i −0.0982543 0.995161i \(-0.531326\pi\)
−0.582671 + 0.812708i \(0.697993\pi\)
\(168\) 0 0
\(169\) −11.8629 + 5.31709i −0.912531 + 0.409007i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.7536 20.3579i 0.893611 1.54778i 0.0580973 0.998311i \(-0.481497\pi\)
0.835514 0.549469i \(-0.185170\pi\)
\(174\) 0 0
\(175\) 0.678039 + 2.53048i 0.0512549 + 0.191286i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.23090 7.32813i −0.316232 0.547730i 0.663467 0.748206i \(-0.269085\pi\)
−0.979699 + 0.200476i \(0.935751\pi\)
\(180\) 0 0
\(181\) 17.6932i 1.31513i −0.753400 0.657563i \(-0.771587\pi\)
0.753400 0.657563i \(-0.228413\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.45389 3.14881i 0.400978 0.231505i
\(186\) 0 0
\(187\) 3.10951 3.10951i 0.227390 0.227390i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.4412 10.6470i −1.33436 0.770391i −0.348392 0.937349i \(-0.613272\pi\)
−0.985964 + 0.166958i \(0.946606\pi\)
\(192\) 0 0
\(193\) 0.0881930 0.329141i 0.00634827 0.0236921i −0.962679 0.270646i \(-0.912763\pi\)
0.969027 + 0.246954i \(0.0794295\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.61902 24.7025i 0.471586 1.75998i −0.162490 0.986710i \(-0.551952\pi\)
0.634075 0.773271i \(-0.281381\pi\)
\(198\) 0 0
\(199\) −7.20101 4.15750i −0.510466 0.294718i 0.222559 0.974919i \(-0.428559\pi\)
−0.733025 + 0.680202i \(0.761892\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.4357 + 12.4357i −0.872816 + 0.872816i
\(204\) 0 0
\(205\) −0.679062 + 0.392057i −0.0474278 + 0.0273824i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 23.6620i 1.63674i
\(210\) 0 0
\(211\) 2.68836 + 4.65638i 0.185074 + 0.320558i 0.943602 0.331083i \(-0.107414\pi\)
−0.758527 + 0.651641i \(0.774081\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.01173 7.50787i −0.137199 0.512032i
\(216\) 0 0
\(217\) −12.9172 + 22.3733i −0.876879 + 1.51880i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.74529 + 1.21177i 0.251936 + 0.0815127i
\(222\) 0 0
\(223\) −1.81321 0.485848i −0.121421 0.0325348i 0.197597 0.980283i \(-0.436686\pi\)
−0.319018 + 0.947749i \(0.603353\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.7333 + 2.87597i −0.712391 + 0.190885i −0.596774 0.802409i \(-0.703551\pi\)
−0.115617 + 0.993294i \(0.536885\pi\)
\(228\) 0 0
\(229\) 7.85565 + 7.85565i 0.519116 + 0.519116i 0.917304 0.398188i \(-0.130361\pi\)
−0.398188 + 0.917304i \(0.630361\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.0295 −1.37769 −0.688844 0.724910i \(-0.741881\pi\)
−0.688844 + 0.724910i \(0.741881\pi\)
\(234\) 0 0
\(235\) −4.12379 −0.269006
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.56294 + 4.56294i 0.295152 + 0.295152i 0.839112 0.543959i \(-0.183075\pi\)
−0.543959 + 0.839112i \(0.683075\pi\)
\(240\) 0 0
\(241\) −5.93422 + 1.59007i −0.382257 + 0.102425i −0.444830 0.895615i \(-0.646736\pi\)
0.0625733 + 0.998040i \(0.480069\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.132286 0.0354460i −0.00845147 0.00226456i
\(246\) 0 0
\(247\) −18.8606 + 9.63950i −1.20007 + 0.613347i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.9670 18.9955i 0.692234 1.19898i −0.278871 0.960329i \(-0.589960\pi\)
0.971104 0.238655i \(-0.0767066\pi\)
\(252\) 0 0
\(253\) 6.57328 + 24.5318i 0.413258 + 1.54230i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.5734 + 23.5098i 0.846684 + 1.46650i 0.884150 + 0.467203i \(0.154738\pi\)
−0.0374658 + 0.999298i \(0.511929\pi\)
\(258\) 0 0
\(259\) 16.4981i 1.02514i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.83129 + 1.05730i −0.112922 + 0.0651958i −0.555397 0.831585i \(-0.687434\pi\)
0.442475 + 0.896781i \(0.354101\pi\)
\(264\) 0 0
\(265\) 0.784114 0.784114i 0.0481677 0.0481677i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.6827 + 8.47708i 0.895222 + 0.516857i 0.875647 0.482952i \(-0.160435\pi\)
0.0195750 + 0.999808i \(0.493769\pi\)
\(270\) 0 0
\(271\) 6.28668 23.4622i 0.381888 1.42523i −0.461125 0.887335i \(-0.652554\pi\)
0.843014 0.537892i \(-0.180779\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.04249 3.89061i 0.0628643 0.234613i
\(276\) 0 0
\(277\) 24.7799 + 14.3067i 1.48888 + 0.859605i 0.999919 0.0127008i \(-0.00404291\pi\)
0.488960 + 0.872306i \(0.337376\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.2677 15.2677i 0.910797 0.910797i −0.0855381 0.996335i \(-0.527261\pi\)
0.996335 + 0.0855381i \(0.0272609\pi\)
\(282\) 0 0
\(283\) −1.15381 + 0.666153i −0.0685869 + 0.0395987i −0.533901 0.845547i \(-0.679275\pi\)
0.465314 + 0.885145i \(0.345941\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.05418i 0.121254i
\(288\) 0 0
\(289\) 7.90401 + 13.6902i 0.464942 + 0.805303i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.55199 9.52417i −0.149089 0.556408i −0.999539 0.0303524i \(-0.990337\pi\)
0.850450 0.526056i \(-0.176330\pi\)
\(294\) 0 0
\(295\) 1.69667 2.93872i 0.0987839 0.171099i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.8760 + 15.2333i −0.975965 + 0.880962i
\(300\) 0 0
\(301\) −19.6687 5.27021i −1.13368 0.303770i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.14068 2.18129i 0.466134 0.124900i
\(306\) 0 0
\(307\) 14.7944 + 14.7944i 0.844360 + 0.844360i 0.989423 0.145062i \(-0.0463383\pi\)
−0.145062 + 0.989423i \(0.546338\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 30.6541 1.73824 0.869118 0.494606i \(-0.164687\pi\)
0.869118 + 0.494606i \(0.164687\pi\)
\(312\) 0 0
\(313\) −7.76880 −0.439119 −0.219559 0.975599i \(-0.570462\pi\)
−0.219559 + 0.975599i \(0.570462\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.62269 1.62269i −0.0911396 0.0911396i 0.660067 0.751207i \(-0.270528\pi\)
−0.751207 + 0.660067i \(0.770528\pi\)
\(318\) 0 0
\(319\) 26.1183 6.99838i 1.46234 0.391834i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.19519 + 1.66000i 0.344710 + 0.0923646i
\(324\) 0 0
\(325\) 3.52583 0.754020i 0.195578 0.0418255i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.40163 + 9.35590i −0.297801 + 0.515807i
\(330\) 0 0
\(331\) −5.23761 19.5470i −0.287885 1.07440i −0.946705 0.322101i \(-0.895611\pi\)
0.658820 0.752301i \(-0.271056\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.98288 + 3.43444i 0.108336 + 0.187644i
\(336\) 0 0
\(337\) 0.450414i 0.0245356i 0.999925 + 0.0122678i \(0.00390506\pi\)
−0.999925 + 0.0122678i \(0.996095\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 34.3990 19.8603i 1.86281 1.07549i
\(342\) 0 0
\(343\) −13.2208 + 13.2208i −0.713854 + 0.713854i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.09778 3.52056i −0.327346 0.188993i 0.327316 0.944915i \(-0.393856\pi\)
−0.654662 + 0.755921i \(0.727189\pi\)
\(348\) 0 0
\(349\) −9.14125 + 34.1156i −0.489320 + 1.82617i 0.0704443 + 0.997516i \(0.477558\pi\)
−0.559764 + 0.828652i \(0.689108\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.71144 + 28.7795i −0.410439 + 1.53178i 0.383361 + 0.923599i \(0.374766\pi\)
−0.793800 + 0.608179i \(0.791900\pi\)
\(354\) 0 0
\(355\) 5.63263 + 3.25200i 0.298949 + 0.172598i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.5119 16.5119i 0.871463 0.871463i −0.121169 0.992632i \(-0.538664\pi\)
0.992632 + 0.121169i \(0.0386642\pi\)
\(360\) 0 0
\(361\) −13.4328 + 7.75544i −0.706990 + 0.408181i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.59399i 0.240460i
\(366\) 0 0
\(367\) 12.7532 + 22.0892i 0.665713 + 1.15305i 0.979091 + 0.203421i \(0.0652059\pi\)
−0.313378 + 0.949628i \(0.601461\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.751880 2.80606i −0.0390357 0.145683i
\(372\) 0 0
\(373\) −13.4770 + 23.3428i −0.697811 + 1.20864i 0.271413 + 0.962463i \(0.412509\pi\)
−0.969224 + 0.246181i \(0.920824\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.2184 + 17.9674i 0.835291 + 0.925369i
\(378\) 0 0
\(379\) 8.12361 + 2.17672i 0.417282 + 0.111810i 0.461350 0.887218i \(-0.347365\pi\)
−0.0440682 + 0.999029i \(0.514032\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.7652 + 2.88453i −0.550076 + 0.147392i −0.523143 0.852245i \(-0.675241\pi\)
−0.0269328 + 0.999637i \(0.508574\pi\)
\(384\) 0 0
\(385\) −7.46136 7.46136i −0.380266 0.380266i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.8490 −0.904978 −0.452489 0.891770i \(-0.649464\pi\)
−0.452489 + 0.891770i \(0.649464\pi\)
\(390\) 0 0
\(391\) 6.88405 0.348142
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.54407 + 7.54407i 0.379584 + 0.379584i
\(396\) 0 0
\(397\) 0.492142 0.131869i 0.0246999 0.00661832i −0.246448 0.969156i \(-0.579263\pi\)
0.271148 + 0.962538i \(0.412597\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.8867 + 2.91709i 0.543657 + 0.145672i 0.520188 0.854052i \(-0.325862\pi\)
0.0234696 + 0.999725i \(0.492529\pi\)
\(402\) 0 0
\(403\) 29.8438 + 19.3281i 1.48663 + 0.962800i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.6830 + 21.9675i −0.628671 + 1.08889i
\(408\) 0 0
\(409\) −1.05818 3.94918i −0.0523236 0.195275i 0.934817 0.355131i \(-0.115564\pi\)
−0.987140 + 0.159856i \(0.948897\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.44483 7.69868i −0.218716 0.378827i
\(414\) 0 0
\(415\) 2.26911i 0.111386i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 27.5904 15.9293i 1.34788 0.778199i 0.359932 0.932979i \(-0.382800\pi\)
0.987949 + 0.154780i \(0.0494667\pi\)
\(420\) 0 0
\(421\) −28.0296 + 28.0296i −1.36608 + 1.36608i −0.500122 + 0.865955i \(0.666711\pi\)
−0.865955 + 0.500122i \(0.833289\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.945504 0.545887i −0.0458637 0.0264794i
\(426\) 0 0
\(427\) 5.71441 21.3265i 0.276540 1.03206i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.50315 24.2701i 0.313246 1.16905i −0.612366 0.790575i \(-0.709782\pi\)
0.925612 0.378475i \(-0.123551\pi\)
\(432\) 0 0
\(433\) −3.93183 2.27004i −0.188952 0.109091i 0.402540 0.915402i \(-0.368127\pi\)
−0.591492 + 0.806311i \(0.701461\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −26.1923 + 26.1923i −1.25295 + 1.25295i
\(438\) 0 0
\(439\) −10.0206 + 5.78540i −0.478258 + 0.276122i −0.719690 0.694296i \(-0.755716\pi\)
0.241433 + 0.970418i \(0.422383\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.7556i 0.796084i −0.917367 0.398042i \(-0.869690\pi\)
0.917367 0.398042i \(-0.130310\pi\)
\(444\) 0 0
\(445\) −4.19641 7.26840i −0.198929 0.344555i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.85185 14.3753i −0.181780 0.678413i −0.995297 0.0968714i \(-0.969116\pi\)
0.813517 0.581542i \(-0.197550\pi\)
\(450\) 0 0
\(451\) 1.57915 2.73517i 0.0743593 0.128794i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.90769 8.98693i 0.136314 0.421314i
\(456\) 0 0
\(457\) 11.3942 + 3.05306i 0.532998 + 0.142816i 0.515272 0.857027i \(-0.327691\pi\)
0.0177255 + 0.999843i \(0.494358\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 29.0081 7.77270i 1.35104 0.362011i 0.490523 0.871428i \(-0.336806\pi\)
0.860519 + 0.509418i \(0.170139\pi\)
\(462\) 0 0
\(463\) −6.10145 6.10145i −0.283559 0.283559i 0.550968 0.834526i \(-0.314259\pi\)
−0.834526 + 0.550968i \(0.814259\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.7094 −0.495571 −0.247785 0.968815i \(-0.579703\pi\)
−0.247785 + 0.968815i \(0.579703\pi\)
\(468\) 0 0
\(469\) 10.3892 0.479731
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 22.1377 + 22.1377i 1.01789 + 1.01789i
\(474\) 0 0
\(475\) 5.67442 1.52046i 0.260360 0.0697634i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.4349 4.40371i −0.750929 0.201211i −0.136999 0.990571i \(-0.543746\pi\)
−0.613930 + 0.789360i \(0.710412\pi\)
\(480\) 0 0
\(481\) −22.6767 1.16017i −1.03397 0.0528992i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.33557 4.04533i 0.106053 0.183689i
\(486\) 0 0
\(487\) −6.20483 23.1568i −0.281168 1.04933i −0.951594 0.307357i \(-0.900555\pi\)
0.670426 0.741976i \(-0.266111\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.3582 19.6729i −0.512586 0.887826i −0.999893 0.0145951i \(-0.995354\pi\)
0.487307 0.873231i \(-0.337979\pi\)
\(492\) 0 0
\(493\) 7.32926i 0.330093i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 14.7560 8.51940i 0.661898 0.382147i
\(498\) 0 0
\(499\) −5.58983 + 5.58983i −0.250235 + 0.250235i −0.821067 0.570832i \(-0.806621\pi\)
0.570832 + 0.821067i \(0.306621\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13.8310 + 7.98536i 0.616696 + 0.356050i 0.775582 0.631247i \(-0.217457\pi\)
−0.158886 + 0.987297i \(0.550790\pi\)
\(504\) 0 0
\(505\) −3.22072 + 12.0199i −0.143320 + 0.534877i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.21030 + 19.4451i −0.230943 + 0.861890i 0.748993 + 0.662577i \(0.230537\pi\)
−0.979936 + 0.199312i \(0.936129\pi\)
\(510\) 0 0
\(511\) 10.4227 + 6.01753i 0.461072 + 0.266200i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.91571 4.91571i 0.216612 0.216612i
\(516\) 0 0
\(517\) 14.3847 8.30502i 0.632639 0.365254i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 16.3802i 0.717630i −0.933409 0.358815i \(-0.883181\pi\)
0.933409 0.358815i \(-0.116819\pi\)
\(522\) 0 0
\(523\) 10.9018 + 18.8825i 0.476704 + 0.825675i 0.999644 0.0266945i \(-0.00849812\pi\)
−0.522940 + 0.852370i \(0.675165\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.78657 10.3996i −0.121385 0.453014i
\(528\) 0 0
\(529\) −8.37892 + 14.5127i −0.364301 + 0.630988i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.82347 + 0.144452i 0.122298 + 0.00625693i
\(534\) 0 0
\(535\) −17.9280 4.80380i −0.775097 0.207687i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.532831 0.142772i 0.0229507 0.00614961i
\(540\) 0 0
\(541\) −9.72072 9.72072i −0.417926 0.417926i 0.466562 0.884488i \(-0.345492\pi\)
−0.884488 + 0.466562i \(0.845492\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.41333 −0.317552
\(546\) 0 0
\(547\) 29.8288 1.27539 0.637694 0.770290i \(-0.279888\pi\)
0.637694 + 0.770290i \(0.279888\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 27.8862 + 27.8862i 1.18799 + 1.18799i
\(552\) 0 0
\(553\) 26.9975 7.23395i 1.14805 0.307619i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.7785 + 7.97912i 1.26175 + 0.338086i 0.826866 0.562399i \(-0.190121\pi\)
0.434888 + 0.900485i \(0.356788\pi\)
\(558\) 0 0
\(559\) −8.62704 + 26.6640i −0.364885 + 1.12777i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.12047 1.94071i 0.0472223 0.0817913i −0.841448 0.540338i \(-0.818296\pi\)
0.888670 + 0.458547i \(0.151630\pi\)
\(564\) 0 0
\(565\) 1.60158 + 5.97716i 0.0673788 + 0.251461i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.2209 17.7032i −0.428483 0.742155i 0.568255 0.822852i \(-0.307619\pi\)
−0.996739 + 0.0806975i \(0.974285\pi\)
\(570\) 0 0
\(571\) 8.90788i 0.372783i 0.982476 + 0.186392i \(0.0596793\pi\)
−0.982476 + 0.186392i \(0.940321\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.46062 3.15269i 0.227724 0.131476i
\(576\) 0 0
\(577\) −13.4827 + 13.4827i −0.561293 + 0.561293i −0.929675 0.368381i \(-0.879912\pi\)
0.368381 + 0.929675i \(0.379912\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.14807 + 2.97224i 0.213578 + 0.123309i
\(582\) 0 0
\(583\) −1.15602 + 4.31432i −0.0478774 + 0.178681i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.95557 + 22.2265i −0.245813 + 0.917385i 0.727161 + 0.686467i \(0.240839\pi\)
−0.972973 + 0.230918i \(0.925827\pi\)
\(588\) 0 0
\(589\) 50.1706 + 28.9660i 2.06724 + 1.19352i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.9170 28.9170i 1.18748 1.18748i 0.209716 0.977762i \(-0.432746\pi\)
0.977762 0.209716i \(-0.0672540\pi\)
\(594\) 0 0
\(595\) −2.47698 + 1.43008i −0.101546 + 0.0586277i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.5846i 0.514191i 0.966386 + 0.257095i \(0.0827655\pi\)
−0.966386 + 0.257095i \(0.917235\pi\)
\(600\) 0 0
\(601\) 19.7818 + 34.2631i 0.806916 + 1.39762i 0.914990 + 0.403476i \(0.132198\pi\)
−0.108074 + 0.994143i \(0.534468\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.35198 + 5.04566i 0.0549658 + 0.205135i
\(606\) 0 0
\(607\) −6.66054 + 11.5364i −0.270343 + 0.468248i −0.968950 0.247258i \(-0.920470\pi\)
0.698607 + 0.715506i \(0.253804\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.4799 + 8.08247i 0.504881 + 0.326982i
\(612\) 0 0
\(613\) 31.0528 + 8.32058i 1.25421 + 0.336065i 0.823962 0.566645i \(-0.191759\pi\)
0.430249 + 0.902710i \(0.358426\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.4433 + 7.35341i −1.10483 + 0.296037i −0.764728 0.644353i \(-0.777127\pi\)
−0.340097 + 0.940390i \(0.610460\pi\)
\(618\) 0 0
\(619\) −29.4741 29.4741i −1.18467 1.18467i −0.978522 0.206144i \(-0.933909\pi\)
−0.206144 0.978522i \(-0.566091\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −21.9870 −0.880892
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.86176 + 4.86176i 0.193851 + 0.193851i
\(630\) 0 0
\(631\) −35.4849 + 9.50816i −1.41263 + 0.378514i −0.882864 0.469628i \(-0.844388\pi\)
−0.529769 + 0.848142i \(0.677721\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.29248 + 1.15017i 0.170342 + 0.0456429i
\(636\) 0 0
\(637\) 0.330867 + 0.366547i 0.0131094 + 0.0145231i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17.7288 30.7072i 0.700246 1.21286i −0.268133 0.963382i \(-0.586407\pi\)
0.968380 0.249481i \(-0.0802599\pi\)
\(642\) 0 0
\(643\) −5.62974 21.0105i −0.222015 0.828573i −0.983578 0.180482i \(-0.942234\pi\)
0.761563 0.648091i \(-0.224432\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14.6695 25.4084i −0.576719 0.998906i −0.995853 0.0909814i \(-0.971000\pi\)
0.419134 0.907924i \(-0.362334\pi\)
\(648\) 0 0
\(649\) 13.6679i 0.536512i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −43.5782 + 25.1599i −1.70535 + 0.984582i −0.765210 + 0.643781i \(0.777365\pi\)
−0.940135 + 0.340801i \(0.889302\pi\)
\(654\) 0 0
\(655\) 5.66690 5.66690i 0.221424 0.221424i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.65885 + 5.57654i 0.376255 + 0.217231i 0.676188 0.736729i \(-0.263631\pi\)
−0.299932 + 0.953960i \(0.596964\pi\)
\(660\) 0 0
\(661\) 2.69053 10.0412i 0.104649 0.390557i −0.893656 0.448753i \(-0.851868\pi\)
0.998305 + 0.0581962i \(0.0185349\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.98321 14.8655i 0.154462 0.576460i
\(666\) 0 0
\(667\) 36.6580 + 21.1645i 1.41940 + 0.819494i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −24.0036 + 24.0036i −0.926649 + 0.926649i
\(672\) 0 0
\(673\) 28.0925 16.2192i 1.08289 0.625206i 0.151214 0.988501i \(-0.451682\pi\)
0.931674 + 0.363296i \(0.118348\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.5092i 0.480768i 0.970678 + 0.240384i \(0.0772734\pi\)
−0.970678 + 0.240384i \(0.922727\pi\)
\(678\) 0 0
\(679\) −6.11860 10.5977i −0.234810 0.406704i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.74567 25.1752i −0.258116 0.963302i −0.966330 0.257305i \(-0.917166\pi\)
0.708214 0.705998i \(-0.249501\pi\)
\(684\) 0 0
\(685\) −8.53857 + 14.7892i −0.326242 + 0.565068i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.90980 + 0.836136i −0.148952 + 0.0318542i
\(690\) 0 0
\(691\) 5.33260 + 1.42887i 0.202862 + 0.0543566i 0.358819 0.933407i \(-0.383180\pi\)
−0.155957 + 0.987764i \(0.549846\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.8435 3.44139i 0.487180 0.130539i
\(696\) 0 0
\(697\) −0.605337 0.605337i −0.0229288 0.0229288i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.7144 1.19784 0.598918 0.800810i \(-0.295598\pi\)
0.598918 + 0.800810i \(0.295598\pi\)
\(702\) 0 0
\(703\) −36.9959 −1.39533
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 23.0515 + 23.0515i 0.866942 + 0.866942i
\(708\) 0 0
\(709\) −29.3808 + 7.87255i −1.10342 + 0.295660i −0.764156 0.645032i \(-0.776844\pi\)
−0.339262 + 0.940692i \(0.610177\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 60.0615 + 16.0934i 2.24932 + 0.602704i
\(714\) 0 0
\(715\) −10.7803 + 9.73096i −0.403162 + 0.363917i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.85595 + 4.94665i −0.106509 + 0.184479i −0.914354 0.404916i \(-0.867301\pi\)
0.807845 + 0.589395i \(0.200634\pi\)
\(720\) 0 0
\(721\) −4.71363 17.5915i −0.175545 0.655142i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.35658 5.81377i −0.124660 0.215918i
\(726\) 0 0
\(727\) 28.3801i 1.05256i 0.850311 + 0.526280i \(0.176414\pi\)
−0.850311 + 0.526280i \(0.823586\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.34914 4.24303i 0.271818 0.156934i
\(732\) 0 0
\(733\) −36.8825 + 36.8825i −1.36229 + 1.36229i −0.491292 + 0.870995i \(0.663475\pi\)
−0.870995 + 0.491292i \(0.836525\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13.8334 7.98675i −0.509562 0.294196i
\(738\) 0 0
\(739\) 4.11128 15.3435i 0.151236 0.564419i −0.848163 0.529736i \(-0.822291\pi\)
0.999398 0.0346835i \(-0.0110423\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.05887 + 22.6120i −0.222278 + 0.829554i 0.761198 + 0.648519i \(0.224611\pi\)
−0.983477 + 0.181035i \(0.942055\pi\)
\(744\) 0 0
\(745\) −0.761007 0.439368i −0.0278811 0.0160972i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −34.3821 + 34.3821i −1.25630 + 1.25630i
\(750\) 0 0
\(751\) −8.07343 + 4.66119i −0.294603 + 0.170089i −0.640016 0.768362i \(-0.721072\pi\)
0.345413 + 0.938451i \(0.387739\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 17.3411i 0.631109i
\(756\) 0 0
\(757\) 4.19011 + 7.25749i 0.152292 + 0.263778i 0.932070 0.362279i \(-0.118001\pi\)
−0.779778 + 0.626057i \(0.784668\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −8.81096 32.8829i −0.319397 1.19201i −0.919826 0.392327i \(-0.871670\pi\)
0.600429 0.799678i \(-0.294997\pi\)
\(762\) 0 0
\(763\) −9.71050 + 16.8191i −0.351544 + 0.608892i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.8944 + 5.56806i −0.393375 + 0.201051i
\(768\) 0 0
\(769\) 9.61170 + 2.57545i 0.346607 + 0.0928730i 0.427923 0.903815i \(-0.359246\pi\)
−0.0813159 + 0.996688i \(0.525912\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 35.8155 9.59673i 1.28819 0.345170i 0.451220 0.892413i \(-0.350989\pi\)
0.836974 + 0.547242i \(0.184322\pi\)
\(774\) 0 0
\(775\) −6.97310 6.97310i −0.250481 0.250481i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.60635 0.165040
\(780\) 0 0
\(781\) −26.1972 −0.937409
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.45072 + 1.45072i 0.0517785 + 0.0517785i
\(786\) 0 0
\(787\) −27.1668 + 7.27931i −0.968391 + 0.259479i −0.708148 0.706064i \(-0.750469\pi\)
−0.260242 + 0.965543i \(0.583802\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.6586 + 4.19571i 0.556756 + 0.149182i
\(792\) 0 0
\(793\) −28.9115 9.35418i −1.02668 0.332177i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.30648 5.72699i 0.117122 0.202860i −0.801504 0.597989i \(-0.795967\pi\)
0.918626 + 0.395129i \(0.129300\pi\)
\(798\) 0 0
\(799\) −1.16527 4.34883i −0.0412242 0.153851i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.25197 16.0249i −0.326495 0.565506i
\(804\) 0 0
\(805\) 16.5185i 0.582200i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.7071 17.7288i 1.07960 0.623310i 0.148815 0.988865i \(-0.452454\pi\)
0.930790 + 0.365555i \(0.119121\pi\)
\(810\) 0 0
\(811\) 18.3653 18.3653i 0.644892 0.644892i −0.306862 0.951754i \(-0.599279\pi\)
0.951754 + 0.306862i \(0.0992790\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 18.6310 + 10.7566i 0.652616 + 0.376788i
\(816\) 0 0
\(817\) −11.8181 + 44.1057i −0.413462 + 1.54306i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.27881 4.77257i 0.0446307 0.166564i −0.940014 0.341137i \(-0.889188\pi\)
0.984644 + 0.174573i \(0.0558546\pi\)
\(822\) 0 0
\(823\) 39.6375 + 22.8847i 1.38168 + 0.797712i 0.992358 0.123391i \(-0.0393770\pi\)
0.389319 + 0.921103i \(0.372710\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −15.7153 + 15.7153i −0.546476 + 0.546476i −0.925420 0.378944i \(-0.876287\pi\)
0.378944 + 0.925420i \(0.376287\pi\)
\(828\) 0 0
\(829\) 33.6579 19.4324i 1.16899 0.674914i 0.215545 0.976494i \(-0.430847\pi\)
0.953441 + 0.301580i \(0.0975140\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.149522i 0.00518062i
\(834\) 0 0
\(835\) −4.55496 7.88941i −0.157631 0.273024i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.9001 + 40.6798i 0.376314 + 1.40442i 0.851416 + 0.524491i \(0.175744\pi\)
−0.475102 + 0.879931i \(0.657589\pi\)
\(840\) 0 0
\(841\) 8.03327 13.9140i 0.277009 0.479794i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.1481 4.62859i −0.417907 0.159228i
\(846\) 0 0
\(847\) 13.2183 + 3.54184i 0.454187 + 0.121699i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −38.3558 + 10.2774i −1.31482 + 0.352305i
\(852\) 0 0
\(853\) −38.4301 38.4301i −1.31582 1.31582i −0.917050 0.398772i \(-0.869437\pi\)
−0.398772 0.917050i \(-0.630563\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −47.4349 −1.62035 −0.810173 0.586191i \(-0.800627\pi\)
−0.810173 + 0.586191i \(0.800627\pi\)
\(858\) 0 0
\(859\) 37.2436 1.27073 0.635367 0.772210i \(-0.280849\pi\)
0.635367 + 0.772210i \(0.280849\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −28.6143 28.6143i −0.974044 0.974044i 0.0256280 0.999672i \(-0.491841\pi\)
−0.999672 + 0.0256280i \(0.991841\pi\)
\(864\) 0 0
\(865\) 22.7063 6.08412i 0.772036 0.206866i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −41.5087 11.1222i −1.40809 0.377295i
\(870\) 0 0
\(871\) 0.730586 14.2800i 0.0247550 0.483861i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.30987 + 2.26876i −0.0442817 + 0.0766982i
\(876\) 0 0
\(877\) 12.2798 + 45.8290i 0.414661 + 1.54754i 0.785514 + 0.618844i \(0.212399\pi\)
−0.370853 + 0.928692i \(0.620935\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −20.7316 35.9082i −0.698466 1.20978i −0.968998 0.247068i \(-0.920533\pi\)
0.270532 0.962711i \(-0.412800\pi\)
\(882\) 0 0
\(883\) 41.3170i 1.39043i −0.718803 0.695214i \(-0.755310\pi\)
0.718803 0.695214i \(-0.244690\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.25742 0.725973i 0.0422201 0.0243758i −0.478741 0.877956i \(-0.658907\pi\)
0.520961 + 0.853580i \(0.325574\pi\)
\(888\) 0 0
\(889\) 8.23205 8.23205i 0.276094 0.276094i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 20.9800 + 12.1128i 0.702068 + 0.405339i
\(894\) 0 0
\(895\) 2.19007 8.17347i 0.0732061 0.273209i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 17.1342 63.9458i 0.571458 2.13271i
\(900\) 0 0
\(901\) 1.04847 + 0.605337i 0.0349297 + 0.0201667i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.5110 12.5110i 0.415879 0.415879i
\(906\) 0 0
\(907\) 33.8178 19.5247i 1.12290 0.648307i 0.180761 0.983527i \(-0.442144\pi\)
0.942140 + 0.335220i \(0.108811\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13.2628i 0.439417i −0.975566 0.219709i \(-0.929489\pi\)
0.975566 0.219709i \(-0.0705106\pi\)
\(912\) 0 0
\(913\) −4.56982 7.91517i −0.151239 0.261954i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.43395 20.2798i −0.179445 0.669697i
\(918\) 0 0
\(919\) −10.0861 + 17.4697i −0.332711 + 0.576273i −0.983042 0.183378i \(-0.941297\pi\)
0.650331 + 0.759651i \(0.274630\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −10.6723 20.8813i −0.351282 0.687316i
\(924\) 0 0
\(925\) 6.08303 + 1.62994i 0.200009 + 0.0535922i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −38.4273 + 10.2966i −1.26076 + 0.337819i −0.826483 0.562962i \(-0.809662\pi\)
−0.434275 + 0.900781i \(0.642995\pi\)
\(930\) 0 0
\(931\) 0.568898 + 0.568898i 0.0186449 + 0.0186449i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.39751 0.143814
\(936\) 0 0
\(937\) −24.4899 −0.800049 −0.400025 0.916504i \(-0.630998\pi\)
−0.400025 + 0.916504i \(0.630998\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.8383 + 10.8383i 0.353318 + 0.353318i 0.861342 0.508025i \(-0.169624\pi\)
−0.508025 + 0.861342i \(0.669624\pi\)
\(942\) 0 0
\(943\) 4.77567 1.27964i 0.155517 0.0416707i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −14.6787 3.93314i −0.476994 0.127810i 0.0123088 0.999924i \(-0.496082\pi\)
−0.489302 + 0.872114i \(0.662749\pi\)
\(948\) 0 0
\(949\) 9.00405 13.9028i 0.292284 0.451305i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 19.5246 33.8176i 0.632463 1.09546i −0.354583 0.935025i \(-0.615377\pi\)
0.987047 0.160434i \(-0.0512895\pi\)
\(954\) 0 0
\(955\) −5.51130 20.5685i −0.178341 0.665579i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.3689 + 38.7440i 0.722328 + 1.25111i
\(960\) 0 0
\(961\) 66.2482i 2.13704i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.295100 0.170376i 0.00949959 0.00548459i
\(966\) 0 0
\(967\) −24.3471 + 24.3471i −0.782950 + 0.782950i −0.980328 0.197378i \(-0.936757\pi\)
0.197378 + 0.980328i \(0.436757\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −26.4150 15.2507i −0.847697 0.489418i 0.0121759 0.999926i \(-0.496124\pi\)
−0.859873 + 0.510508i \(0.829458\pi\)
\(972\) 0 0
\(973\) 9.01556 33.6465i 0.289026 1.07866i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.72943 + 13.9184i −0.119315 + 0.445290i −0.999573 0.0292047i \(-0.990703\pi\)
0.880258 + 0.474495i \(0.157369\pi\)
\(978\) 0 0
\(979\) 29.2761 + 16.9026i 0.935668 + 0.540208i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −28.4967 + 28.4967i −0.908905 + 0.908905i −0.996184 0.0872793i \(-0.972183\pi\)
0.0872793 + 0.996184i \(0.472183\pi\)
\(984\) 0 0
\(985\) 22.1477 12.7870i 0.705684 0.407427i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 49.0100i 1.55843i
\(990\) 0 0
\(991\) 9.86429 + 17.0855i 0.313349 + 0.542737i 0.979085 0.203450i \(-0.0652155\pi\)
−0.665736 + 0.746188i \(0.731882\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.15208 8.03168i −0.0682256 0.254621i
\(996\) 0 0
\(997\) 21.1926 36.7066i 0.671175 1.16251i −0.306396 0.951904i \(-0.599123\pi\)
0.977571 0.210606i \(-0.0675436\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.fo.a.1601.9 yes 40
3.2 odd 2 inner 2340.2.fo.a.1601.5 40
13.7 odd 12 inner 2340.2.fo.a.2321.5 yes 40
39.20 even 12 inner 2340.2.fo.a.2321.9 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.fo.a.1601.5 40 3.2 odd 2 inner
2340.2.fo.a.1601.9 yes 40 1.1 even 1 trivial
2340.2.fo.a.2321.5 yes 40 13.7 odd 12 inner
2340.2.fo.a.2321.9 yes 40 39.20 even 12 inner