Properties

Label 2340.2.bi.c.161.6
Level $2340$
Weight $2$
Character 2340.161
Analytic conductor $18.685$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(161,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.bi (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 10 x^{10} - 16 x^{9} + 50 x^{8} - 32 x^{7} - 110 x^{6} + 40 x^{5} + 417 x^{4} + 712 x^{3} + \cdots + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.6
Root \(0.981031 + 2.36842i\) of defining polynomial
Character \(\chi\) \(=\) 2340.161
Dual form 2340.2.bi.c.1061.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{5} +(2.50560 + 2.50560i) q^{7} +(1.31223 - 1.31223i) q^{11} +(1.64983 + 3.20594i) q^{13} +3.11967 q^{17} +3.74743 q^{23} +1.00000i q^{25} -4.03867i q^{29} +(-3.29966 + 3.29966i) q^{31} +3.54346i q^{35} +(-2.94950 - 2.94950i) q^{37} +(-0.525773 - 0.525773i) q^{41} +0.288455i q^{43} +(1.90943 - 1.90943i) q^{47} +5.55611i q^{49} +11.4621i q^{53} +1.85577 q^{55} +(5.24892 - 5.24892i) q^{59} -4.04322 q^{61} +(-1.10033 + 3.43355i) q^{65} +(-3.01121 + 3.01121i) q^{67} +(-1.10826 - 1.10826i) q^{71} +(5.26765 + 5.26765i) q^{73} +6.57586 q^{77} -5.75476 q^{79} +(2.55304 + 2.55304i) q^{83} +(2.20594 + 2.20594i) q^{85} +(1.09241 - 1.09241i) q^{89} +(-3.89899 + 12.1666i) q^{91} +(4.66104 - 4.66104i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{7} + 12 q^{13} - 24 q^{31} - 12 q^{37} - 8 q^{55} - 32 q^{61} + 40 q^{67} - 12 q^{73} + 8 q^{79} + 4 q^{85} - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) 2.50560 + 2.50560i 0.947030 + 0.947030i 0.998666 0.0516364i \(-0.0164437\pi\)
−0.0516364 + 0.998666i \(0.516444\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.31223 1.31223i 0.395652 0.395652i −0.481044 0.876696i \(-0.659742\pi\)
0.876696 + 0.481044i \(0.159742\pi\)
\(12\) 0 0
\(13\) 1.64983 + 3.20594i 0.457581 + 0.889168i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.11967 0.756631 0.378316 0.925677i \(-0.376503\pi\)
0.378316 + 0.925677i \(0.376503\pi\)
\(18\) 0 0
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.74743 0.781393 0.390696 0.920520i \(-0.372234\pi\)
0.390696 + 0.920520i \(0.372234\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.03867i 0.749963i −0.927032 0.374981i \(-0.877649\pi\)
0.927032 0.374981i \(-0.122351\pi\)
\(30\) 0 0
\(31\) −3.29966 + 3.29966i −0.592637 + 0.592637i −0.938343 0.345706i \(-0.887640\pi\)
0.345706 + 0.938343i \(0.387640\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.54346i 0.598954i
\(36\) 0 0
\(37\) −2.94950 2.94950i −0.484894 0.484894i 0.421796 0.906691i \(-0.361400\pi\)
−0.906691 + 0.421796i \(0.861400\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.525773 0.525773i −0.0821120 0.0821120i 0.664858 0.746970i \(-0.268492\pi\)
−0.746970 + 0.664858i \(0.768492\pi\)
\(42\) 0 0
\(43\) 0.288455i 0.0439890i 0.999758 + 0.0219945i \(0.00700163\pi\)
−0.999758 + 0.0219945i \(0.992998\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.90943 1.90943i 0.278518 0.278518i −0.553999 0.832517i \(-0.686899\pi\)
0.832517 + 0.553999i \(0.186899\pi\)
\(48\) 0 0
\(49\) 5.55611i 0.793730i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.4621i 1.57444i 0.616671 + 0.787221i \(0.288481\pi\)
−0.616671 + 0.787221i \(0.711519\pi\)
\(54\) 0 0
\(55\) 1.85577 0.250232
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.24892 5.24892i 0.683351 0.683351i −0.277403 0.960754i \(-0.589474\pi\)
0.960754 + 0.277403i \(0.0894737\pi\)
\(60\) 0 0
\(61\) −4.04322 −0.517681 −0.258841 0.965920i \(-0.583340\pi\)
−0.258841 + 0.965920i \(0.583340\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.10033 + 3.43355i −0.136480 + 0.425879i
\(66\) 0 0
\(67\) −3.01121 + 3.01121i −0.367878 + 0.367878i −0.866703 0.498825i \(-0.833765\pi\)
0.498825 + 0.866703i \(0.333765\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.10826 1.10826i −0.131526 0.131526i 0.638279 0.769805i \(-0.279647\pi\)
−0.769805 + 0.638279i \(0.779647\pi\)
\(72\) 0 0
\(73\) 5.26765 + 5.26765i 0.616532 + 0.616532i 0.944640 0.328108i \(-0.106411\pi\)
−0.328108 + 0.944640i \(0.606411\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.57586 0.749388
\(78\) 0 0
\(79\) −5.75476 −0.647462 −0.323731 0.946149i \(-0.604937\pi\)
−0.323731 + 0.946149i \(0.604937\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.55304 + 2.55304i 0.280232 + 0.280232i 0.833202 0.552969i \(-0.186505\pi\)
−0.552969 + 0.833202i \(0.686505\pi\)
\(84\) 0 0
\(85\) 2.20594 + 2.20594i 0.239268 + 0.239268i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.09241 1.09241i 0.115795 0.115795i −0.646835 0.762630i \(-0.723908\pi\)
0.762630 + 0.646835i \(0.223908\pi\)
\(90\) 0 0
\(91\) −3.89899 + 12.1666i −0.408725 + 1.27541i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.66104 4.66104i 0.473257 0.473257i −0.429710 0.902967i \(-0.641384\pi\)
0.902967 + 0.429710i \(0.141384\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.91865 −0.787935 −0.393967 0.919124i \(-0.628898\pi\)
−0.393967 + 0.919124i \(0.628898\pi\)
\(102\) 0 0
\(103\) 0.187447i 0.0184697i −0.999957 0.00923487i \(-0.997060\pi\)
0.999957 0.00923487i \(-0.00293959\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.3977i 1.29520i −0.761979 0.647602i \(-0.775772\pi\)
0.761979 0.647602i \(-0.224228\pi\)
\(108\) 0 0
\(109\) −6.56732 + 6.56732i −0.629035 + 0.629035i −0.947825 0.318790i \(-0.896723\pi\)
0.318790 + 0.947825i \(0.396723\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.04825i 0.286755i −0.989668 0.143378i \(-0.954204\pi\)
0.989668 0.143378i \(-0.0457963\pi\)
\(114\) 0 0
\(115\) 2.64983 + 2.64983i 0.247098 + 0.247098i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.81666 + 7.81666i 0.716552 + 0.716552i
\(120\) 0 0
\(121\) 7.55611i 0.686919i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 13.2997i 1.18015i 0.807347 + 0.590077i \(0.200903\pi\)
−0.807347 + 0.590077i \(0.799097\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.25552i 0.109695i −0.998495 0.0548474i \(-0.982533\pi\)
0.998495 0.0548474i \(-0.0174672\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.79238 8.79238i 0.751183 0.751183i −0.223517 0.974700i \(-0.571754\pi\)
0.974700 + 0.223517i \(0.0717537\pi\)
\(138\) 0 0
\(139\) 14.2901 1.21207 0.606034 0.795439i \(-0.292760\pi\)
0.606034 + 0.795439i \(0.292760\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.37189 + 2.04197i 0.532844 + 0.170758i
\(144\) 0 0
\(145\) 2.85577 2.85577i 0.237159 0.237159i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.525773 0.525773i −0.0430730 0.0430730i 0.685242 0.728315i \(-0.259696\pi\)
−0.728315 + 0.685242i \(0.759696\pi\)
\(150\) 0 0
\(151\) 11.8558 + 11.8558i 0.964809 + 0.964809i 0.999402 0.0345924i \(-0.0110133\pi\)
−0.0345924 + 0.999402i \(0.511013\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.66643 −0.374817
\(156\) 0 0
\(157\) −22.0224 −1.75758 −0.878790 0.477208i \(-0.841649\pi\)
−0.878790 + 0.477208i \(0.841649\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.38957 + 9.38957i 0.740002 + 0.740002i
\(162\) 0 0
\(163\) 5.51681 + 5.51681i 0.432110 + 0.432110i 0.889346 0.457235i \(-0.151160\pi\)
−0.457235 + 0.889346i \(0.651160\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.73785 4.73785i 0.366626 0.366626i −0.499619 0.866245i \(-0.666527\pi\)
0.866245 + 0.499619i \(0.166527\pi\)
\(168\) 0 0
\(169\) −7.55611 + 10.5785i −0.581239 + 0.813733i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.1352 −0.770563 −0.385281 0.922799i \(-0.625896\pi\)
−0.385281 + 0.922799i \(0.625896\pi\)
\(174\) 0 0
\(175\) −2.50560 + 2.50560i −0.189406 + 0.189406i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.7666 1.25319 0.626597 0.779343i \(-0.284447\pi\)
0.626597 + 0.779343i \(0.284447\pi\)
\(180\) 0 0
\(181\) 2.86698i 0.213101i −0.994307 0.106551i \(-0.966019\pi\)
0.994307 0.106551i \(-0.0339806\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.17122i 0.306674i
\(186\) 0 0
\(187\) 4.09372 4.09372i 0.299363 0.299363i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.85422i 0.713027i 0.934290 + 0.356513i \(0.116035\pi\)
−0.934290 + 0.356513i \(0.883965\pi\)
\(192\) 0 0
\(193\) 1.64983 + 1.64983i 0.118758 + 0.118758i 0.763988 0.645230i \(-0.223239\pi\)
−0.645230 + 0.763988i \(0.723239\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.17122 + 4.17122i 0.297187 + 0.297187i 0.839911 0.542724i \(-0.182607\pi\)
−0.542724 + 0.839911i \(0.682607\pi\)
\(198\) 0 0
\(199\) 16.3333i 1.15784i −0.815386 0.578918i \(-0.803475\pi\)
0.815386 0.578918i \(-0.196525\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.1193 10.1193i 0.710237 0.710237i
\(204\) 0 0
\(205\) 0.743556i 0.0519322i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 23.1346 1.59265 0.796327 0.604866i \(-0.206773\pi\)
0.796327 + 0.604866i \(0.206773\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.203968 + 0.203968i −0.0139105 + 0.0139105i
\(216\) 0 0
\(217\) −16.5353 −1.12249
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.14693 + 10.0015i 0.346220 + 0.672772i
\(222\) 0 0
\(223\) −3.61054 + 3.61054i −0.241779 + 0.241779i −0.817586 0.575807i \(-0.804688\pi\)
0.575807 + 0.817586i \(0.304688\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.23934 6.23934i −0.414120 0.414120i 0.469051 0.883171i \(-0.344596\pi\)
−0.883171 + 0.469051i \(0.844596\pi\)
\(228\) 0 0
\(229\) 6.29966 + 6.29966i 0.416294 + 0.416294i 0.883924 0.467631i \(-0.154892\pi\)
−0.467631 + 0.883924i \(0.654892\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.4364 1.14229 0.571147 0.820848i \(-0.306499\pi\)
0.571147 + 0.820848i \(0.306499\pi\)
\(234\) 0 0
\(235\) 2.70034 0.176150
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.0560 14.0560i −0.909207 0.909207i 0.0870009 0.996208i \(-0.472272\pi\)
−0.996208 + 0.0870009i \(0.972272\pi\)
\(240\) 0 0
\(241\) 6.87819 + 6.87819i 0.443063 + 0.443063i 0.893040 0.449977i \(-0.148568\pi\)
−0.449977 + 0.893040i \(0.648568\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.92876 + 3.92876i −0.250999 + 0.250999i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −21.8727 −1.38059 −0.690295 0.723528i \(-0.742519\pi\)
−0.690295 + 0.723528i \(0.742519\pi\)
\(252\) 0 0
\(253\) 4.91749 4.91749i 0.309160 0.309160i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.2000 1.01053 0.505263 0.862966i \(-0.331396\pi\)
0.505263 + 0.862966i \(0.331396\pi\)
\(258\) 0 0
\(259\) 14.7805i 0.918418i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.8181i 1.09871i −0.835588 0.549357i \(-0.814873\pi\)
0.835588 0.549357i \(-0.185127\pi\)
\(264\) 0 0
\(265\) −8.10493 + 8.10493i −0.497882 + 0.497882i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.77580i 0.474099i 0.971498 + 0.237049i \(0.0761803\pi\)
−0.971498 + 0.237049i \(0.923820\pi\)
\(270\) 0 0
\(271\) 4.96799 + 4.96799i 0.301784 + 0.301784i 0.841711 0.539928i \(-0.181548\pi\)
−0.539928 + 0.841711i \(0.681548\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.31223 + 1.31223i 0.0791304 + 0.0791304i
\(276\) 0 0
\(277\) 5.89899i 0.354436i −0.984172 0.177218i \(-0.943290\pi\)
0.984172 0.177218i \(-0.0567098\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.3587 + 16.3587i −0.975876 + 0.975876i −0.999716 0.0238401i \(-0.992411\pi\)
0.0238401 + 0.999716i \(0.492411\pi\)
\(282\) 0 0
\(283\) 16.1458i 0.959771i −0.877331 0.479885i \(-0.840678\pi\)
0.877331 0.479885i \(-0.159322\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.63476i 0.155525i
\(288\) 0 0
\(289\) −7.26765 −0.427509
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −15.7762 + 15.7762i −0.921654 + 0.921654i −0.997146 0.0754927i \(-0.975947\pi\)
0.0754927 + 0.997146i \(0.475947\pi\)
\(294\) 0 0
\(295\) 7.42309 0.432189
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.18263 + 12.0140i 0.357551 + 0.694789i
\(300\) 0 0
\(301\) −0.722754 + 0.722754i −0.0416589 + 0.0416589i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.85899 2.85899i −0.163705 0.163705i
\(306\) 0 0
\(307\) −10.9175 10.9175i −0.623094 0.623094i 0.323227 0.946321i \(-0.395232\pi\)
−0.946321 + 0.323227i \(0.895232\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.47571 −0.537318 −0.268659 0.963235i \(-0.586580\pi\)
−0.268659 + 0.963235i \(0.586580\pi\)
\(312\) 0 0
\(313\) −26.2693 −1.48483 −0.742413 0.669942i \(-0.766319\pi\)
−0.742413 + 0.669942i \(0.766319\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.67271 + 5.67271i 0.318611 + 0.318611i 0.848233 0.529623i \(-0.177666\pi\)
−0.529623 + 0.848233i \(0.677666\pi\)
\(318\) 0 0
\(319\) −5.29966 5.29966i −0.296724 0.296724i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −3.20594 + 1.64983i −0.177834 + 0.0915162i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.56853 0.527530
\(330\) 0 0
\(331\) 23.1346 23.1346i 1.27159 1.27159i 0.326343 0.945251i \(-0.394183\pi\)
0.945251 0.326343i \(-0.105817\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.25849 −0.232666
\(336\) 0 0
\(337\) 18.3109i 0.997457i −0.866758 0.498728i \(-0.833801\pi\)
0.866758 0.498728i \(-0.166199\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.65983i 0.468956i
\(342\) 0 0
\(343\) 3.61782 3.61782i 0.195344 0.195344i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.74083i 0.415550i −0.978177 0.207775i \(-0.933378\pi\)
0.978177 0.207775i \(-0.0666221\pi\)
\(348\) 0 0
\(349\) −17.4343 17.4343i −0.933237 0.933237i 0.0646701 0.997907i \(-0.479401\pi\)
−0.997907 + 0.0646701i \(0.979401\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −16.9308 16.9308i −0.901138 0.901138i 0.0943968 0.995535i \(-0.469908\pi\)
−0.995535 + 0.0943968i \(0.969908\pi\)
\(354\) 0 0
\(355\) 1.56732i 0.0831846i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.23934 6.23934i 0.329300 0.329300i −0.523020 0.852320i \(-0.675195\pi\)
0.852320 + 0.523020i \(0.175195\pi\)
\(360\) 0 0
\(361\) 19.0000i 1.00000i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.44959i 0.389929i
\(366\) 0 0
\(367\) 17.9214 0.935490 0.467745 0.883863i \(-0.345067\pi\)
0.467745 + 0.883863i \(0.345067\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −28.7195 + 28.7195i −1.49104 + 1.49104i
\(372\) 0 0
\(373\) −37.2581 −1.92915 −0.964575 0.263810i \(-0.915021\pi\)
−0.964575 + 0.263810i \(0.915021\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.9477 6.66313i 0.666843 0.343169i
\(378\) 0 0
\(379\) 19.8990 19.8990i 1.02214 1.02214i 0.0223933 0.999749i \(-0.492871\pi\)
0.999749 0.0223933i \(-0.00712862\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.2681 18.2681i −0.933455 0.933455i 0.0644646 0.997920i \(-0.479466\pi\)
−0.997920 + 0.0644646i \(0.979466\pi\)
\(384\) 0 0
\(385\) 4.64983 + 4.64983i 0.236977 + 0.236977i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −36.7877 −1.86521 −0.932605 0.360899i \(-0.882470\pi\)
−0.932605 + 0.360899i \(0.882470\pi\)
\(390\) 0 0
\(391\) 11.6907 0.591226
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.06923 4.06923i −0.204745 0.204745i
\(396\) 0 0
\(397\) −14.7620 14.7620i −0.740886 0.740886i 0.231863 0.972749i \(-0.425518\pi\)
−0.972749 + 0.231863i \(0.925518\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −25.4423 + 25.4423i −1.27053 + 1.27053i −0.324715 + 0.945812i \(0.605268\pi\)
−0.945812 + 0.324715i \(0.894732\pi\)
\(402\) 0 0
\(403\) −16.0224 5.13464i −0.798134 0.255774i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.74083 −0.383699
\(408\) 0 0
\(409\) −5.78054 + 5.78054i −0.285829 + 0.285829i −0.835429 0.549599i \(-0.814780\pi\)
0.549599 + 0.835429i \(0.314780\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 26.3034 1.29431
\(414\) 0 0
\(415\) 3.61054i 0.177234i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.8211i 1.01718i −0.861009 0.508589i \(-0.830167\pi\)
0.861009 0.508589i \(-0.169833\pi\)
\(420\) 0 0
\(421\) 7.41188 7.41188i 0.361233 0.361233i −0.503034 0.864267i \(-0.667783\pi\)
0.864267 + 0.503034i \(0.167783\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.11967i 0.151326i
\(426\) 0 0
\(427\) −10.1307 10.1307i −0.490259 0.490259i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.05452 + 4.05452i 0.195300 + 0.195300i 0.797982 0.602682i \(-0.205901\pi\)
−0.602682 + 0.797982i \(0.705901\pi\)
\(432\) 0 0
\(433\) 0.677918i 0.0325786i −0.999867 0.0162893i \(-0.994815\pi\)
0.999867 0.0162893i \(-0.00518528\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 21.4663i 1.02453i 0.858827 + 0.512266i \(0.171194\pi\)
−0.858827 + 0.512266i \(0.828806\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.63476i 0.125181i 0.998039 + 0.0625906i \(0.0199362\pi\)
−0.998039 + 0.0625906i \(0.980064\pi\)
\(444\) 0 0
\(445\) 1.54490 0.0732352
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.5343 18.5343i 0.874688 0.874688i −0.118291 0.992979i \(-0.537741\pi\)
0.992979 + 0.118291i \(0.0377414\pi\)
\(450\) 0 0
\(451\) −1.37987 −0.0649756
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.3601 + 5.84611i −0.532571 + 0.274070i
\(456\) 0 0
\(457\) 26.4590 26.4590i 1.23770 1.23770i 0.276763 0.960938i \(-0.410738\pi\)
0.960938 0.276763i \(-0.0892616\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.19550 3.19550i −0.148829 0.148829i 0.628766 0.777595i \(-0.283561\pi\)
−0.777595 + 0.628766i \(0.783561\pi\)
\(462\) 0 0
\(463\) 6.50560 + 6.50560i 0.302341 + 0.302341i 0.841929 0.539588i \(-0.181420\pi\)
−0.539588 + 0.841929i \(0.681420\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.00592 0.370470 0.185235 0.982694i \(-0.440695\pi\)
0.185235 + 0.982694i \(0.440695\pi\)
\(468\) 0 0
\(469\) −15.0898 −0.696782
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.378519 + 0.378519i 0.0174043 + 0.0174043i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19.1621 19.1621i 0.875538 0.875538i −0.117532 0.993069i \(-0.537498\pi\)
0.993069 + 0.117532i \(0.0374981\pi\)
\(480\) 0 0
\(481\) 4.58974 14.3221i 0.209274 0.653031i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.59171 0.299314
\(486\) 0 0
\(487\) 9.49440 9.49440i 0.430232 0.430232i −0.458475 0.888707i \(-0.651604\pi\)
0.888707 + 0.458475i \(0.151604\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −22.0155 −0.993546 −0.496773 0.867880i \(-0.665482\pi\)
−0.496773 + 0.867880i \(0.665482\pi\)
\(492\) 0 0
\(493\) 12.5993i 0.567445i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.55373i 0.249119i
\(498\) 0 0
\(499\) 12.5561 12.5561i 0.562089 0.562089i −0.367812 0.929900i \(-0.619893\pi\)
0.929900 + 0.367812i \(0.119893\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 42.0819i 1.87634i −0.346177 0.938169i \(-0.612520\pi\)
0.346177 0.938169i \(-0.387480\pi\)
\(504\) 0 0
\(505\) −5.59933 5.59933i −0.249167 0.249167i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.36117 7.36117i −0.326278 0.326278i 0.524891 0.851169i \(-0.324106\pi\)
−0.851169 + 0.524891i \(0.824106\pi\)
\(510\) 0 0
\(511\) 26.3973i 1.16775i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.132545 0.132545i 0.00584064 0.00584064i
\(516\) 0 0
\(517\) 5.01121i 0.220393i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.6241i 1.07880i 0.842049 + 0.539401i \(0.181349\pi\)
−0.842049 + 0.539401i \(0.818651\pi\)
\(522\) 0 0
\(523\) 18.4983 0.808875 0.404438 0.914566i \(-0.367467\pi\)
0.404438 + 0.914566i \(0.367467\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.2939 + 10.2939i −0.448408 + 0.448408i
\(528\) 0 0
\(529\) −8.95678 −0.389425
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.818160 2.55304i 0.0354385 0.110584i
\(534\) 0 0
\(535\) 9.47359 9.47359i 0.409579 0.409579i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7.29089 + 7.29089i 0.314041 + 0.314041i
\(540\) 0 0
\(541\) 20.1554 + 20.1554i 0.866550 + 0.866550i 0.992089 0.125539i \(-0.0400660\pi\)
−0.125539 + 0.992089i \(0.540066\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.28759 −0.397837
\(546\) 0 0
\(547\) 10.1089 0.432224 0.216112 0.976369i \(-0.430662\pi\)
0.216112 + 0.976369i \(0.430662\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −14.4192 14.4192i −0.613165 0.613165i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.0059 23.0059i 0.974793 0.974793i −0.0248972 0.999690i \(-0.507926\pi\)
0.999690 + 0.0248972i \(0.00792585\pi\)
\(558\) 0 0
\(559\) −0.924770 + 0.475902i −0.0391136 + 0.0201285i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −25.7335 −1.08454 −0.542269 0.840205i \(-0.682435\pi\)
−0.542269 + 0.840205i \(0.682435\pi\)
\(564\) 0 0
\(565\) 2.15544 2.15544i 0.0906799 0.0906799i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −32.7943 −1.37481 −0.687404 0.726275i \(-0.741250\pi\)
−0.687404 + 0.726275i \(0.741250\pi\)
\(570\) 0 0
\(571\) 5.95678i 0.249283i −0.992202 0.124642i \(-0.960222\pi\)
0.992202 0.124642i \(-0.0397782\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.74743i 0.156279i
\(576\) 0 0
\(577\) 0.826070 0.826070i 0.0343898 0.0343898i −0.689703 0.724093i \(-0.742259\pi\)
0.724093 + 0.689703i \(0.242259\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.7938i 0.530776i
\(582\) 0 0
\(583\) 15.0409 + 15.0409i 0.622931 + 0.622931i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25.7629 25.7629i −1.06335 1.06335i −0.997853 0.0654976i \(-0.979137\pi\)
−0.0654976 0.997853i \(-0.520863\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.63440 9.63440i 0.395638 0.395638i −0.481054 0.876691i \(-0.659746\pi\)
0.876691 + 0.481054i \(0.159746\pi\)
\(594\) 0 0
\(595\) 11.0544i 0.453187i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.929302i 0.0379703i −0.999820 0.0189851i \(-0.993956\pi\)
0.999820 0.0189851i \(-0.00604352\pi\)
\(600\) 0 0
\(601\) 5.13302 0.209380 0.104690 0.994505i \(-0.466615\pi\)
0.104690 + 0.994505i \(0.466615\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5.34298 + 5.34298i −0.217223 + 0.217223i
\(606\) 0 0
\(607\) −25.1987 −1.02278 −0.511391 0.859348i \(-0.670870\pi\)
−0.511391 + 0.859348i \(0.670870\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.27174 + 2.97127i 0.375094 + 0.120205i
\(612\) 0 0
\(613\) 29.6723 29.6723i 1.19845 1.19845i 0.223821 0.974630i \(-0.428147\pi\)
0.974630 0.223821i \(-0.0718529\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.70840 + 6.70840i 0.270070 + 0.270070i 0.829128 0.559058i \(-0.188837\pi\)
−0.559058 + 0.829128i \(0.688837\pi\)
\(618\) 0 0
\(619\) −28.4135 28.4135i −1.14203 1.14203i −0.988077 0.153957i \(-0.950798\pi\)
−0.153957 0.988077i \(-0.549202\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.47429 0.219323
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.20146 9.20146i −0.366886 0.366886i
\(630\) 0 0
\(631\) −19.9214 19.9214i −0.793059 0.793059i 0.188931 0.981990i \(-0.439498\pi\)
−0.981990 + 0.188931i \(0.939498\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.40428 + 9.40428i −0.373198 + 0.373198i
\(636\) 0 0
\(637\) −17.8126 + 9.16665i −0.705759 + 0.363196i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.6860 −0.422070 −0.211035 0.977479i \(-0.567683\pi\)
−0.211035 + 0.977479i \(0.567683\pi\)
\(642\) 0 0
\(643\) 0.0713054 0.0713054i 0.00281201 0.00281201i −0.705699 0.708511i \(-0.749367\pi\)
0.708511 + 0.705699i \(0.249367\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.7887 1.28906 0.644529 0.764580i \(-0.277053\pi\)
0.644529 + 0.764580i \(0.277053\pi\)
\(648\) 0 0
\(649\) 13.7756i 0.540738i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 38.8908i 1.52191i 0.648802 + 0.760957i \(0.275270\pi\)
−0.648802 + 0.760957i \(0.724730\pi\)
\(654\) 0 0
\(655\) 0.887783 0.887783i 0.0346886 0.0346886i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 43.5119i 1.69498i 0.530808 + 0.847492i \(0.321889\pi\)
−0.530808 + 0.847492i \(0.678111\pi\)
\(660\) 0 0
\(661\) −16.4231 16.4231i −0.638784 0.638784i 0.311471 0.950256i \(-0.399178\pi\)
−0.950256 + 0.311471i \(0.899178\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 15.1346i 0.586015i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.30563 + 5.30563i −0.204822 + 0.204822i
\(672\) 0 0
\(673\) 3.54652i 0.136708i −0.997661 0.0683541i \(-0.978225\pi\)
0.997661 0.0683541i \(-0.0217748\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19.5712i 0.752181i −0.926583 0.376090i \(-0.877268\pi\)
0.926583 0.376090i \(-0.122732\pi\)
\(678\) 0 0
\(679\) 23.3575 0.896377
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −28.6231 + 28.6231i −1.09523 + 1.09523i −0.100271 + 0.994960i \(0.531971\pi\)
−0.994960 + 0.100271i \(0.968029\pi\)
\(684\) 0 0
\(685\) 12.4343 0.475090
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −36.7468 + 18.9105i −1.39994 + 0.720435i
\(690\) 0 0
\(691\) −9.65376 + 9.65376i −0.367246 + 0.367246i −0.866472 0.499226i \(-0.833618\pi\)
0.499226 + 0.866472i \(0.333618\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.1046 + 10.1046i 0.383290 + 0.383290i
\(696\) 0 0
\(697\) −1.64024 1.64024i −0.0621285 0.0621285i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −21.3060 −0.804718 −0.402359 0.915482i \(-0.631810\pi\)
−0.402359 + 0.915482i \(0.631810\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −19.8410 19.8410i −0.746197 0.746197i
\(708\) 0 0
\(709\) −32.7772 32.7772i −1.23097 1.23097i −0.963590 0.267382i \(-0.913841\pi\)
−0.267382 0.963590i \(-0.586159\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12.3653 + 12.3653i −0.463082 + 0.463082i
\(714\) 0 0
\(715\) 3.06171 + 5.94950i 0.114502 + 0.222499i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 49.6585 1.85195 0.925974 0.377587i \(-0.123246\pi\)
0.925974 + 0.377587i \(0.123246\pi\)
\(720\) 0 0
\(721\) 0.469669 0.469669i 0.0174914 0.0174914i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.03867 0.149993
\(726\) 0 0
\(727\) 6.88778i 0.255454i −0.991809 0.127727i \(-0.959232\pi\)
0.991809 0.127727i \(-0.0407681\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.899885i 0.0332834i
\(732\) 0 0
\(733\) 30.4814 30.4814i 1.12586 1.12586i 0.135014 0.990844i \(-0.456892\pi\)
0.990844 0.135014i \(-0.0431080\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.90279i 0.291103i
\(738\) 0 0
\(739\) 5.09765 + 5.09765i 0.187520 + 0.187520i 0.794623 0.607103i \(-0.207668\pi\)
−0.607103 + 0.794623i \(0.707668\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.25552 + 1.25552i 0.0460604 + 0.0460604i 0.729762 0.683701i \(-0.239631\pi\)
−0.683701 + 0.729762i \(0.739631\pi\)
\(744\) 0 0
\(745\) 0.743556i 0.0272418i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33.5693 33.5693i 1.22660 1.22660i
\(750\) 0 0
\(751\) 51.7772i 1.88938i 0.327970 + 0.944688i \(0.393635\pi\)
−0.327970 + 0.944688i \(0.606365\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.7666i 0.610199i
\(756\) 0 0
\(757\) −28.4791 −1.03509 −0.517546 0.855655i \(-0.673154\pi\)
−0.517546 + 0.855655i \(0.673154\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −36.4544 + 36.4544i −1.32147 + 1.32147i −0.408888 + 0.912585i \(0.634083\pi\)
−0.912585 + 0.408888i \(0.865917\pi\)
\(762\) 0 0
\(763\) −32.9102 −1.19143
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 25.4875 + 8.16788i 0.920302 + 0.294925i
\(768\) 0 0
\(769\) 25.2693 25.2693i 0.911233 0.911233i −0.0851361 0.996369i \(-0.527133\pi\)
0.996369 + 0.0851361i \(0.0271325\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.7173 + 17.7173i 0.637247 + 0.637247i 0.949875 0.312628i \(-0.101209\pi\)
−0.312628 + 0.949875i \(0.601209\pi\)
\(774\) 0 0
\(775\) −3.29966 3.29966i −0.118527 0.118527i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −2.90858 −0.104077
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.5722 15.5722i −0.555796 0.555796i
\(786\) 0 0
\(787\) −36.8462 36.8462i −1.31342 1.31342i −0.918874 0.394550i \(-0.870900\pi\)
−0.394550 0.918874i \(-0.629100\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.63770 7.63770i 0.271565 0.271565i
\(792\) 0 0
\(793\) −6.67063 12.9623i −0.236881 0.460306i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.12265 0.216875 0.108438 0.994103i \(-0.465415\pi\)
0.108438 + 0.994103i \(0.465415\pi\)
\(798\) 0 0
\(799\) 5.95678 5.95678i 0.210736 0.210736i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.8247 0.487864
\(804\) 0 0
\(805\) 13.2789i 0.468018i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 41.3907i 1.45522i −0.685991 0.727610i \(-0.740631\pi\)
0.685991 0.727610i \(-0.259369\pi\)
\(810\) 0 0
\(811\) 20.1458 20.1458i 0.707416 0.707416i −0.258575 0.965991i \(-0.583253\pi\)
0.965991 + 0.258575i \(0.0832529\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.80195i 0.273290i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −38.2357 38.2357i −1.33444 1.33444i −0.901355 0.433081i \(-0.857426\pi\)
−0.433081 0.901355i \(-0.642574\pi\)
\(822\) 0 0
\(823\) 10.9472i 0.381595i 0.981629 + 0.190797i \(0.0611074\pi\)
−0.981629 + 0.190797i \(0.938893\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 31.7983 31.7983i 1.10574 1.10574i 0.112031 0.993705i \(-0.464264\pi\)
0.993705 0.112031i \(-0.0357356\pi\)
\(828\) 0 0
\(829\) 35.3591i 1.22807i 0.789278 + 0.614036i \(0.210455\pi\)
−0.789278 + 0.614036i \(0.789545\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 17.3332i 0.600561i
\(834\) 0 0
\(835\) 6.70034 0.231875
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.80411 + 5.80411i −0.200380 + 0.200380i −0.800163 0.599783i \(-0.795254\pi\)
0.599783 + 0.800163i \(0.295254\pi\)
\(840\) 0 0
\(841\) 12.6891 0.437556
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.8231 + 2.13717i −0.441129 + 0.0735210i
\(846\) 0 0
\(847\) −18.9326 + 18.9326i −0.650533 + 0.650533i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −11.0530 11.0530i −0.378893 0.378893i
\(852\) 0 0
\(853\) 30.3950 + 30.3950i 1.04071 + 1.04071i 0.999136 + 0.0415695i \(0.0132358\pi\)
0.0415695 + 0.999136i \(0.486764\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19.0998 −0.652437 −0.326219 0.945294i \(-0.605775\pi\)
−0.326219 + 0.945294i \(0.605775\pi\)
\(858\) 0 0
\(859\) 36.9758 1.26160 0.630800 0.775946i \(-0.282727\pi\)
0.630800 + 0.775946i \(0.282727\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.48161 + 2.48161i 0.0844751 + 0.0844751i 0.748082 0.663607i \(-0.230975\pi\)
−0.663607 + 0.748082i \(0.730975\pi\)
\(864\) 0 0
\(865\) −7.16665 7.16665i −0.243673 0.243673i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.55157 + 7.55157i −0.256170 + 0.256170i
\(870\) 0 0
\(871\) −14.6217 4.68577i −0.495439 0.158771i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.54346 −0.119791
\(876\) 0 0
\(877\) −13.5785 + 13.5785i −0.458514 + 0.458514i −0.898168 0.439653i \(-0.855101\pi\)
0.439653 + 0.898168i \(0.355101\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 58.6604 1.97632 0.988159 0.153435i \(-0.0490334\pi\)
0.988159 + 0.153435i \(0.0490334\pi\)
\(882\) 0 0
\(883\) 1.79013i 0.0602428i −0.999546 0.0301214i \(-0.990411\pi\)
0.999546 0.0301214i \(-0.00958939\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 19.9021i 0.668248i −0.942529 0.334124i \(-0.891560\pi\)
0.942529 0.334124i \(-0.108440\pi\)
\(888\) 0 0
\(889\) −33.3237 + 33.3237i −1.11764 + 1.11764i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 11.8558 + 11.8558i 0.396295 + 0.396295i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.3263 + 13.3263i 0.444456 + 0.444456i
\(900\) 0 0
\(901\) 35.7580i 1.19127i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.02726 2.02726i 0.0673885 0.0673885i
\(906\) 0 0
\(907\) 18.6139i 0.618064i 0.951052 + 0.309032i \(0.100005\pi\)
−0.951052 + 0.309032i \(0.899995\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 45.6968i 1.51400i −0.653414 0.757001i \(-0.726664\pi\)
0.653414 0.757001i \(-0.273336\pi\)
\(912\) 0 0
\(913\) 6.70034 0.221749
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.14582 3.14582i 0.103884 0.103884i
\(918\) 0 0
\(919\) 14.3349 0.472865 0.236432 0.971648i \(-0.424022\pi\)
0.236432 + 0.971648i \(0.424022\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.72457 5.38146i 0.0567650 0.177133i
\(924\) 0 0
\(925\) 2.94950 2.94950i 0.0969788 0.0969788i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5.63184 + 5.63184i 0.184775 + 0.184775i 0.793433 0.608658i \(-0.208292\pi\)
−0.608658 + 0.793433i \(0.708292\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.78940 0.189334
\(936\) 0 0
\(937\) −4.74194 −0.154912 −0.0774562 0.996996i \(-0.524680\pi\)
−0.0774562 + 0.996996i \(0.524680\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.20178 4.20178i −0.136974 0.136974i 0.635295 0.772269i \(-0.280878\pi\)
−0.772269 + 0.635295i \(0.780878\pi\)
\(942\) 0 0
\(943\) −1.97030 1.97030i −0.0641617 0.0641617i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.1864 18.1864i 0.590977 0.590977i −0.346918 0.937895i \(-0.612772\pi\)
0.937895 + 0.346918i \(0.112772\pi\)
\(948\) 0 0
\(949\) −8.19704 + 25.5785i −0.266087 + 0.830314i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 45.7206 1.48104 0.740518 0.672036i \(-0.234580\pi\)
0.740518 + 0.672036i \(0.234580\pi\)
\(954\) 0 0
\(955\) −6.96799 + 6.96799i −0.225479 + 0.225479i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 44.0604 1.42279
\(960\) 0 0
\(961\) 9.22443i 0.297562i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.33321i 0.0751088i
\(966\) 0 0
\(967\) 5.83497 5.83497i 0.187640 0.187640i −0.607035 0.794675i \(-0.707641\pi\)
0.794675 + 0.607035i \(0.207641\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.1333i 0.581924i 0.956735 + 0.290962i \(0.0939753\pi\)
−0.956735 + 0.290962i \(0.906025\pi\)
\(972\) 0 0
\(973\) 35.8053 + 35.8053i 1.14786 + 1.14786i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −15.8317 15.8317i −0.506502 0.506502i 0.406949 0.913451i \(-0.366593\pi\)
−0.913451 + 0.406949i \(0.866593\pi\)
\(978\) 0 0
\(979\) 2.86698i 0.0916291i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16.8594 + 16.8594i −0.537732 + 0.537732i −0.922862 0.385130i \(-0.874157\pi\)
0.385130 + 0.922862i \(0.374157\pi\)
\(984\) 0 0
\(985\) 5.89899i 0.187958i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.08096i 0.0343727i
\(990\) 0 0
\(991\) 35.4023 1.12459 0.562295 0.826936i \(-0.309918\pi\)
0.562295 + 0.826936i \(0.309918\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.5494 11.5494i 0.366140 0.366140i
\(996\) 0 0
\(997\) 15.0976 0.478147 0.239074 0.971001i \(-0.423156\pi\)
0.239074 + 0.971001i \(0.423156\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.bi.c.161.6 yes 12
3.2 odd 2 inner 2340.2.bi.c.161.3 12
13.8 odd 4 inner 2340.2.bi.c.1061.3 yes 12
39.8 even 4 inner 2340.2.bi.c.1061.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.bi.c.161.3 12 3.2 odd 2 inner
2340.2.bi.c.161.6 yes 12 1.1 even 1 trivial
2340.2.bi.c.1061.3 yes 12 13.8 odd 4 inner
2340.2.bi.c.1061.6 yes 12 39.8 even 4 inner