Properties

Label 2340.2.fo.a.1601.7
Level $2340$
Weight $2$
Character 2340.1601
Analytic conductor $18.685$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1241,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.fo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1601.7
Character \(\chi\) \(=\) 2340.1601
Dual form 2340.2.fo.a.2321.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{5} +(-3.16623 + 0.848389i) q^{7} +(-1.87883 - 0.503432i) q^{11} +(3.59250 - 0.306557i) q^{13} +(0.497031 - 0.860883i) q^{17} +(-0.513203 - 1.91530i) q^{19} +(2.92185 + 5.06079i) q^{23} +1.00000i q^{25} +(1.74433 - 1.00709i) q^{29} +(-3.03417 + 3.03417i) q^{31} +(-2.83876 - 1.63896i) q^{35} +(-1.27888 + 4.77285i) q^{37} +(1.06083 - 3.95907i) q^{41} +(-2.27024 - 1.31073i) q^{43} +(-7.28328 + 7.28328i) q^{47} +(3.24307 - 1.87239i) q^{49} +5.79649i q^{53} +(-0.972556 - 1.68452i) q^{55} +(3.40791 + 12.7185i) q^{59} +(-6.08039 + 10.5315i) q^{61} +(2.75705 + 2.32351i) q^{65} +(-11.2096 - 3.00361i) q^{67} +(-8.18898 + 2.19423i) q^{71} +(-9.72222 - 9.72222i) q^{73} +6.37593 q^{77} -15.3101 q^{79} +(4.87578 + 4.87578i) q^{83} +(0.960190 - 0.257282i) q^{85} +(3.14248 + 0.842026i) q^{89} +(-11.1146 + 4.01846i) q^{91} +(0.991432 - 1.71721i) q^{95} +(-1.66503 - 6.21398i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{13} - 20 q^{19} - 28 q^{31} + 12 q^{49} + 16 q^{55} + 48 q^{61} + 16 q^{67} - 20 q^{73} + 80 q^{79} + 20 q^{85} + 4 q^{91} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) −3.16623 + 0.848389i −1.19672 + 0.320661i −0.801540 0.597942i \(-0.795985\pi\)
−0.395183 + 0.918603i \(0.629319\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.87883 0.503432i −0.566490 0.151790i −0.0358036 0.999359i \(-0.511399\pi\)
−0.530686 + 0.847568i \(0.678066\pi\)
\(12\) 0 0
\(13\) 3.59250 0.306557i 0.996379 0.0850235i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.497031 0.860883i 0.120548 0.208795i −0.799436 0.600751i \(-0.794868\pi\)
0.919984 + 0.391956i \(0.128202\pi\)
\(18\) 0 0
\(19\) −0.513203 1.91530i −0.117737 0.439400i 0.881740 0.471735i \(-0.156372\pi\)
−0.999477 + 0.0323354i \(0.989706\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.92185 + 5.06079i 0.609247 + 1.05525i 0.991365 + 0.131133i \(0.0418616\pi\)
−0.382118 + 0.924114i \(0.624805\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.74433 1.00709i 0.323914 0.187012i −0.329222 0.944253i \(-0.606786\pi\)
0.653136 + 0.757241i \(0.273453\pi\)
\(30\) 0 0
\(31\) −3.03417 + 3.03417i −0.544953 + 0.544953i −0.924977 0.380023i \(-0.875916\pi\)
0.380023 + 0.924977i \(0.375916\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.83876 1.63896i −0.479839 0.277035i
\(36\) 0 0
\(37\) −1.27888 + 4.77285i −0.210247 + 0.784652i 0.777539 + 0.628835i \(0.216468\pi\)
−0.987786 + 0.155817i \(0.950199\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.06083 3.95907i 0.165674 0.618303i −0.832279 0.554356i \(-0.812964\pi\)
0.997953 0.0639470i \(-0.0203689\pi\)
\(42\) 0 0
\(43\) −2.27024 1.31073i −0.346209 0.199884i 0.316805 0.948491i \(-0.397390\pi\)
−0.663014 + 0.748607i \(0.730723\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.28328 + 7.28328i −1.06238 + 1.06238i −0.0644556 + 0.997921i \(0.520531\pi\)
−0.997921 + 0.0644556i \(0.979469\pi\)
\(48\) 0 0
\(49\) 3.24307 1.87239i 0.463295 0.267484i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.79649i 0.796209i 0.917340 + 0.398104i \(0.130332\pi\)
−0.917340 + 0.398104i \(0.869668\pi\)
\(54\) 0 0
\(55\) −0.972556 1.68452i −0.131139 0.227140i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.40791 + 12.7185i 0.443672 + 1.65581i 0.719418 + 0.694577i \(0.244408\pi\)
−0.275746 + 0.961230i \(0.588925\pi\)
\(60\) 0 0
\(61\) −6.08039 + 10.5315i −0.778514 + 1.34843i 0.154284 + 0.988027i \(0.450693\pi\)
−0.932798 + 0.360399i \(0.882640\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.75705 + 2.32351i 0.341969 + 0.288196i
\(66\) 0 0
\(67\) −11.2096 3.00361i −1.36947 0.366949i −0.502187 0.864759i \(-0.667471\pi\)
−0.867286 + 0.497810i \(0.834138\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.18898 + 2.19423i −0.971853 + 0.260407i −0.709610 0.704594i \(-0.751129\pi\)
−0.262243 + 0.965002i \(0.584462\pi\)
\(72\) 0 0
\(73\) −9.72222 9.72222i −1.13790 1.13790i −0.988826 0.149073i \(-0.952371\pi\)
−0.149073 0.988826i \(-0.547629\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.37593 0.726604
\(78\) 0 0
\(79\) −15.3101 −1.72252 −0.861259 0.508166i \(-0.830324\pi\)
−0.861259 + 0.508166i \(0.830324\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.87578 + 4.87578i 0.535186 + 0.535186i 0.922111 0.386925i \(-0.126463\pi\)
−0.386925 + 0.922111i \(0.626463\pi\)
\(84\) 0 0
\(85\) 0.960190 0.257282i 0.104147 0.0279062i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.14248 + 0.842026i 0.333103 + 0.0892546i 0.421494 0.906831i \(-0.361506\pi\)
−0.0883913 + 0.996086i \(0.528173\pi\)
\(90\) 0 0
\(91\) −11.1146 + 4.01846i −1.16513 + 0.421249i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.991432 1.71721i 0.101719 0.176182i
\(96\) 0 0
\(97\) −1.66503 6.21398i −0.169058 0.630934i −0.997488 0.0708404i \(-0.977432\pi\)
0.828429 0.560093i \(-0.189235\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.82034 11.8132i −0.678649 1.17545i −0.975388 0.220496i \(-0.929232\pi\)
0.296739 0.954959i \(-0.404101\pi\)
\(102\) 0 0
\(103\) 2.64257i 0.260381i 0.991489 + 0.130190i \(0.0415588\pi\)
−0.991489 + 0.130190i \(0.958441\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.15639 2.97704i 0.498487 0.287802i −0.229601 0.973285i \(-0.573742\pi\)
0.728089 + 0.685483i \(0.240409\pi\)
\(108\) 0 0
\(109\) −9.55544 + 9.55544i −0.915245 + 0.915245i −0.996679 0.0814335i \(-0.974050\pi\)
0.0814335 + 0.996679i \(0.474050\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.4719 + 8.93270i 1.45547 + 0.840318i 0.998784 0.0493082i \(-0.0157017\pi\)
0.456690 + 0.889626i \(0.349035\pi\)
\(114\) 0 0
\(115\) −1.51246 + 5.64457i −0.141038 + 0.526359i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.843351 + 3.14743i −0.0773098 + 0.288524i
\(120\) 0 0
\(121\) −6.24971 3.60827i −0.568155 0.328024i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 7.76627 4.48386i 0.689145 0.397878i −0.114147 0.993464i \(-0.536413\pi\)
0.803292 + 0.595586i \(0.203080\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.6699i 0.932235i 0.884723 + 0.466118i \(0.154348\pi\)
−0.884723 + 0.466118i \(0.845652\pi\)
\(132\) 0 0
\(133\) 3.24984 + 5.62888i 0.281797 + 0.488086i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.28456 + 8.52609i 0.195183 + 0.728433i 0.992219 + 0.124502i \(0.0397333\pi\)
−0.797036 + 0.603931i \(0.793600\pi\)
\(138\) 0 0
\(139\) 1.28785 2.23062i 0.109234 0.189199i −0.806226 0.591608i \(-0.798494\pi\)
0.915460 + 0.402409i \(0.131827\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.90403 1.23261i −0.577344 0.103076i
\(144\) 0 0
\(145\) 1.94555 + 0.521308i 0.161569 + 0.0432923i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.268281 0.0718856i 0.0219784 0.00588910i −0.247813 0.968808i \(-0.579712\pi\)
0.269792 + 0.962919i \(0.413045\pi\)
\(150\) 0 0
\(151\) −7.85814 7.85814i −0.639486 0.639486i 0.310942 0.950429i \(-0.399355\pi\)
−0.950429 + 0.310942i \(0.899355\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.29097 −0.344659
\(156\) 0 0
\(157\) 9.32922 0.744553 0.372276 0.928122i \(-0.378577\pi\)
0.372276 + 0.928122i \(0.378577\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −13.5447 13.5447i −1.06748 1.06748i
\(162\) 0 0
\(163\) 2.65879 0.712421i 0.208253 0.0558011i −0.153184 0.988198i \(-0.548953\pi\)
0.361437 + 0.932396i \(0.382286\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.4704 + 4.14528i 1.19714 + 0.320772i 0.801702 0.597723i \(-0.203928\pi\)
0.395433 + 0.918495i \(0.370595\pi\)
\(168\) 0 0
\(169\) 12.8120 2.20261i 0.985542 0.169431i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.19819 9.00353i 0.395211 0.684526i −0.597917 0.801558i \(-0.704005\pi\)
0.993128 + 0.117032i \(0.0373380\pi\)
\(174\) 0 0
\(175\) −0.848389 3.16623i −0.0641322 0.239344i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.98194 8.62897i −0.372367 0.644959i 0.617562 0.786522i \(-0.288121\pi\)
−0.989929 + 0.141563i \(0.954787\pi\)
\(180\) 0 0
\(181\) 8.36779i 0.621973i 0.950414 + 0.310986i \(0.100659\pi\)
−0.950414 + 0.310986i \(0.899341\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.27922 + 2.47061i −0.314615 + 0.181643i
\(186\) 0 0
\(187\) −1.36723 + 1.36723i −0.0999821 + 0.0999821i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.02984 1.17193i −0.146874 0.0847976i 0.424762 0.905305i \(-0.360358\pi\)
−0.571636 + 0.820507i \(0.693691\pi\)
\(192\) 0 0
\(193\) −3.61828 + 13.5036i −0.260449 + 0.972011i 0.704528 + 0.709677i \(0.251159\pi\)
−0.964977 + 0.262334i \(0.915508\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.94998 + 7.27742i −0.138930 + 0.518494i 0.861021 + 0.508570i \(0.169826\pi\)
−0.999951 + 0.00992437i \(0.996841\pi\)
\(198\) 0 0
\(199\) 5.04156 + 2.91074i 0.357387 + 0.206337i 0.667934 0.744221i \(-0.267179\pi\)
−0.310547 + 0.950558i \(0.600512\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.66855 + 4.66855i −0.327668 + 0.327668i
\(204\) 0 0
\(205\) 3.54961 2.04937i 0.247915 0.143134i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.85689i 0.266787i
\(210\) 0 0
\(211\) 8.60747 + 14.9086i 0.592563 + 1.02635i 0.993886 + 0.110412i \(0.0352171\pi\)
−0.401323 + 0.915937i \(0.631450\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.678482 2.53213i −0.0462721 0.172690i
\(216\) 0 0
\(217\) 7.03273 12.1810i 0.477413 0.826903i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.52167 3.24509i 0.102359 0.218288i
\(222\) 0 0
\(223\) −5.13910 1.37702i −0.344140 0.0922120i 0.0826094 0.996582i \(-0.473675\pi\)
−0.426749 + 0.904370i \(0.640341\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.1412 4.86093i 1.20408 0.322631i 0.399641 0.916672i \(-0.369135\pi\)
0.804435 + 0.594040i \(0.202468\pi\)
\(228\) 0 0
\(229\) −3.88768 3.88768i −0.256905 0.256905i 0.566889 0.823794i \(-0.308147\pi\)
−0.823794 + 0.566889i \(0.808147\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −26.1552 −1.71349 −0.856743 0.515743i \(-0.827516\pi\)
−0.856743 + 0.515743i \(0.827516\pi\)
\(234\) 0 0
\(235\) −10.3001 −0.671906
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.76891 + 1.76891i 0.114421 + 0.114421i 0.761999 0.647578i \(-0.224218\pi\)
−0.647578 + 0.761999i \(0.724218\pi\)
\(240\) 0 0
\(241\) −13.2656 + 3.55450i −0.854511 + 0.228966i −0.659378 0.751811i \(-0.729180\pi\)
−0.195133 + 0.980777i \(0.562514\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.61717 + 0.969218i 0.231093 + 0.0619211i
\(246\) 0 0
\(247\) −2.43083 6.72338i −0.154670 0.427798i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −5.71269 + 9.89467i −0.360582 + 0.624546i −0.988057 0.154091i \(-0.950755\pi\)
0.627475 + 0.778637i \(0.284089\pi\)
\(252\) 0 0
\(253\) −2.94190 10.9793i −0.184956 0.690265i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.20777 + 12.4842i 0.449608 + 0.778745i 0.998360 0.0572405i \(-0.0182302\pi\)
−0.548752 + 0.835985i \(0.684897\pi\)
\(258\) 0 0
\(259\) 16.1969i 1.00643i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.3567 5.97943i 0.638620 0.368707i −0.145463 0.989364i \(-0.546467\pi\)
0.784083 + 0.620656i \(0.213134\pi\)
\(264\) 0 0
\(265\) −4.09873 + 4.09873i −0.251783 + 0.251783i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.62881 0.940396i −0.0993105 0.0573369i 0.449522 0.893269i \(-0.351594\pi\)
−0.548833 + 0.835932i \(0.684928\pi\)
\(270\) 0 0
\(271\) −5.38499 + 20.0971i −0.327115 + 1.22081i 0.585053 + 0.810995i \(0.301074\pi\)
−0.912169 + 0.409815i \(0.865593\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.503432 1.87883i 0.0303581 0.113298i
\(276\) 0 0
\(277\) 17.1315 + 9.89089i 1.02933 + 0.594286i 0.916794 0.399361i \(-0.130768\pi\)
0.112540 + 0.993647i \(0.464101\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.5223 + 10.5223i −0.627708 + 0.627708i −0.947491 0.319783i \(-0.896390\pi\)
0.319783 + 0.947491i \(0.396390\pi\)
\(282\) 0 0
\(283\) 1.19558 0.690267i 0.0710697 0.0410321i −0.464044 0.885812i \(-0.653602\pi\)
0.535114 + 0.844780i \(0.320269\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.4353i 0.793063i
\(288\) 0 0
\(289\) 8.00592 + 13.8667i 0.470937 + 0.815686i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.96539 14.7990i −0.231660 0.864568i −0.979626 0.200831i \(-0.935636\pi\)
0.747966 0.663737i \(-0.231031\pi\)
\(294\) 0 0
\(295\) −6.58358 + 11.4031i −0.383311 + 0.663914i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.0481 + 17.2851i 0.696762 + 0.999626i
\(300\) 0 0
\(301\) 8.30012 + 2.22401i 0.478411 + 0.128190i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −11.7464 + 3.14744i −0.672597 + 0.180222i
\(306\) 0 0
\(307\) −16.9383 16.9383i −0.966722 0.966722i 0.0327423 0.999464i \(-0.489576\pi\)
−0.999464 + 0.0327423i \(0.989576\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.4858 −0.708004 −0.354002 0.935245i \(-0.615179\pi\)
−0.354002 + 0.935245i \(0.615179\pi\)
\(312\) 0 0
\(313\) 2.42172 0.136884 0.0684418 0.997655i \(-0.478197\pi\)
0.0684418 + 0.997655i \(0.478197\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.3492 + 18.3492i 1.03059 + 1.03059i 0.999517 + 0.0310739i \(0.00989271\pi\)
0.0310739 + 0.999517i \(0.490107\pi\)
\(318\) 0 0
\(319\) −3.78431 + 1.01400i −0.211881 + 0.0567732i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.90393 0.510156i −0.105937 0.0283858i
\(324\) 0 0
\(325\) 0.306557 + 3.59250i 0.0170047 + 0.199276i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.8815 29.2396i 0.930707 1.61203i
\(330\) 0 0
\(331\) −6.76093 25.2321i −0.371615 1.38688i −0.858229 0.513267i \(-0.828435\pi\)
0.486614 0.873617i \(-0.338232\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.80253 10.0503i −0.317026 0.549105i
\(336\) 0 0
\(337\) 13.7215i 0.747457i −0.927538 0.373729i \(-0.878079\pi\)
0.927538 0.373729i \(-0.121921\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.22821 4.17321i 0.391429 0.225992i
\(342\) 0 0
\(343\) 7.54510 7.54510i 0.407397 0.407397i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.34771 0.778100i −0.0723488 0.0417706i 0.463389 0.886155i \(-0.346633\pi\)
−0.535738 + 0.844384i \(0.679967\pi\)
\(348\) 0 0
\(349\) 6.78967 25.3394i 0.363443 1.35639i −0.506077 0.862488i \(-0.668905\pi\)
0.869520 0.493898i \(-0.164428\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.917760 3.42513i 0.0488474 0.182301i −0.937192 0.348815i \(-0.886584\pi\)
0.986039 + 0.166514i \(0.0532509\pi\)
\(354\) 0 0
\(355\) −7.34204 4.23893i −0.389675 0.224979i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −14.5765 + 14.5765i −0.769318 + 0.769318i −0.977986 0.208669i \(-0.933087\pi\)
0.208669 + 0.977986i \(0.433087\pi\)
\(360\) 0 0
\(361\) 13.0495 7.53412i 0.686815 0.396533i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13.7493i 0.719671i
\(366\) 0 0
\(367\) 15.2778 + 26.4619i 0.797495 + 1.38130i 0.921243 + 0.388988i \(0.127175\pi\)
−0.123747 + 0.992314i \(0.539491\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.91767 18.3530i −0.255313 0.952840i
\(372\) 0 0
\(373\) −5.57744 + 9.66041i −0.288789 + 0.500197i −0.973521 0.228598i \(-0.926586\pi\)
0.684732 + 0.728795i \(0.259919\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.95777 4.15270i 0.306841 0.213875i
\(378\) 0 0
\(379\) 11.2346 + 3.01032i 0.577085 + 0.154630i 0.535544 0.844507i \(-0.320107\pi\)
0.0415411 + 0.999137i \(0.486773\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.43670 0.920861i 0.175607 0.0470538i −0.169944 0.985454i \(-0.554359\pi\)
0.345551 + 0.938400i \(0.387692\pi\)
\(384\) 0 0
\(385\) 4.50846 + 4.50846i 0.229772 + 0.229772i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28.5970 1.44993 0.724963 0.688788i \(-0.241857\pi\)
0.724963 + 0.688788i \(0.241857\pi\)
\(390\) 0 0
\(391\) 5.80899 0.293773
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.8259 10.8259i −0.544708 0.544708i
\(396\) 0 0
\(397\) 32.3646 8.67206i 1.62433 0.435238i 0.672061 0.740495i \(-0.265409\pi\)
0.952270 + 0.305257i \(0.0987424\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −23.3703 6.26204i −1.16706 0.312712i −0.377275 0.926101i \(-0.623139\pi\)
−0.789780 + 0.613390i \(0.789806\pi\)
\(402\) 0 0
\(403\) −9.97011 + 11.8304i −0.496646 + 0.589314i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.80561 8.32357i 0.238205 0.412584i
\(408\) 0 0
\(409\) −2.45860 9.17563i −0.121570 0.453706i 0.878124 0.478433i \(-0.158795\pi\)
−0.999694 + 0.0247270i \(0.992128\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −21.5805 37.3784i −1.06190 1.83927i
\(414\) 0 0
\(415\) 6.89539i 0.338481i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.93265 + 5.15727i −0.436388 + 0.251949i −0.702064 0.712113i \(-0.747738\pi\)
0.265676 + 0.964062i \(0.414405\pi\)
\(420\) 0 0
\(421\) −9.33390 + 9.33390i −0.454906 + 0.454906i −0.896979 0.442073i \(-0.854243\pi\)
0.442073 + 0.896979i \(0.354243\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.860883 + 0.497031i 0.0417589 + 0.0241095i
\(426\) 0 0
\(427\) 10.3171 38.5038i 0.499278 1.86333i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.16959 30.4893i 0.393515 1.46862i −0.430779 0.902457i \(-0.641761\pi\)
0.824295 0.566161i \(-0.191572\pi\)
\(432\) 0 0
\(433\) 23.8112 + 13.7474i 1.14429 + 0.660658i 0.947490 0.319785i \(-0.103611\pi\)
0.196803 + 0.980443i \(0.436944\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.19342 8.19342i 0.391945 0.391945i
\(438\) 0 0
\(439\) 13.5061 7.79775i 0.644611 0.372166i −0.141778 0.989899i \(-0.545282\pi\)
0.786388 + 0.617732i \(0.211948\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.1783i 1.14875i 0.818593 + 0.574374i \(0.194754\pi\)
−0.818593 + 0.574374i \(0.805246\pi\)
\(444\) 0 0
\(445\) 1.62667 + 2.81747i 0.0771115 + 0.133561i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.00655 18.6847i −0.236274 0.881786i −0.977571 0.210608i \(-0.932456\pi\)
0.741297 0.671177i \(-0.234211\pi\)
\(450\) 0 0
\(451\) −3.98625 + 6.90439i −0.187705 + 0.325115i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −10.7007 5.01772i −0.501656 0.235234i
\(456\) 0 0
\(457\) 6.28836 + 1.68496i 0.294157 + 0.0788192i 0.402880 0.915253i \(-0.368009\pi\)
−0.108722 + 0.994072i \(0.534676\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.39391 + 1.71324i −0.297794 + 0.0797936i −0.404622 0.914484i \(-0.632597\pi\)
0.106829 + 0.994277i \(0.465930\pi\)
\(462\) 0 0
\(463\) 0.527603 + 0.527603i 0.0245198 + 0.0245198i 0.719260 0.694741i \(-0.244481\pi\)
−0.694741 + 0.719260i \(0.744481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.9948 −0.878973 −0.439487 0.898249i \(-0.644840\pi\)
−0.439487 + 0.898249i \(0.644840\pi\)
\(468\) 0 0
\(469\) 38.0405 1.75655
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.60555 + 3.60555i 0.165783 + 0.165783i
\(474\) 0 0
\(475\) 1.91530 0.513203i 0.0878800 0.0235474i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 34.6043 + 9.27218i 1.58111 + 0.423657i 0.939269 0.343182i \(-0.111505\pi\)
0.641840 + 0.766839i \(0.278171\pi\)
\(480\) 0 0
\(481\) −3.13123 + 17.5385i −0.142772 + 0.799687i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.21659 5.57130i 0.146058 0.252980i
\(486\) 0 0
\(487\) −1.92975 7.20193i −0.0874454 0.326351i 0.908321 0.418275i \(-0.137365\pi\)
−0.995766 + 0.0919240i \(0.970698\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.30435 7.45536i −0.194253 0.336455i 0.752403 0.658703i \(-0.228895\pi\)
−0.946655 + 0.322248i \(0.895561\pi\)
\(492\) 0 0
\(493\) 2.00222i 0.0901754i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 24.0666 13.8949i 1.07954 0.623270i
\(498\) 0 0
\(499\) −3.44687 + 3.44687i −0.154303 + 0.154303i −0.780037 0.625734i \(-0.784800\pi\)
0.625734 + 0.780037i \(0.284800\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.92108 + 2.84119i 0.219420 + 0.126682i 0.605682 0.795707i \(-0.292900\pi\)
−0.386262 + 0.922389i \(0.626234\pi\)
\(504\) 0 0
\(505\) 3.53047 13.1759i 0.157104 0.586319i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.50006 + 27.9906i −0.332434 + 1.24066i 0.574190 + 0.818722i \(0.305317\pi\)
−0.906624 + 0.421939i \(0.861350\pi\)
\(510\) 0 0
\(511\) 39.0310 + 22.5346i 1.72663 + 0.996870i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.86858 + 1.86858i −0.0823396 + 0.0823396i
\(516\) 0 0
\(517\) 17.3507 10.0174i 0.763084 0.440567i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 31.7509i 1.39103i −0.718510 0.695517i \(-0.755176\pi\)
0.718510 0.695517i \(-0.244824\pi\)
\(522\) 0 0
\(523\) −18.2947 31.6874i −0.799972 1.38559i −0.919634 0.392777i \(-0.871514\pi\)
0.119662 0.992815i \(-0.461819\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.10399 + 4.12014i 0.0480905 + 0.179476i
\(528\) 0 0
\(529\) −5.57437 + 9.65510i −0.242364 + 0.419787i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.59735 14.5482i 0.112504 0.630151i
\(534\) 0 0
\(535\) 5.75121 + 1.54103i 0.248646 + 0.0666246i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.03580 + 1.88524i −0.303054 + 0.0812030i
\(540\) 0 0
\(541\) 19.9782 + 19.9782i 0.858930 + 0.858930i 0.991212 0.132282i \(-0.0422305\pi\)
−0.132282 + 0.991212i \(0.542230\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −13.5134 −0.578852
\(546\) 0 0
\(547\) −4.31118 −0.184333 −0.0921663 0.995744i \(-0.529379\pi\)
−0.0921663 + 0.995744i \(0.529379\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.82407 2.82407i −0.120310 0.120310i
\(552\) 0 0
\(553\) 48.4752 12.9889i 2.06138 0.552344i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.26713 0.607476i −0.0960615 0.0257396i 0.210468 0.977601i \(-0.432501\pi\)
−0.306530 + 0.951861i \(0.599168\pi\)
\(558\) 0 0
\(559\) −8.55765 4.01282i −0.361950 0.169724i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.24261 + 2.15226i −0.0523696 + 0.0907068i −0.891022 0.453960i \(-0.850011\pi\)
0.838652 + 0.544667i \(0.183344\pi\)
\(564\) 0 0
\(565\) 4.62391 + 17.2567i 0.194529 + 0.725993i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.4872 + 21.6285i 0.523491 + 0.906713i 0.999626 + 0.0273409i \(0.00870395\pi\)
−0.476135 + 0.879372i \(0.657963\pi\)
\(570\) 0 0
\(571\) 29.5431i 1.23634i −0.786044 0.618171i \(-0.787874\pi\)
0.786044 0.618171i \(-0.212126\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.06079 + 2.92185i −0.211049 + 0.121849i
\(576\) 0 0
\(577\) −9.92049 + 9.92049i −0.412996 + 0.412996i −0.882781 0.469785i \(-0.844331\pi\)
0.469785 + 0.882781i \(0.344331\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −19.5744 11.3013i −0.812082 0.468856i
\(582\) 0 0
\(583\) 2.91814 10.8906i 0.120857 0.451044i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.25841 19.6246i 0.217038 0.809996i −0.768402 0.639968i \(-0.778948\pi\)
0.985439 0.170028i \(-0.0543857\pi\)
\(588\) 0 0
\(589\) 7.36850 + 4.25420i 0.303614 + 0.175291i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.0108 17.0108i 0.698551 0.698551i −0.265547 0.964098i \(-0.585553\pi\)
0.964098 + 0.265547i \(0.0855525\pi\)
\(594\) 0 0
\(595\) −2.82191 + 1.62923i −0.115687 + 0.0667919i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 45.4555i 1.85726i −0.371005 0.928631i \(-0.620987\pi\)
0.371005 0.928631i \(-0.379013\pi\)
\(600\) 0 0
\(601\) 1.45074 + 2.51276i 0.0591771 + 0.102498i 0.894096 0.447875i \(-0.147819\pi\)
−0.834919 + 0.550373i \(0.814486\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.86778 6.97064i −0.0759360 0.283397i
\(606\) 0 0
\(607\) 3.33380 5.77431i 0.135315 0.234372i −0.790403 0.612587i \(-0.790129\pi\)
0.925718 + 0.378215i \(0.123462\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −23.9324 + 28.3979i −0.968202 + 1.14886i
\(612\) 0 0
\(613\) −18.0197 4.82836i −0.727808 0.195015i −0.124155 0.992263i \(-0.539622\pi\)
−0.603653 + 0.797247i \(0.706289\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.4598 + 4.14243i −0.622386 + 0.166768i −0.556212 0.831040i \(-0.687746\pi\)
−0.0661739 + 0.997808i \(0.521079\pi\)
\(618\) 0 0
\(619\) −24.4411 24.4411i −0.982372 0.982372i 0.0174755 0.999847i \(-0.494437\pi\)
−0.999847 + 0.0174755i \(0.994437\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.6642 −0.427252
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.47322 + 3.47322i 0.138486 + 0.138486i
\(630\) 0 0
\(631\) −13.2410 + 3.54793i −0.527118 + 0.141241i −0.512557 0.858653i \(-0.671302\pi\)
−0.0145608 + 0.999894i \(0.504635\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.66214 + 2.32101i 0.343747 + 0.0921067i
\(636\) 0 0
\(637\) 11.0767 7.72072i 0.438875 0.305906i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.75984 8.24429i 0.188003 0.325630i −0.756582 0.653899i \(-0.773132\pi\)
0.944584 + 0.328269i \(0.106465\pi\)
\(642\) 0 0
\(643\) 6.75344 + 25.2042i 0.266330 + 0.993956i 0.961432 + 0.275044i \(0.0886926\pi\)
−0.695102 + 0.718911i \(0.744641\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.29428 + 2.24176i 0.0508835 + 0.0881329i 0.890345 0.455286i \(-0.150463\pi\)
−0.839462 + 0.543419i \(0.817130\pi\)
\(648\) 0 0
\(649\) 25.6116i 1.00534i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 35.4836 20.4865i 1.38858 0.801697i 0.395425 0.918498i \(-0.370597\pi\)
0.993155 + 0.116801i \(0.0372639\pi\)
\(654\) 0 0
\(655\) −7.54477 + 7.54477i −0.294799 + 0.294799i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19.6183 11.3267i −0.764222 0.441224i 0.0665874 0.997781i \(-0.478789\pi\)
−0.830810 + 0.556557i \(0.812122\pi\)
\(660\) 0 0
\(661\) −4.52193 + 16.8761i −0.175883 + 0.656403i 0.820517 + 0.571622i \(0.193686\pi\)
−0.996400 + 0.0847806i \(0.972981\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.68224 + 6.27820i −0.0652344 + 0.243458i
\(666\) 0 0
\(667\) 10.1933 + 5.88512i 0.394687 + 0.227873i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.7260 16.7260i 0.645699 0.645699i
\(672\) 0 0
\(673\) 23.2297 13.4117i 0.895441 0.516983i 0.0197226 0.999805i \(-0.493722\pi\)
0.875718 + 0.482822i \(0.160388\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.5465i 0.443769i 0.975073 + 0.221884i \(0.0712207\pi\)
−0.975073 + 0.221884i \(0.928779\pi\)
\(678\) 0 0
\(679\) 10.5437 + 18.2623i 0.404631 + 0.700842i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.41674 + 35.1437i 0.360321 + 1.34474i 0.873654 + 0.486548i \(0.161744\pi\)
−0.513332 + 0.858190i \(0.671589\pi\)
\(684\) 0 0
\(685\) −4.41343 + 7.64428i −0.168628 + 0.292073i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.77695 + 20.8238i 0.0676964 + 0.793325i
\(690\) 0 0
\(691\) −6.72606 1.80224i −0.255871 0.0685605i 0.128603 0.991696i \(-0.458951\pi\)
−0.384474 + 0.923136i \(0.625617\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.48794 0.666641i 0.0943728 0.0252871i
\(696\) 0 0
\(697\) −2.88103 2.88103i −0.109127 0.109127i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −38.9194 −1.46997 −0.734983 0.678086i \(-0.762810\pi\)
−0.734983 + 0.678086i \(0.762810\pi\)
\(702\) 0 0
\(703\) 9.79777 0.369530
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 31.6169 + 31.6169i 1.18908 + 1.18908i
\(708\) 0 0
\(709\) 41.0620 11.0025i 1.54212 0.413209i 0.615168 0.788396i \(-0.289088\pi\)
0.926949 + 0.375187i \(0.122422\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −24.2207 6.48991i −0.907072 0.243049i
\(714\) 0 0
\(715\) −4.01030 5.75347i −0.149977 0.215168i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.5747 21.7800i 0.468958 0.812258i −0.530413 0.847739i \(-0.677963\pi\)
0.999370 + 0.0354812i \(0.0112964\pi\)
\(720\) 0 0
\(721\) −2.24193 8.36700i −0.0834939 0.311603i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.00709 + 1.74433i 0.0374024 + 0.0647828i
\(726\) 0 0
\(727\) 17.8058i 0.660382i −0.943914 0.330191i \(-0.892887\pi\)
0.943914 0.330191i \(-0.107113\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.25676 + 1.30294i −0.0834694 + 0.0481911i
\(732\) 0 0
\(733\) −31.6431 + 31.6431i −1.16876 + 1.16876i −0.186264 + 0.982500i \(0.559638\pi\)
−0.982500 + 0.186264i \(0.940362\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.5489 + 11.2866i 0.720093 + 0.415746i
\(738\) 0 0
\(739\) 0.725052 2.70593i 0.0266715 0.0995393i −0.951307 0.308245i \(-0.900258\pi\)
0.977979 + 0.208706i \(0.0669250\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.33319 + 16.1717i −0.158969 + 0.593282i 0.839763 + 0.542953i \(0.182694\pi\)
−0.998733 + 0.0503292i \(0.983973\pi\)
\(744\) 0 0
\(745\) 0.240534 + 0.138872i 0.00881248 + 0.00508789i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.8006 + 13.8006i −0.504264 + 0.504264i
\(750\) 0 0
\(751\) −38.9158 + 22.4680i −1.42006 + 0.819871i −0.996303 0.0859067i \(-0.972621\pi\)
−0.423754 + 0.905777i \(0.639288\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 11.1131i 0.404447i
\(756\) 0 0
\(757\) −10.1405 17.5639i −0.368563 0.638370i 0.620778 0.783986i \(-0.286817\pi\)
−0.989341 + 0.145616i \(0.953483\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.6204 39.6358i −0.384988 1.43680i −0.838186 0.545385i \(-0.816383\pi\)
0.453198 0.891410i \(-0.350283\pi\)
\(762\) 0 0
\(763\) 22.1480 38.3614i 0.801811 1.38878i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16.1418 + 44.6464i 0.582848 + 1.61209i
\(768\) 0 0
\(769\) 25.3183 + 6.78401i 0.913000 + 0.244638i 0.684591 0.728928i \(-0.259981\pi\)
0.228409 + 0.973565i \(0.426648\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.47023 + 2.26959i −0.304653 + 0.0816315i −0.407907 0.913023i \(-0.633741\pi\)
0.103254 + 0.994655i \(0.467075\pi\)
\(774\) 0 0
\(775\) −3.03417 3.03417i −0.108991 0.108991i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.12723 −0.291188
\(780\) 0 0
\(781\) 16.4904 0.590072
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.59675 + 6.59675i 0.235448 + 0.235448i
\(786\) 0 0
\(787\) −17.6708 + 4.73488i −0.629896 + 0.168780i −0.559623 0.828748i \(-0.689054\pi\)
−0.0702737 + 0.997528i \(0.522387\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −56.5660 15.1568i −2.01125 0.538914i
\(792\) 0 0
\(793\) −18.6153 + 39.6985i −0.661047 + 1.40974i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.26464 + 7.38657i −0.151061 + 0.261646i −0.931618 0.363439i \(-0.881602\pi\)
0.780557 + 0.625085i \(0.214936\pi\)
\(798\) 0 0
\(799\) 2.65004 + 9.89007i 0.0937515 + 0.349886i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.3720 + 23.1609i 0.471886 + 0.817331i
\(804\) 0 0
\(805\) 19.1552i 0.675131i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −28.7439 + 16.5953i −1.01058 + 0.583459i −0.911362 0.411607i \(-0.864968\pi\)
−0.0992189 + 0.995066i \(0.531634\pi\)
\(810\) 0 0
\(811\) −24.1650 + 24.1650i −0.848547 + 0.848547i −0.989952 0.141405i \(-0.954838\pi\)
0.141405 + 0.989952i \(0.454838\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.38381 + 1.37629i 0.0835011 + 0.0482094i
\(816\) 0 0
\(817\) −1.34534 + 5.02087i −0.0470674 + 0.175658i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.36327 27.4801i 0.256980 0.959062i −0.709998 0.704203i \(-0.751304\pi\)
0.966978 0.254859i \(-0.0820290\pi\)
\(822\) 0 0
\(823\) 40.3682 + 23.3066i 1.40715 + 0.812417i 0.995112 0.0987509i \(-0.0314847\pi\)
0.412035 + 0.911168i \(0.364818\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11.8641 + 11.8641i −0.412554 + 0.412554i −0.882627 0.470074i \(-0.844227\pi\)
0.470074 + 0.882627i \(0.344227\pi\)
\(828\) 0 0
\(829\) −2.49255 + 1.43907i −0.0865697 + 0.0499811i −0.542660 0.839952i \(-0.682583\pi\)
0.456090 + 0.889934i \(0.349249\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.72253i 0.128978i
\(834\) 0 0
\(835\) 8.00807 + 13.8704i 0.277131 + 0.480004i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7.01685 26.1872i −0.242249 0.904084i −0.974746 0.223315i \(-0.928312\pi\)
0.732498 0.680769i \(-0.238354\pi\)
\(840\) 0 0
\(841\) −12.4715 + 21.6013i −0.430053 + 0.744874i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.6170 + 7.50201i 0.365235 + 0.258077i
\(846\) 0 0
\(847\) 22.8492 + 6.12243i 0.785108 + 0.210369i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −27.8911 + 7.47339i −0.956094 + 0.256185i
\(852\) 0 0
\(853\) −27.7512 27.7512i −0.950184 0.950184i 0.0486329 0.998817i \(-0.484514\pi\)
−0.998817 + 0.0486329i \(0.984514\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 35.6349 1.21727 0.608633 0.793452i \(-0.291718\pi\)
0.608633 + 0.793452i \(0.291718\pi\)
\(858\) 0 0
\(859\) −36.8211 −1.25632 −0.628161 0.778084i \(-0.716192\pi\)
−0.628161 + 0.778084i \(0.716192\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 40.0126 + 40.0126i 1.36204 + 1.36204i 0.871309 + 0.490735i \(0.163272\pi\)
0.490735 + 0.871309i \(0.336728\pi\)
\(864\) 0 0
\(865\) 10.0421 2.69078i 0.341443 0.0914894i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 28.7651 + 7.70758i 0.975789 + 0.261462i
\(870\) 0 0
\(871\) −41.1913 7.35407i −1.39571 0.249183i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.63896 2.83876i 0.0554070 0.0959677i
\(876\) 0 0
\(877\) −3.41490 12.7446i −0.115313 0.430353i 0.883997 0.467492i \(-0.154842\pi\)
−0.999310 + 0.0371386i \(0.988176\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.9055 25.8171i −0.502180 0.869801i −0.999997 0.00251857i \(-0.999198\pi\)
0.497817 0.867282i \(-0.334135\pi\)
\(882\) 0 0
\(883\) 51.1759i 1.72221i −0.508431 0.861103i \(-0.669774\pi\)
0.508431 0.861103i \(-0.330226\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 17.2333 9.94965i 0.578637 0.334076i −0.181954 0.983307i \(-0.558242\pi\)
0.760592 + 0.649231i \(0.224909\pi\)
\(888\) 0 0
\(889\) −20.7857 + 20.7857i −0.697131 + 0.697131i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 17.6875 + 10.2119i 0.591889 + 0.341727i
\(894\) 0 0
\(895\) 2.57884 9.62436i 0.0862011 0.321707i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.23692 + 8.34828i −0.0746053 + 0.278431i
\(900\) 0 0
\(901\) 4.99009 + 2.88103i 0.166244 + 0.0959811i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.91692 + 5.91692i −0.196685 + 0.196685i
\(906\) 0 0
\(907\) −1.62081 + 0.935776i −0.0538181 + 0.0310719i −0.526668 0.850071i \(-0.676559\pi\)
0.472850 + 0.881143i \(0.343225\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 33.2989i 1.10324i 0.834095 + 0.551620i \(0.185990\pi\)
−0.834095 + 0.551620i \(0.814010\pi\)
\(912\) 0 0
\(913\) −6.70615 11.6154i −0.221941 0.384414i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9.05224 33.7834i −0.298931 1.11563i
\(918\) 0 0
\(919\) −13.4224 + 23.2483i −0.442765 + 0.766892i −0.997894 0.0648727i \(-0.979336\pi\)
0.555128 + 0.831765i \(0.312669\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −28.7462 + 10.3932i −0.946193 + 0.342095i
\(924\) 0 0
\(925\) −4.77285 1.27888i −0.156930 0.0420494i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 38.3256 10.2693i 1.25742 0.336925i 0.432223 0.901767i \(-0.357729\pi\)
0.825199 + 0.564842i \(0.191063\pi\)
\(930\) 0 0
\(931\) −5.25053 5.25053i −0.172079 0.172079i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.93356 −0.0632342
\(936\) 0 0
\(937\) 17.6999 0.578230 0.289115 0.957294i \(-0.406639\pi\)
0.289115 + 0.957294i \(0.406639\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 39.1690 + 39.1690i 1.27687 + 1.27687i 0.942409 + 0.334464i \(0.108555\pi\)
0.334464 + 0.942409i \(0.391445\pi\)
\(942\) 0 0
\(943\) 23.1356 6.19917i 0.753399 0.201873i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.1761 7.28182i −0.883105 0.236627i −0.211359 0.977409i \(-0.567789\pi\)
−0.671746 + 0.740781i \(0.734456\pi\)
\(948\) 0 0
\(949\) −37.9074 31.9466i −1.23053 1.03703i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.534466 0.925722i 0.0173130 0.0299871i −0.857239 0.514919i \(-0.827822\pi\)
0.874552 + 0.484932i \(0.161155\pi\)
\(954\) 0 0
\(955\) −0.606634 2.26399i −0.0196302 0.0732609i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −14.4669 25.0574i −0.467160 0.809145i
\(960\) 0 0
\(961\) 12.5876i 0.406051i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −12.1070 + 6.98998i −0.389738 + 0.225015i
\(966\) 0 0
\(967\) 8.93964 8.93964i 0.287479 0.287479i −0.548603 0.836083i \(-0.684840\pi\)
0.836083 + 0.548603i \(0.184840\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −34.6823 20.0238i −1.11301 0.642595i −0.173401 0.984851i \(-0.555476\pi\)
−0.939607 + 0.342256i \(0.888809\pi\)
\(972\) 0 0
\(973\) −2.18520 + 8.15526i −0.0700542 + 0.261446i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.04727 26.3008i 0.225462 0.841436i −0.756757 0.653697i \(-0.773217\pi\)
0.982219 0.187740i \(-0.0601161\pi\)
\(978\) 0 0
\(979\) −5.48030 3.16405i −0.175151 0.101124i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 24.1627 24.1627i 0.770671 0.770671i −0.207553 0.978224i \(-0.566550\pi\)
0.978224 + 0.207553i \(0.0665498\pi\)
\(984\) 0 0
\(985\) −6.52475 + 3.76707i −0.207896 + 0.120029i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 15.3190i 0.487115i
\(990\) 0 0
\(991\) 3.29089 + 5.69999i 0.104539 + 0.181066i 0.913550 0.406727i \(-0.133330\pi\)
−0.809011 + 0.587794i \(0.799997\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.50671 + 5.62313i 0.0477660 + 0.178265i
\(996\) 0 0
\(997\) −7.97351 + 13.8105i −0.252524 + 0.437384i −0.964220 0.265103i \(-0.914594\pi\)
0.711696 + 0.702487i \(0.247927\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.fo.a.1601.7 yes 40
3.2 odd 2 inner 2340.2.fo.a.1601.2 40
13.7 odd 12 inner 2340.2.fo.a.2321.2 yes 40
39.20 even 12 inner 2340.2.fo.a.2321.7 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.fo.a.1601.2 40 3.2 odd 2 inner
2340.2.fo.a.1601.7 yes 40 1.1 even 1 trivial
2340.2.fo.a.2321.2 yes 40 13.7 odd 12 inner
2340.2.fo.a.2321.7 yes 40 39.20 even 12 inner