Properties

Label 2340.2.bi.c.1061.6
Level $2340$
Weight $2$
Character 2340.1061
Analytic conductor $18.685$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(161,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.bi (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 10 x^{10} - 16 x^{9} + 50 x^{8} - 32 x^{7} - 110 x^{6} + 40 x^{5} + 417 x^{4} + 712 x^{3} + \cdots + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1061.6
Root \(0.981031 - 2.36842i\) of defining polynomial
Character \(\chi\) \(=\) 2340.1061
Dual form 2340.2.bi.c.161.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{5} +(2.50560 - 2.50560i) q^{7} +(1.31223 + 1.31223i) q^{11} +(1.64983 - 3.20594i) q^{13} +3.11967 q^{17} +3.74743 q^{23} -1.00000i q^{25} +4.03867i q^{29} +(-3.29966 - 3.29966i) q^{31} -3.54346i q^{35} +(-2.94950 + 2.94950i) q^{37} +(-0.525773 + 0.525773i) q^{41} -0.288455i q^{43} +(1.90943 + 1.90943i) q^{47} -5.55611i q^{49} -11.4621i q^{53} +1.85577 q^{55} +(5.24892 + 5.24892i) q^{59} -4.04322 q^{61} +(-1.10033 - 3.43355i) q^{65} +(-3.01121 - 3.01121i) q^{67} +(-1.10826 + 1.10826i) q^{71} +(5.26765 - 5.26765i) q^{73} +6.57586 q^{77} -5.75476 q^{79} +(2.55304 - 2.55304i) q^{83} +(2.20594 - 2.20594i) q^{85} +(1.09241 + 1.09241i) q^{89} +(-3.89899 - 12.1666i) q^{91} +(4.66104 + 4.66104i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{7} + 12 q^{13} - 24 q^{31} - 12 q^{37} - 8 q^{55} - 32 q^{61} + 40 q^{67} - 12 q^{73} + 8 q^{79} + 4 q^{85} - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) 0 0
\(7\) 2.50560 2.50560i 0.947030 0.947030i −0.0516364 0.998666i \(-0.516444\pi\)
0.998666 + 0.0516364i \(0.0164437\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.31223 + 1.31223i 0.395652 + 0.395652i 0.876696 0.481044i \(-0.159742\pi\)
−0.481044 + 0.876696i \(0.659742\pi\)
\(12\) 0 0
\(13\) 1.64983 3.20594i 0.457581 0.889168i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.11967 0.756631 0.378316 0.925677i \(-0.376503\pi\)
0.378316 + 0.925677i \(0.376503\pi\)
\(18\) 0 0
\(19\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.74743 0.781393 0.390696 0.920520i \(-0.372234\pi\)
0.390696 + 0.920520i \(0.372234\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.03867i 0.749963i 0.927032 + 0.374981i \(0.122351\pi\)
−0.927032 + 0.374981i \(0.877649\pi\)
\(30\) 0 0
\(31\) −3.29966 3.29966i −0.592637 0.592637i 0.345706 0.938343i \(-0.387640\pi\)
−0.938343 + 0.345706i \(0.887640\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.54346i 0.598954i
\(36\) 0 0
\(37\) −2.94950 + 2.94950i −0.484894 + 0.484894i −0.906691 0.421796i \(-0.861400\pi\)
0.421796 + 0.906691i \(0.361400\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.525773 + 0.525773i −0.0821120 + 0.0821120i −0.746970 0.664858i \(-0.768492\pi\)
0.664858 + 0.746970i \(0.268492\pi\)
\(42\) 0 0
\(43\) 0.288455i 0.0439890i −0.999758 0.0219945i \(-0.992998\pi\)
0.999758 0.0219945i \(-0.00700163\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.90943 + 1.90943i 0.278518 + 0.278518i 0.832517 0.553999i \(-0.186899\pi\)
−0.553999 + 0.832517i \(0.686899\pi\)
\(48\) 0 0
\(49\) 5.55611i 0.793730i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.4621i 1.57444i −0.616671 0.787221i \(-0.711519\pi\)
0.616671 0.787221i \(-0.288481\pi\)
\(54\) 0 0
\(55\) 1.85577 0.250232
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.24892 + 5.24892i 0.683351 + 0.683351i 0.960754 0.277403i \(-0.0894737\pi\)
−0.277403 + 0.960754i \(0.589474\pi\)
\(60\) 0 0
\(61\) −4.04322 −0.517681 −0.258841 0.965920i \(-0.583340\pi\)
−0.258841 + 0.965920i \(0.583340\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.10033 3.43355i −0.136480 0.425879i
\(66\) 0 0
\(67\) −3.01121 3.01121i −0.367878 0.367878i 0.498825 0.866703i \(-0.333765\pi\)
−0.866703 + 0.498825i \(0.833765\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.10826 + 1.10826i −0.131526 + 0.131526i −0.769805 0.638279i \(-0.779647\pi\)
0.638279 + 0.769805i \(0.279647\pi\)
\(72\) 0 0
\(73\) 5.26765 5.26765i 0.616532 0.616532i −0.328108 0.944640i \(-0.606411\pi\)
0.944640 + 0.328108i \(0.106411\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.57586 0.749388
\(78\) 0 0
\(79\) −5.75476 −0.647462 −0.323731 0.946149i \(-0.604937\pi\)
−0.323731 + 0.946149i \(0.604937\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.55304 2.55304i 0.280232 0.280232i −0.552969 0.833202i \(-0.686505\pi\)
0.833202 + 0.552969i \(0.186505\pi\)
\(84\) 0 0
\(85\) 2.20594 2.20594i 0.239268 0.239268i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.09241 + 1.09241i 0.115795 + 0.115795i 0.762630 0.646835i \(-0.223908\pi\)
−0.646835 + 0.762630i \(0.723908\pi\)
\(90\) 0 0
\(91\) −3.89899 12.1666i −0.408725 1.27541i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.66104 + 4.66104i 0.473257 + 0.473257i 0.902967 0.429710i \(-0.141384\pi\)
−0.429710 + 0.902967i \(0.641384\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.91865 −0.787935 −0.393967 0.919124i \(-0.628898\pi\)
−0.393967 + 0.919124i \(0.628898\pi\)
\(102\) 0 0
\(103\) 0.187447i 0.0184697i 0.999957 + 0.00923487i \(0.00293959\pi\)
−0.999957 + 0.00923487i \(0.997060\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.3977i 1.29520i 0.761979 + 0.647602i \(0.224228\pi\)
−0.761979 + 0.647602i \(0.775772\pi\)
\(108\) 0 0
\(109\) −6.56732 6.56732i −0.629035 0.629035i 0.318790 0.947825i \(-0.396723\pi\)
−0.947825 + 0.318790i \(0.896723\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.04825i 0.286755i 0.989668 + 0.143378i \(0.0457963\pi\)
−0.989668 + 0.143378i \(0.954204\pi\)
\(114\) 0 0
\(115\) 2.64983 2.64983i 0.247098 0.247098i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.81666 7.81666i 0.716552 0.716552i
\(120\) 0 0
\(121\) 7.55611i 0.686919i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) 0 0
\(127\) 13.2997i 1.18015i −0.807347 0.590077i \(-0.799097\pi\)
0.807347 0.590077i \(-0.200903\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.25552i 0.109695i 0.998495 + 0.0548474i \(0.0174672\pi\)
−0.998495 + 0.0548474i \(0.982533\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.79238 + 8.79238i 0.751183 + 0.751183i 0.974700 0.223517i \(-0.0717537\pi\)
−0.223517 + 0.974700i \(0.571754\pi\)
\(138\) 0 0
\(139\) 14.2901 1.21207 0.606034 0.795439i \(-0.292760\pi\)
0.606034 + 0.795439i \(0.292760\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.37189 2.04197i 0.532844 0.170758i
\(144\) 0 0
\(145\) 2.85577 + 2.85577i 0.237159 + 0.237159i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.525773 + 0.525773i −0.0430730 + 0.0430730i −0.728315 0.685242i \(-0.759696\pi\)
0.685242 + 0.728315i \(0.259696\pi\)
\(150\) 0 0
\(151\) 11.8558 11.8558i 0.964809 0.964809i −0.0345924 0.999402i \(-0.511013\pi\)
0.999402 + 0.0345924i \(0.0110133\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.66643 −0.374817
\(156\) 0 0
\(157\) −22.0224 −1.75758 −0.878790 0.477208i \(-0.841649\pi\)
−0.878790 + 0.477208i \(0.841649\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.38957 9.38957i 0.740002 0.740002i
\(162\) 0 0
\(163\) 5.51681 5.51681i 0.432110 0.432110i −0.457235 0.889346i \(-0.651160\pi\)
0.889346 + 0.457235i \(0.151160\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.73785 + 4.73785i 0.366626 + 0.366626i 0.866245 0.499619i \(-0.166527\pi\)
−0.499619 + 0.866245i \(0.666527\pi\)
\(168\) 0 0
\(169\) −7.55611 10.5785i −0.581239 0.813733i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.1352 −0.770563 −0.385281 0.922799i \(-0.625896\pi\)
−0.385281 + 0.922799i \(0.625896\pi\)
\(174\) 0 0
\(175\) −2.50560 2.50560i −0.189406 0.189406i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.7666 1.25319 0.626597 0.779343i \(-0.284447\pi\)
0.626597 + 0.779343i \(0.284447\pi\)
\(180\) 0 0
\(181\) 2.86698i 0.213101i 0.994307 + 0.106551i \(0.0339806\pi\)
−0.994307 + 0.106551i \(0.966019\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.17122i 0.306674i
\(186\) 0 0
\(187\) 4.09372 + 4.09372i 0.299363 + 0.299363i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.85422i 0.713027i −0.934290 0.356513i \(-0.883965\pi\)
0.934290 0.356513i \(-0.116035\pi\)
\(192\) 0 0
\(193\) 1.64983 1.64983i 0.118758 0.118758i −0.645230 0.763988i \(-0.723239\pi\)
0.763988 + 0.645230i \(0.223239\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.17122 4.17122i 0.297187 0.297187i −0.542724 0.839911i \(-0.682607\pi\)
0.839911 + 0.542724i \(0.182607\pi\)
\(198\) 0 0
\(199\) 16.3333i 1.15784i 0.815386 + 0.578918i \(0.196525\pi\)
−0.815386 + 0.578918i \(0.803475\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10.1193 + 10.1193i 0.710237 + 0.710237i
\(204\) 0 0
\(205\) 0.743556i 0.0519322i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 23.1346 1.59265 0.796327 0.604866i \(-0.206773\pi\)
0.796327 + 0.604866i \(0.206773\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.203968 0.203968i −0.0139105 0.0139105i
\(216\) 0 0
\(217\) −16.5353 −1.12249
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.14693 10.0015i 0.346220 0.672772i
\(222\) 0 0
\(223\) −3.61054 3.61054i −0.241779 0.241779i 0.575807 0.817586i \(-0.304688\pi\)
−0.817586 + 0.575807i \(0.804688\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.23934 + 6.23934i −0.414120 + 0.414120i −0.883171 0.469051i \(-0.844596\pi\)
0.469051 + 0.883171i \(0.344596\pi\)
\(228\) 0 0
\(229\) 6.29966 6.29966i 0.416294 0.416294i −0.467631 0.883924i \(-0.654892\pi\)
0.883924 + 0.467631i \(0.154892\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.4364 1.14229 0.571147 0.820848i \(-0.306499\pi\)
0.571147 + 0.820848i \(0.306499\pi\)
\(234\) 0 0
\(235\) 2.70034 0.176150
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.0560 + 14.0560i −0.909207 + 0.909207i −0.996208 0.0870009i \(-0.972272\pi\)
0.0870009 + 0.996208i \(0.472272\pi\)
\(240\) 0 0
\(241\) 6.87819 6.87819i 0.443063 0.443063i −0.449977 0.893040i \(-0.648568\pi\)
0.893040 + 0.449977i \(0.148568\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.92876 3.92876i −0.250999 0.250999i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −21.8727 −1.38059 −0.690295 0.723528i \(-0.742519\pi\)
−0.690295 + 0.723528i \(0.742519\pi\)
\(252\) 0 0
\(253\) 4.91749 + 4.91749i 0.309160 + 0.309160i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.2000 1.01053 0.505263 0.862966i \(-0.331396\pi\)
0.505263 + 0.862966i \(0.331396\pi\)
\(258\) 0 0
\(259\) 14.7805i 0.918418i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.8181i 1.09871i 0.835588 + 0.549357i \(0.185127\pi\)
−0.835588 + 0.549357i \(0.814873\pi\)
\(264\) 0 0
\(265\) −8.10493 8.10493i −0.497882 0.497882i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.77580i 0.474099i −0.971498 0.237049i \(-0.923820\pi\)
0.971498 0.237049i \(-0.0761803\pi\)
\(270\) 0 0
\(271\) 4.96799 4.96799i 0.301784 0.301784i −0.539928 0.841711i \(-0.681548\pi\)
0.841711 + 0.539928i \(0.181548\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.31223 1.31223i 0.0791304 0.0791304i
\(276\) 0 0
\(277\) 5.89899i 0.354436i 0.984172 + 0.177218i \(0.0567098\pi\)
−0.984172 + 0.177218i \(0.943290\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.3587 16.3587i −0.975876 0.975876i 0.0238401 0.999716i \(-0.492411\pi\)
−0.999716 + 0.0238401i \(0.992411\pi\)
\(282\) 0 0
\(283\) 16.1458i 0.959771i 0.877331 + 0.479885i \(0.159322\pi\)
−0.877331 + 0.479885i \(0.840678\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.63476i 0.155525i
\(288\) 0 0
\(289\) −7.26765 −0.427509
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −15.7762 15.7762i −0.921654 0.921654i 0.0754927 0.997146i \(-0.475947\pi\)
−0.997146 + 0.0754927i \(0.975947\pi\)
\(294\) 0 0
\(295\) 7.42309 0.432189
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.18263 12.0140i 0.357551 0.694789i
\(300\) 0 0
\(301\) −0.722754 0.722754i −0.0416589 0.0416589i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.85899 + 2.85899i −0.163705 + 0.163705i
\(306\) 0 0
\(307\) −10.9175 + 10.9175i −0.623094 + 0.623094i −0.946321 0.323227i \(-0.895232\pi\)
0.323227 + 0.946321i \(0.395232\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.47571 −0.537318 −0.268659 0.963235i \(-0.586580\pi\)
−0.268659 + 0.963235i \(0.586580\pi\)
\(312\) 0 0
\(313\) −26.2693 −1.48483 −0.742413 0.669942i \(-0.766319\pi\)
−0.742413 + 0.669942i \(0.766319\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.67271 5.67271i 0.318611 0.318611i −0.529623 0.848233i \(-0.677666\pi\)
0.848233 + 0.529623i \(0.177666\pi\)
\(318\) 0 0
\(319\) −5.29966 + 5.29966i −0.296724 + 0.296724i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −3.20594 1.64983i −0.177834 0.0915162i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.56853 0.527530
\(330\) 0 0
\(331\) 23.1346 + 23.1346i 1.27159 + 1.27159i 0.945251 + 0.326343i \(0.105817\pi\)
0.326343 + 0.945251i \(0.394183\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.25849 −0.232666
\(336\) 0 0
\(337\) 18.3109i 0.997457i 0.866758 + 0.498728i \(0.166199\pi\)
−0.866758 + 0.498728i \(0.833801\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.65983i 0.468956i
\(342\) 0 0
\(343\) 3.61782 + 3.61782i 0.195344 + 0.195344i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.74083i 0.415550i 0.978177 + 0.207775i \(0.0666221\pi\)
−0.978177 + 0.207775i \(0.933378\pi\)
\(348\) 0 0
\(349\) −17.4343 + 17.4343i −0.933237 + 0.933237i −0.997907 0.0646701i \(-0.979401\pi\)
0.0646701 + 0.997907i \(0.479401\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −16.9308 + 16.9308i −0.901138 + 0.901138i −0.995535 0.0943968i \(-0.969908\pi\)
0.0943968 + 0.995535i \(0.469908\pi\)
\(354\) 0 0
\(355\) 1.56732i 0.0831846i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.23934 + 6.23934i 0.329300 + 0.329300i 0.852320 0.523020i \(-0.175195\pi\)
−0.523020 + 0.852320i \(0.675195\pi\)
\(360\) 0 0
\(361\) 19.0000i 1.00000i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.44959i 0.389929i
\(366\) 0 0
\(367\) 17.9214 0.935490 0.467745 0.883863i \(-0.345067\pi\)
0.467745 + 0.883863i \(0.345067\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −28.7195 28.7195i −1.49104 1.49104i
\(372\) 0 0
\(373\) −37.2581 −1.92915 −0.964575 0.263810i \(-0.915021\pi\)
−0.964575 + 0.263810i \(0.915021\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.9477 + 6.66313i 0.666843 + 0.343169i
\(378\) 0 0
\(379\) 19.8990 + 19.8990i 1.02214 + 1.02214i 0.999749 + 0.0223933i \(0.00712862\pi\)
0.0223933 + 0.999749i \(0.492871\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.2681 + 18.2681i −0.933455 + 0.933455i −0.997920 0.0644646i \(-0.979466\pi\)
0.0644646 + 0.997920i \(0.479466\pi\)
\(384\) 0 0
\(385\) 4.64983 4.64983i 0.236977 0.236977i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −36.7877 −1.86521 −0.932605 0.360899i \(-0.882470\pi\)
−0.932605 + 0.360899i \(0.882470\pi\)
\(390\) 0 0
\(391\) 11.6907 0.591226
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.06923 + 4.06923i −0.204745 + 0.204745i
\(396\) 0 0
\(397\) −14.7620 + 14.7620i −0.740886 + 0.740886i −0.972749 0.231863i \(-0.925518\pi\)
0.231863 + 0.972749i \(0.425518\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −25.4423 25.4423i −1.27053 1.27053i −0.945812 0.324715i \(-0.894732\pi\)
−0.324715 0.945812i \(-0.605268\pi\)
\(402\) 0 0
\(403\) −16.0224 + 5.13464i −0.798134 + 0.255774i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.74083 −0.383699
\(408\) 0 0
\(409\) −5.78054 5.78054i −0.285829 0.285829i 0.549599 0.835429i \(-0.314780\pi\)
−0.835429 + 0.549599i \(0.814780\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 26.3034 1.29431
\(414\) 0 0
\(415\) 3.61054i 0.177234i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.8211i 1.01718i 0.861009 + 0.508589i \(0.169833\pi\)
−0.861009 + 0.508589i \(0.830167\pi\)
\(420\) 0 0
\(421\) 7.41188 + 7.41188i 0.361233 + 0.361233i 0.864267 0.503034i \(-0.167783\pi\)
−0.503034 + 0.864267i \(0.667783\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.11967i 0.151326i
\(426\) 0 0
\(427\) −10.1307 + 10.1307i −0.490259 + 0.490259i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.05452 4.05452i 0.195300 0.195300i −0.602682 0.797982i \(-0.705901\pi\)
0.797982 + 0.602682i \(0.205901\pi\)
\(432\) 0 0
\(433\) 0.677918i 0.0325786i 0.999867 + 0.0162893i \(0.00518528\pi\)
−0.999867 + 0.0162893i \(0.994815\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 21.4663i 1.02453i −0.858827 0.512266i \(-0.828806\pi\)
0.858827 0.512266i \(-0.171194\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.63476i 0.125181i −0.998039 0.0625906i \(-0.980064\pi\)
0.998039 0.0625906i \(-0.0199362\pi\)
\(444\) 0 0
\(445\) 1.54490 0.0732352
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.5343 + 18.5343i 0.874688 + 0.874688i 0.992979 0.118291i \(-0.0377414\pi\)
−0.118291 + 0.992979i \(0.537741\pi\)
\(450\) 0 0
\(451\) −1.37987 −0.0649756
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.3601 5.84611i −0.532571 0.274070i
\(456\) 0 0
\(457\) 26.4590 + 26.4590i 1.23770 + 1.23770i 0.960938 + 0.276763i \(0.0892616\pi\)
0.276763 + 0.960938i \(0.410738\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.19550 + 3.19550i −0.148829 + 0.148829i −0.777595 0.628766i \(-0.783561\pi\)
0.628766 + 0.777595i \(0.283561\pi\)
\(462\) 0 0
\(463\) 6.50560 6.50560i 0.302341 0.302341i −0.539588 0.841929i \(-0.681420\pi\)
0.841929 + 0.539588i \(0.181420\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.00592 0.370470 0.185235 0.982694i \(-0.440695\pi\)
0.185235 + 0.982694i \(0.440695\pi\)
\(468\) 0 0
\(469\) −15.0898 −0.696782
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.378519 0.378519i 0.0174043 0.0174043i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19.1621 + 19.1621i 0.875538 + 0.875538i 0.993069 0.117532i \(-0.0374981\pi\)
−0.117532 + 0.993069i \(0.537498\pi\)
\(480\) 0 0
\(481\) 4.58974 + 14.3221i 0.209274 + 0.653031i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.59171 0.299314
\(486\) 0 0
\(487\) 9.49440 + 9.49440i 0.430232 + 0.430232i 0.888707 0.458475i \(-0.151604\pi\)
−0.458475 + 0.888707i \(0.651604\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −22.0155 −0.993546 −0.496773 0.867880i \(-0.665482\pi\)
−0.496773 + 0.867880i \(0.665482\pi\)
\(492\) 0 0
\(493\) 12.5993i 0.567445i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.55373i 0.249119i
\(498\) 0 0
\(499\) 12.5561 + 12.5561i 0.562089 + 0.562089i 0.929900 0.367812i \(-0.119893\pi\)
−0.367812 + 0.929900i \(0.619893\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 42.0819i 1.87634i 0.346177 + 0.938169i \(0.387480\pi\)
−0.346177 + 0.938169i \(0.612520\pi\)
\(504\) 0 0
\(505\) −5.59933 + 5.59933i −0.249167 + 0.249167i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.36117 + 7.36117i −0.326278 + 0.326278i −0.851169 0.524891i \(-0.824106\pi\)
0.524891 + 0.851169i \(0.324106\pi\)
\(510\) 0 0
\(511\) 26.3973i 1.16775i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.132545 + 0.132545i 0.00584064 + 0.00584064i
\(516\) 0 0
\(517\) 5.01121i 0.220393i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.6241i 1.07880i −0.842049 0.539401i \(-0.818651\pi\)
0.842049 0.539401i \(-0.181349\pi\)
\(522\) 0 0
\(523\) 18.4983 0.808875 0.404438 0.914566i \(-0.367467\pi\)
0.404438 + 0.914566i \(0.367467\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.2939 10.2939i −0.448408 0.448408i
\(528\) 0 0
\(529\) −8.95678 −0.389425
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.818160 + 2.55304i 0.0354385 + 0.110584i
\(534\) 0 0
\(535\) 9.47359 + 9.47359i 0.409579 + 0.409579i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7.29089 7.29089i 0.314041 0.314041i
\(540\) 0 0
\(541\) 20.1554 20.1554i 0.866550 0.866550i −0.125539 0.992089i \(-0.540066\pi\)
0.992089 + 0.125539i \(0.0400660\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.28759 −0.397837
\(546\) 0 0
\(547\) 10.1089 0.432224 0.216112 0.976369i \(-0.430662\pi\)
0.216112 + 0.976369i \(0.430662\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −14.4192 + 14.4192i −0.613165 + 0.613165i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.0059 + 23.0059i 0.974793 + 0.974793i 0.999690 0.0248972i \(-0.00792585\pi\)
−0.0248972 + 0.999690i \(0.507926\pi\)
\(558\) 0 0
\(559\) −0.924770 0.475902i −0.0391136 0.0201285i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −25.7335 −1.08454 −0.542269 0.840205i \(-0.682435\pi\)
−0.542269 + 0.840205i \(0.682435\pi\)
\(564\) 0 0
\(565\) 2.15544 + 2.15544i 0.0906799 + 0.0906799i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −32.7943 −1.37481 −0.687404 0.726275i \(-0.741250\pi\)
−0.687404 + 0.726275i \(0.741250\pi\)
\(570\) 0 0
\(571\) 5.95678i 0.249283i 0.992202 + 0.124642i \(0.0397782\pi\)
−0.992202 + 0.124642i \(0.960222\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.74743i 0.156279i
\(576\) 0 0
\(577\) 0.826070 + 0.826070i 0.0343898 + 0.0343898i 0.724093 0.689703i \(-0.242259\pi\)
−0.689703 + 0.724093i \(0.742259\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.7938i 0.530776i
\(582\) 0 0
\(583\) 15.0409 15.0409i 0.622931 0.622931i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25.7629 + 25.7629i −1.06335 + 1.06335i −0.0654976 + 0.997853i \(0.520863\pi\)
−0.997853 + 0.0654976i \(0.979137\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.63440 + 9.63440i 0.395638 + 0.395638i 0.876691 0.481054i \(-0.159746\pi\)
−0.481054 + 0.876691i \(0.659746\pi\)
\(594\) 0 0
\(595\) 11.0544i 0.453187i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.929302i 0.0379703i 0.999820 + 0.0189851i \(0.00604352\pi\)
−0.999820 + 0.0189851i \(0.993956\pi\)
\(600\) 0 0
\(601\) 5.13302 0.209380 0.104690 0.994505i \(-0.466615\pi\)
0.104690 + 0.994505i \(0.466615\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5.34298 5.34298i −0.217223 0.217223i
\(606\) 0 0
\(607\) −25.1987 −1.02278 −0.511391 0.859348i \(-0.670870\pi\)
−0.511391 + 0.859348i \(0.670870\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.27174 2.97127i 0.375094 0.120205i
\(612\) 0 0
\(613\) 29.6723 + 29.6723i 1.19845 + 1.19845i 0.974630 + 0.223821i \(0.0718529\pi\)
0.223821 + 0.974630i \(0.428147\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.70840 6.70840i 0.270070 0.270070i −0.559058 0.829128i \(-0.688837\pi\)
0.829128 + 0.559058i \(0.188837\pi\)
\(618\) 0 0
\(619\) −28.4135 + 28.4135i −1.14203 + 1.14203i −0.153957 + 0.988077i \(0.549202\pi\)
−0.988077 + 0.153957i \(0.950798\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.47429 0.219323
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.20146 + 9.20146i −0.366886 + 0.366886i
\(630\) 0 0
\(631\) −19.9214 + 19.9214i −0.793059 + 0.793059i −0.981990 0.188931i \(-0.939498\pi\)
0.188931 + 0.981990i \(0.439498\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.40428 9.40428i −0.373198 0.373198i
\(636\) 0 0
\(637\) −17.8126 9.16665i −0.705759 0.363196i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.6860 −0.422070 −0.211035 0.977479i \(-0.567683\pi\)
−0.211035 + 0.977479i \(0.567683\pi\)
\(642\) 0 0
\(643\) 0.0713054 + 0.0713054i 0.00281201 + 0.00281201i 0.708511 0.705699i \(-0.249367\pi\)
−0.705699 + 0.708511i \(0.749367\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.7887 1.28906 0.644529 0.764580i \(-0.277053\pi\)
0.644529 + 0.764580i \(0.277053\pi\)
\(648\) 0 0
\(649\) 13.7756i 0.540738i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 38.8908i 1.52191i −0.648802 0.760957i \(-0.724730\pi\)
0.648802 0.760957i \(-0.275270\pi\)
\(654\) 0 0
\(655\) 0.887783 + 0.887783i 0.0346886 + 0.0346886i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 43.5119i 1.69498i −0.530808 0.847492i \(-0.678111\pi\)
0.530808 0.847492i \(-0.321889\pi\)
\(660\) 0 0
\(661\) −16.4231 + 16.4231i −0.638784 + 0.638784i −0.950256 0.311471i \(-0.899178\pi\)
0.311471 + 0.950256i \(0.399178\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 15.1346i 0.586015i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.30563 5.30563i −0.204822 0.204822i
\(672\) 0 0
\(673\) 3.54652i 0.136708i 0.997661 + 0.0683541i \(0.0217748\pi\)
−0.997661 + 0.0683541i \(0.978225\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19.5712i 0.752181i 0.926583 + 0.376090i \(0.122732\pi\)
−0.926583 + 0.376090i \(0.877268\pi\)
\(678\) 0 0
\(679\) 23.3575 0.896377
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −28.6231 28.6231i −1.09523 1.09523i −0.994960 0.100271i \(-0.968029\pi\)
−0.100271 0.994960i \(-0.531971\pi\)
\(684\) 0 0
\(685\) 12.4343 0.475090
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −36.7468 18.9105i −1.39994 0.720435i
\(690\) 0 0
\(691\) −9.65376 9.65376i −0.367246 0.367246i 0.499226 0.866472i \(-0.333618\pi\)
−0.866472 + 0.499226i \(0.833618\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.1046 10.1046i 0.383290 0.383290i
\(696\) 0 0
\(697\) −1.64024 + 1.64024i −0.0621285 + 0.0621285i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −21.3060 −0.804718 −0.402359 0.915482i \(-0.631810\pi\)
−0.402359 + 0.915482i \(0.631810\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −19.8410 + 19.8410i −0.746197 + 0.746197i
\(708\) 0 0
\(709\) −32.7772 + 32.7772i −1.23097 + 1.23097i −0.267382 + 0.963590i \(0.586159\pi\)
−0.963590 + 0.267382i \(0.913841\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12.3653 12.3653i −0.463082 0.463082i
\(714\) 0 0
\(715\) 3.06171 5.94950i 0.114502 0.222499i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 49.6585 1.85195 0.925974 0.377587i \(-0.123246\pi\)
0.925974 + 0.377587i \(0.123246\pi\)
\(720\) 0 0
\(721\) 0.469669 + 0.469669i 0.0174914 + 0.0174914i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.03867 0.149993
\(726\) 0 0
\(727\) 6.88778i 0.255454i 0.991809 + 0.127727i \(0.0407681\pi\)
−0.991809 + 0.127727i \(0.959232\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.899885i 0.0332834i
\(732\) 0 0
\(733\) 30.4814 + 30.4814i 1.12586 + 1.12586i 0.990844 + 0.135014i \(0.0431080\pi\)
0.135014 + 0.990844i \(0.456892\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.90279i 0.291103i
\(738\) 0 0
\(739\) 5.09765 5.09765i 0.187520 0.187520i −0.607103 0.794623i \(-0.707668\pi\)
0.794623 + 0.607103i \(0.207668\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.25552 1.25552i 0.0460604 0.0460604i −0.683701 0.729762i \(-0.739631\pi\)
0.729762 + 0.683701i \(0.239631\pi\)
\(744\) 0 0
\(745\) 0.743556i 0.0272418i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33.5693 + 33.5693i 1.22660 + 1.22660i
\(750\) 0 0
\(751\) 51.7772i 1.88938i −0.327970 0.944688i \(-0.606365\pi\)
0.327970 0.944688i \(-0.393635\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.7666i 0.610199i
\(756\) 0 0
\(757\) −28.4791 −1.03509 −0.517546 0.855655i \(-0.673154\pi\)
−0.517546 + 0.855655i \(0.673154\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −36.4544 36.4544i −1.32147 1.32147i −0.912585 0.408888i \(-0.865917\pi\)
−0.408888 0.912585i \(-0.634083\pi\)
\(762\) 0 0
\(763\) −32.9102 −1.19143
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 25.4875 8.16788i 0.920302 0.294925i
\(768\) 0 0
\(769\) 25.2693 + 25.2693i 0.911233 + 0.911233i 0.996369 0.0851361i \(-0.0271325\pi\)
−0.0851361 + 0.996369i \(0.527133\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.7173 17.7173i 0.637247 0.637247i −0.312628 0.949875i \(-0.601209\pi\)
0.949875 + 0.312628i \(0.101209\pi\)
\(774\) 0 0
\(775\) −3.29966 + 3.29966i −0.118527 + 0.118527i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −2.90858 −0.104077
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.5722 + 15.5722i −0.555796 + 0.555796i
\(786\) 0 0
\(787\) −36.8462 + 36.8462i −1.31342 + 1.31342i −0.394550 + 0.918874i \(0.629100\pi\)
−0.918874 + 0.394550i \(0.870900\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.63770 + 7.63770i 0.271565 + 0.271565i
\(792\) 0 0
\(793\) −6.67063 + 12.9623i −0.236881 + 0.460306i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.12265 0.216875 0.108438 0.994103i \(-0.465415\pi\)
0.108438 + 0.994103i \(0.465415\pi\)
\(798\) 0 0
\(799\) 5.95678 + 5.95678i 0.210736 + 0.210736i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.8247 0.487864
\(804\) 0 0
\(805\) 13.2789i 0.468018i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 41.3907i 1.45522i 0.685991 + 0.727610i \(0.259369\pi\)
−0.685991 + 0.727610i \(0.740631\pi\)
\(810\) 0 0
\(811\) 20.1458 + 20.1458i 0.707416 + 0.707416i 0.965991 0.258575i \(-0.0832529\pi\)
−0.258575 + 0.965991i \(0.583253\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.80195i 0.273290i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −38.2357 + 38.2357i −1.33444 + 1.33444i −0.433081 + 0.901355i \(0.642574\pi\)
−0.901355 + 0.433081i \(0.857426\pi\)
\(822\) 0 0
\(823\) 10.9472i 0.381595i −0.981629 0.190797i \(-0.938893\pi\)
0.981629 0.190797i \(-0.0611074\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 31.7983 + 31.7983i 1.10574 + 1.10574i 0.993705 + 0.112031i \(0.0357356\pi\)
0.112031 + 0.993705i \(0.464264\pi\)
\(828\) 0 0
\(829\) 35.3591i 1.22807i −0.789278 0.614036i \(-0.789545\pi\)
0.789278 0.614036i \(-0.210455\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 17.3332i 0.600561i
\(834\) 0 0
\(835\) 6.70034 0.231875
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.80411 5.80411i −0.200380 0.200380i 0.599783 0.800163i \(-0.295254\pi\)
−0.800163 + 0.599783i \(0.795254\pi\)
\(840\) 0 0
\(841\) 12.6891 0.437556
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.8231 2.13717i −0.441129 0.0735210i
\(846\) 0 0
\(847\) −18.9326 18.9326i −0.650533 0.650533i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −11.0530 + 11.0530i −0.378893 + 0.378893i
\(852\) 0 0
\(853\) 30.3950 30.3950i 1.04071 1.04071i 0.0415695 0.999136i \(-0.486764\pi\)
0.999136 0.0415695i \(-0.0132358\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19.0998 −0.652437 −0.326219 0.945294i \(-0.605775\pi\)
−0.326219 + 0.945294i \(0.605775\pi\)
\(858\) 0 0
\(859\) 36.9758 1.26160 0.630800 0.775946i \(-0.282727\pi\)
0.630800 + 0.775946i \(0.282727\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.48161 2.48161i 0.0844751 0.0844751i −0.663607 0.748082i \(-0.730975\pi\)
0.748082 + 0.663607i \(0.230975\pi\)
\(864\) 0 0
\(865\) −7.16665 + 7.16665i −0.243673 + 0.243673i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.55157 7.55157i −0.256170 0.256170i
\(870\) 0 0
\(871\) −14.6217 + 4.68577i −0.495439 + 0.158771i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.54346 −0.119791
\(876\) 0 0
\(877\) −13.5785 13.5785i −0.458514 0.458514i 0.439653 0.898168i \(-0.355101\pi\)
−0.898168 + 0.439653i \(0.855101\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 58.6604 1.97632 0.988159 0.153435i \(-0.0490334\pi\)
0.988159 + 0.153435i \(0.0490334\pi\)
\(882\) 0 0
\(883\) 1.79013i 0.0602428i 0.999546 + 0.0301214i \(0.00958939\pi\)
−0.999546 + 0.0301214i \(0.990411\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 19.9021i 0.668248i 0.942529 + 0.334124i \(0.108440\pi\)
−0.942529 + 0.334124i \(0.891560\pi\)
\(888\) 0 0
\(889\) −33.3237 33.3237i −1.11764 1.11764i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 11.8558 11.8558i 0.396295 0.396295i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.3263 13.3263i 0.444456 0.444456i
\(900\) 0 0
\(901\) 35.7580i 1.19127i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.02726 + 2.02726i 0.0673885 + 0.0673885i
\(906\) 0 0
\(907\) 18.6139i 0.618064i −0.951052 0.309032i \(-0.899995\pi\)
0.951052 0.309032i \(-0.100005\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 45.6968i 1.51400i 0.653414 + 0.757001i \(0.273336\pi\)
−0.653414 + 0.757001i \(0.726664\pi\)
\(912\) 0 0
\(913\) 6.70034 0.221749
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.14582 + 3.14582i 0.103884 + 0.103884i
\(918\) 0 0
\(919\) 14.3349 0.472865 0.236432 0.971648i \(-0.424022\pi\)
0.236432 + 0.971648i \(0.424022\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.72457 + 5.38146i 0.0567650 + 0.177133i
\(924\) 0 0
\(925\) 2.94950 + 2.94950i 0.0969788 + 0.0969788i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5.63184 5.63184i 0.184775 0.184775i −0.608658 0.793433i \(-0.708292\pi\)
0.793433 + 0.608658i \(0.208292\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.78940 0.189334
\(936\) 0 0
\(937\) −4.74194 −0.154912 −0.0774562 0.996996i \(-0.524680\pi\)
−0.0774562 + 0.996996i \(0.524680\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.20178 + 4.20178i −0.136974 + 0.136974i −0.772269 0.635295i \(-0.780878\pi\)
0.635295 + 0.772269i \(0.280878\pi\)
\(942\) 0 0
\(943\) −1.97030 + 1.97030i −0.0641617 + 0.0641617i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.1864 + 18.1864i 0.590977 + 0.590977i 0.937895 0.346918i \(-0.112772\pi\)
−0.346918 + 0.937895i \(0.612772\pi\)
\(948\) 0 0
\(949\) −8.19704 25.5785i −0.266087 0.830314i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 45.7206 1.48104 0.740518 0.672036i \(-0.234580\pi\)
0.740518 + 0.672036i \(0.234580\pi\)
\(954\) 0 0
\(955\) −6.96799 6.96799i −0.225479 0.225479i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 44.0604 1.42279
\(960\) 0 0
\(961\) 9.22443i 0.297562i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.33321i 0.0751088i
\(966\) 0 0
\(967\) 5.83497 + 5.83497i 0.187640 + 0.187640i 0.794675 0.607035i \(-0.207641\pi\)
−0.607035 + 0.794675i \(0.707641\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.1333i 0.581924i −0.956735 0.290962i \(-0.906025\pi\)
0.956735 0.290962i \(-0.0939753\pi\)
\(972\) 0 0
\(973\) 35.8053 35.8053i 1.14786 1.14786i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −15.8317 + 15.8317i −0.506502 + 0.506502i −0.913451 0.406949i \(-0.866593\pi\)
0.406949 + 0.913451i \(0.366593\pi\)
\(978\) 0 0
\(979\) 2.86698i 0.0916291i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16.8594 16.8594i −0.537732 0.537732i 0.385130 0.922862i \(-0.374157\pi\)
−0.922862 + 0.385130i \(0.874157\pi\)
\(984\) 0 0
\(985\) 5.89899i 0.187958i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.08096i 0.0343727i
\(990\) 0 0
\(991\) 35.4023 1.12459 0.562295 0.826936i \(-0.309918\pi\)
0.562295 + 0.826936i \(0.309918\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.5494 + 11.5494i 0.366140 + 0.366140i
\(996\) 0 0
\(997\) 15.0976 0.478147 0.239074 0.971001i \(-0.423156\pi\)
0.239074 + 0.971001i \(0.423156\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.bi.c.1061.6 yes 12
3.2 odd 2 inner 2340.2.bi.c.1061.3 yes 12
13.5 odd 4 inner 2340.2.bi.c.161.3 12
39.5 even 4 inner 2340.2.bi.c.161.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.bi.c.161.3 12 13.5 odd 4 inner
2340.2.bi.c.161.6 yes 12 39.5 even 4 inner
2340.2.bi.c.1061.3 yes 12 3.2 odd 2 inner
2340.2.bi.c.1061.6 yes 12 1.1 even 1 trivial