Properties

Label 2340.2.bi.c.161.4
Level $2340$
Weight $2$
Character 2340.161
Analytic conductor $18.685$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(161,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.bi (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 10 x^{10} - 16 x^{9} + 50 x^{8} - 32 x^{7} - 110 x^{6} + 40 x^{5} + 417 x^{4} + 712 x^{3} + \cdots + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.4
Root \(-1.29438 - 3.12492i\) of defining polynomial
Character \(\chi\) \(=\) 2340.161
Dual form 2340.2.bi.c.1061.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{5} +(-2.78746 - 2.78746i) q^{7} +(-0.479675 + 0.479675i) q^{11} +(-1.10909 + 3.43073i) q^{13} +3.43757 q^{17} -0.154281 q^{23} +1.00000i q^{25} -0.454864i q^{29} +(2.21819 - 2.21819i) q^{31} -3.94206i q^{35} +(5.32728 + 5.32728i) q^{37} +(5.48574 + 5.48574i) q^{41} +5.35673i q^{43} +(5.81114 - 5.81114i) q^{47} +8.53982i q^{49} -11.6303i q^{53} -0.678363 q^{55} +(-1.91870 + 1.91870i) q^{59} +9.97620 q^{61} +(-3.21014 + 1.64165i) q^{65} +(7.57491 - 7.57491i) q^{67} +(4.26745 + 4.26745i) q^{71} +(3.18310 + 3.18310i) q^{73} +2.67415 q^{77} +13.3329 q^{79} +(-12.7359 - 12.7359i) q^{83} +(2.43073 + 2.43073i) q^{85} +(10.6877 - 10.6877i) q^{89} +(12.6546 - 6.47146i) q^{91} +(-8.68401 + 8.68401i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{7} + 12 q^{13} - 24 q^{31} - 12 q^{37} - 8 q^{55} - 32 q^{61} + 40 q^{67} - 12 q^{73} + 8 q^{79} + 4 q^{85} - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) −2.78746 2.78746i −1.05356 1.05356i −0.998482 0.0550773i \(-0.982459\pi\)
−0.0550773 0.998482i \(-0.517541\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.479675 + 0.479675i −0.144627 + 0.144627i −0.775713 0.631086i \(-0.782610\pi\)
0.631086 + 0.775713i \(0.282610\pi\)
\(12\) 0 0
\(13\) −1.10909 + 3.43073i −0.307607 + 0.951513i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.43757 0.833734 0.416867 0.908968i \(-0.363128\pi\)
0.416867 + 0.908968i \(0.363128\pi\)
\(18\) 0 0
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.154281 −0.0321699 −0.0160849 0.999871i \(-0.505120\pi\)
−0.0160849 + 0.999871i \(0.505120\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.454864i 0.0844661i −0.999108 0.0422330i \(-0.986553\pi\)
0.999108 0.0422330i \(-0.0134472\pi\)
\(30\) 0 0
\(31\) 2.21819 2.21819i 0.398398 0.398398i −0.479270 0.877668i \(-0.659098\pi\)
0.877668 + 0.479270i \(0.159098\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.94206i 0.666329i
\(36\) 0 0
\(37\) 5.32728 + 5.32728i 0.875799 + 0.875799i 0.993097 0.117297i \(-0.0374231\pi\)
−0.117297 + 0.993097i \(0.537423\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.48574 + 5.48574i 0.856729 + 0.856729i 0.990951 0.134222i \(-0.0428536\pi\)
−0.134222 + 0.990951i \(0.542854\pi\)
\(42\) 0 0
\(43\) 5.35673i 0.816893i 0.912782 + 0.408447i \(0.133929\pi\)
−0.912782 + 0.408447i \(0.866071\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.81114 5.81114i 0.847641 0.847641i −0.142197 0.989838i \(-0.545417\pi\)
0.989838 + 0.142197i \(0.0454167\pi\)
\(48\) 0 0
\(49\) 8.53982i 1.21997i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.6303i 1.59754i −0.601638 0.798769i \(-0.705485\pi\)
0.601638 0.798769i \(-0.294515\pi\)
\(54\) 0 0
\(55\) −0.678363 −0.0914704
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.91870 + 1.91870i −0.249793 + 0.249793i −0.820886 0.571092i \(-0.806520\pi\)
0.571092 + 0.820886i \(0.306520\pi\)
\(60\) 0 0
\(61\) 9.97620 1.27732 0.638661 0.769489i \(-0.279489\pi\)
0.638661 + 0.769489i \(0.279489\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.21014 + 1.64165i −0.398169 + 0.203621i
\(66\) 0 0
\(67\) 7.57491 7.57491i 0.925423 0.925423i −0.0719830 0.997406i \(-0.522933\pi\)
0.997406 + 0.0719830i \(0.0229327\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.26745 + 4.26745i 0.506453 + 0.506453i 0.913436 0.406983i \(-0.133419\pi\)
−0.406983 + 0.913436i \(0.633419\pi\)
\(72\) 0 0
\(73\) 3.18310 + 3.18310i 0.372553 + 0.372553i 0.868406 0.495853i \(-0.165145\pi\)
−0.495853 + 0.868406i \(0.665145\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.67415 0.304747
\(78\) 0 0
\(79\) 13.3329 1.50007 0.750036 0.661398i \(-0.230036\pi\)
0.750036 + 0.661398i \(0.230036\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −12.7359 12.7359i −1.39795 1.39795i −0.805913 0.592034i \(-0.798325\pi\)
−0.592034 0.805913i \(-0.701675\pi\)
\(84\) 0 0
\(85\) 2.43073 + 2.43073i 0.263650 + 0.263650i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.6877 10.6877i 1.13290 1.13290i 0.143204 0.989693i \(-0.454259\pi\)
0.989693 0.143204i \(-0.0457406\pi\)
\(90\) 0 0
\(91\) 12.6546 6.47146i 1.32656 0.678394i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −8.68401 + 8.68401i −0.881727 + 0.881727i −0.993710 0.111983i \(-0.964280\pi\)
0.111983 + 0.993710i \(0.464280\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.68819 0.765004 0.382502 0.923955i \(-0.375063\pi\)
0.382502 + 0.923955i \(0.375063\pi\)
\(102\) 0 0
\(103\) 11.2978i 1.11321i 0.830778 + 0.556604i \(0.187896\pi\)
−0.830778 + 0.556604i \(0.812104\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.7676i 1.04094i −0.853880 0.520471i \(-0.825757\pi\)
0.853880 0.520471i \(-0.174243\pi\)
\(108\) 0 0
\(109\) 1.03509 1.03509i 0.0991435 0.0991435i −0.655795 0.754939i \(-0.727667\pi\)
0.754939 + 0.655795i \(0.227667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.33898i 0.784465i 0.919866 + 0.392233i \(0.128297\pi\)
−0.919866 + 0.392233i \(0.871703\pi\)
\(114\) 0 0
\(115\) −0.109093 0.109093i −0.0101730 0.0101730i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.58208 9.58208i −0.878388 0.878388i
\(120\) 0 0
\(121\) 10.5398i 0.958166i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 7.78181i 0.690524i 0.938506 + 0.345262i \(0.112210\pi\)
−0.938506 + 0.345262i \(0.887790\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.18371i 0.627643i 0.949482 + 0.313822i \(0.101609\pi\)
−0.949482 + 0.313822i \(0.898391\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.86076 + 5.86076i −0.500718 + 0.500718i −0.911661 0.410943i \(-0.865200\pi\)
0.410943 + 0.911661i \(0.365200\pi\)
\(138\) 0 0
\(139\) −8.96673 −0.760548 −0.380274 0.924874i \(-0.624170\pi\)
−0.380274 + 0.924874i \(0.624170\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.11363 2.17764i −0.0931265 0.182103i
\(144\) 0 0
\(145\) 0.321637 0.321637i 0.0267105 0.0267105i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.48574 + 5.48574i 0.449409 + 0.449409i 0.895158 0.445749i \(-0.147062\pi\)
−0.445749 + 0.895158i \(0.647062\pi\)
\(150\) 0 0
\(151\) 9.32164 + 9.32164i 0.758584 + 0.758584i 0.976065 0.217481i \(-0.0697839\pi\)
−0.217481 + 0.976065i \(0.569784\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.13699 0.251969
\(156\) 0 0
\(157\) −0.850175 −0.0678514 −0.0339257 0.999424i \(-0.510801\pi\)
−0.0339257 + 0.999424i \(0.510801\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.430052 + 0.430052i 0.0338929 + 0.0338929i
\(162\) 0 0
\(163\) −10.3624 10.3624i −0.811643 0.811643i 0.173237 0.984880i \(-0.444577\pi\)
−0.984880 + 0.173237i \(0.944577\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.63956 8.63956i 0.668549 0.668549i −0.288831 0.957380i \(-0.593266\pi\)
0.957380 + 0.288831i \(0.0932665\pi\)
\(168\) 0 0
\(169\) −10.5398 7.61000i −0.810756 0.585385i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.2231 1.23342 0.616710 0.787191i \(-0.288465\pi\)
0.616710 + 0.787191i \(0.288465\pi\)
\(174\) 0 0
\(175\) 2.78746 2.78746i 0.210712 0.210712i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 13.1828 0.985328 0.492664 0.870220i \(-0.336023\pi\)
0.492664 + 0.870220i \(0.336023\pi\)
\(180\) 0 0
\(181\) 10.2533i 0.762120i 0.924550 + 0.381060i \(0.124441\pi\)
−0.924550 + 0.381060i \(0.875559\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.53391i 0.553904i
\(186\) 0 0
\(187\) −1.64892 + 1.64892i −0.120581 + 0.120581i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.7096i 1.06435i 0.846634 + 0.532176i \(0.178626\pi\)
−0.846634 + 0.532176i \(0.821374\pi\)
\(192\) 0 0
\(193\) −1.10909 1.10909i −0.0798343 0.0798343i 0.666062 0.745896i \(-0.267979\pi\)
−0.745896 + 0.666062i \(0.767979\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −7.53391 7.53391i −0.536769 0.536769i 0.385809 0.922578i \(-0.373922\pi\)
−0.922578 + 0.385809i \(0.873922\pi\)
\(198\) 0 0
\(199\) 20.9429i 1.48460i 0.670065 + 0.742302i \(0.266266\pi\)
−0.670065 + 0.742302i \(0.733734\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.26791 + 1.26791i −0.0889900 + 0.0889900i
\(204\) 0 0
\(205\) 7.75801i 0.541843i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 7.92982 0.545912 0.272956 0.962027i \(-0.411999\pi\)
0.272956 + 0.962027i \(0.411999\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.78778 + 3.78778i −0.258324 + 0.258324i
\(216\) 0 0
\(217\) −12.3662 −0.839472
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.81259 + 11.7934i −0.256462 + 0.793309i
\(222\) 0 0
\(223\) 18.0113 18.0113i 1.20612 1.20612i 0.233853 0.972272i \(-0.424867\pi\)
0.972272 0.233853i \(-0.0751334\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.87514 6.87514i −0.456319 0.456319i 0.441126 0.897445i \(-0.354579\pi\)
−0.897445 + 0.441126i \(0.854579\pi\)
\(228\) 0 0
\(229\) 0.781813 + 0.781813i 0.0516637 + 0.0516637i 0.732467 0.680803i \(-0.238369\pi\)
−0.680803 + 0.732467i \(0.738369\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.2224 0.735207 0.367603 0.929983i \(-0.380178\pi\)
0.367603 + 0.929983i \(0.380178\pi\)
\(234\) 0 0
\(235\) 8.21819 0.536095
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.70694 + 2.70694i 0.175097 + 0.175097i 0.789215 0.614117i \(-0.210488\pi\)
−0.614117 + 0.789215i \(0.710488\pi\)
\(240\) 0 0
\(241\) −16.8282 16.8282i −1.08400 1.08400i −0.996132 0.0878666i \(-0.971995\pi\)
−0.0878666 0.996132i \(-0.528005\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.03857 + 6.03857i −0.385790 + 0.385790i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.2890 0.775676 0.387838 0.921728i \(-0.373222\pi\)
0.387838 + 0.921728i \(0.373222\pi\)
\(252\) 0 0
\(253\) 0.0740049 0.0740049i 0.00465265 0.00465265i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.99069 −0.186554 −0.0932770 0.995640i \(-0.529734\pi\)
−0.0932770 + 0.995640i \(0.529734\pi\)
\(258\) 0 0
\(259\) 29.6991i 1.84541i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.21130i 0.136355i −0.997673 0.0681774i \(-0.978282\pi\)
0.997673 0.0681774i \(-0.0217184\pi\)
\(264\) 0 0
\(265\) 8.22383 8.22383i 0.505186 0.505186i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 31.2413i 1.90482i −0.304827 0.952408i \(-0.598599\pi\)
0.304827 0.952408i \(-0.401401\pi\)
\(270\) 0 0
\(271\) 8.40128 + 8.40128i 0.510342 + 0.510342i 0.914631 0.404289i \(-0.132481\pi\)
−0.404289 + 0.914631i \(0.632481\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.479675 0.479675i −0.0289255 0.0289255i
\(276\) 0 0
\(277\) 10.6546i 0.640170i 0.947389 + 0.320085i \(0.103712\pi\)
−0.947389 + 0.320085i \(0.896288\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.60723 + 5.60723i −0.334499 + 0.334499i −0.854292 0.519793i \(-0.826009\pi\)
0.519793 + 0.854292i \(0.326009\pi\)
\(282\) 0 0
\(283\) 9.64509i 0.573341i 0.958029 + 0.286671i \(0.0925485\pi\)
−0.958029 + 0.286671i \(0.907452\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 30.5825i 1.80523i
\(288\) 0 0
\(289\) −5.18310 −0.304888
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.38894 + 4.38894i −0.256405 + 0.256405i −0.823590 0.567185i \(-0.808032\pi\)
0.567185 + 0.823590i \(0.308032\pi\)
\(294\) 0 0
\(295\) −2.71345 −0.157983
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.171112 0.529298i 0.00989568 0.0306101i
\(300\) 0 0
\(301\) 14.9316 14.9316i 0.860645 0.860645i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.05424 + 7.05424i 0.403924 + 0.403924i
\(306\) 0 0
\(307\) −6.07400 6.07400i −0.346662 0.346662i 0.512203 0.858865i \(-0.328830\pi\)
−0.858865 + 0.512203i \(0.828830\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −17.2791 −0.979809 −0.489905 0.871776i \(-0.662968\pi\)
−0.489905 + 0.871776i \(0.662968\pi\)
\(312\) 0 0
\(313\) 4.14035 0.234027 0.117013 0.993130i \(-0.462668\pi\)
0.117013 + 0.993130i \(0.462668\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.29833 9.29833i −0.522246 0.522246i 0.396003 0.918249i \(-0.370397\pi\)
−0.918249 + 0.396003i \(0.870397\pi\)
\(318\) 0 0
\(319\) 0.218187 + 0.218187i 0.0122161 + 0.0122161i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −3.43073 1.10909i −0.190303 0.0615214i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −32.3966 −1.78608
\(330\) 0 0
\(331\) 7.92982 7.92982i 0.435862 0.435862i −0.454754 0.890617i \(-0.650273\pi\)
0.890617 + 0.454754i \(0.150273\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.7125 0.585289
\(336\) 0 0
\(337\) 2.20690i 0.120218i −0.998192 0.0601088i \(-0.980855\pi\)
0.998192 0.0601088i \(-0.0191448\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.12802i 0.115239i
\(342\) 0 0
\(343\) 4.29219 4.29219i 0.231757 0.231757i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.11073i 0.274358i −0.990546 0.137179i \(-0.956196\pi\)
0.990546 0.137179i \(-0.0438036\pi\)
\(348\) 0 0
\(349\) 3.28836 + 3.28836i 0.176022 + 0.176022i 0.789619 0.613597i \(-0.210278\pi\)
−0.613597 + 0.789619i \(0.710278\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.7164 + 24.7164i 1.31552 + 1.31552i 0.917283 + 0.398236i \(0.130378\pi\)
0.398236 + 0.917283i \(0.369622\pi\)
\(354\) 0 0
\(355\) 6.03509i 0.320309i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.87514 6.87514i 0.362856 0.362856i −0.502007 0.864863i \(-0.667405\pi\)
0.864863 + 0.502007i \(0.167405\pi\)
\(360\) 0 0
\(361\) 19.0000i 1.00000i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.50158i 0.235624i
\(366\) 0 0
\(367\) −19.8044 −1.03378 −0.516890 0.856052i \(-0.672910\pi\)
−0.516890 + 0.856052i \(0.672910\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −32.4188 + 32.4188i −1.68310 + 1.68310i
\(372\) 0 0
\(373\) −17.4346 −0.902727 −0.451364 0.892340i \(-0.649062\pi\)
−0.451364 + 0.892340i \(0.649062\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.56051 + 0.504486i 0.0803706 + 0.0259824i
\(378\) 0 0
\(379\) 3.34544 3.34544i 0.171844 0.171844i −0.615945 0.787789i \(-0.711226\pi\)
0.787789 + 0.615945i \(0.211226\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.4184 11.4184i −0.583451 0.583451i 0.352399 0.935850i \(-0.385366\pi\)
−0.935850 + 0.352399i \(0.885366\pi\)
\(384\) 0 0
\(385\) 1.89091 + 1.89091i 0.0963695 + 0.0963695i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.2410 0.924858 0.462429 0.886656i \(-0.346978\pi\)
0.462429 + 0.886656i \(0.346978\pi\)
\(390\) 0 0
\(391\) −0.530353 −0.0268211
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.42780 + 9.42780i 0.474364 + 0.474364i
\(396\) 0 0
\(397\) −17.9706 17.9706i −0.901916 0.901916i 0.0936856 0.995602i \(-0.470135\pi\)
−0.995602 + 0.0936856i \(0.970135\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −0.355618 + 0.355618i −0.0177587 + 0.0177587i −0.715930 0.698172i \(-0.753997\pi\)
0.698172 + 0.715930i \(0.253997\pi\)
\(402\) 0 0
\(403\) 5.14982 + 10.0702i 0.256531 + 0.501631i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.11073 −0.253329
\(408\) 0 0
\(409\) −20.6991 + 20.6991i −1.02351 + 1.02351i −0.0237886 + 0.999717i \(0.507573\pi\)
−0.999717 + 0.0237886i \(0.992427\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.6966 0.526344
\(414\) 0 0
\(415\) 18.0113i 0.884139i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.31754i 0.0643658i 0.999482 + 0.0321829i \(0.0102459\pi\)
−0.999482 + 0.0321829i \(0.989754\pi\)
\(420\) 0 0
\(421\) 7.86146 7.86146i 0.383144 0.383144i −0.489089 0.872234i \(-0.662671\pi\)
0.872234 + 0.489089i \(0.162671\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.43757i 0.166747i
\(426\) 0 0
\(427\) −27.8082 27.8082i −1.34573 1.34573i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.5003 14.5003i −0.698456 0.698456i 0.265622 0.964077i \(-0.414423\pi\)
−0.964077 + 0.265622i \(0.914423\pi\)
\(432\) 0 0
\(433\) 27.3680i 1.31522i −0.753357 0.657611i \(-0.771567\pi\)
0.753357 0.657611i \(-0.228433\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 2.68965i 0.128370i −0.997938 0.0641850i \(-0.979555\pi\)
0.997938 0.0641850i \(-0.0204448\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 30.5825i 1.45302i 0.687156 + 0.726510i \(0.258859\pi\)
−0.687156 + 0.726510i \(0.741141\pi\)
\(444\) 0 0
\(445\) 15.1147 0.716507
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −24.5869 + 24.5869i −1.16033 + 1.16033i −0.175923 + 0.984404i \(0.556291\pi\)
−0.984404 + 0.175923i \(0.943709\pi\)
\(450\) 0 0
\(451\) −5.26275 −0.247813
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 13.5241 + 4.37211i 0.634021 + 0.204968i
\(456\) 0 0
\(457\) −19.9931 + 19.9931i −0.935239 + 0.935239i −0.998027 0.0627879i \(-0.980001\pi\)
0.0627879 + 0.998027i \(0.480001\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.2552 + 11.2552i 0.524209 + 0.524209i 0.918840 0.394631i \(-0.129128\pi\)
−0.394631 + 0.918840i \(0.629128\pi\)
\(462\) 0 0
\(463\) 1.21254 + 1.21254i 0.0563517 + 0.0563517i 0.734721 0.678369i \(-0.237313\pi\)
−0.678369 + 0.734721i \(0.737313\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.8668 −0.502857 −0.251428 0.967876i \(-0.580900\pi\)
−0.251428 + 0.967876i \(0.580900\pi\)
\(468\) 0 0
\(469\) −42.2295 −1.94998
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.56949 2.56949i −0.118145 0.118145i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −28.1787 + 28.1787i −1.28752 + 1.28752i −0.351231 + 0.936289i \(0.614237\pi\)
−0.936289 + 0.351231i \(0.885763\pi\)
\(480\) 0 0
\(481\) −24.1849 + 12.3680i −1.10274 + 0.563933i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.2810 −0.557653
\(486\) 0 0
\(487\) 14.7875 14.7875i 0.670084 0.670084i −0.287652 0.957735i \(-0.592874\pi\)
0.957735 + 0.287652i \(0.0928745\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.2641 −0.508341 −0.254171 0.967159i \(-0.581802\pi\)
−0.254171 + 0.967159i \(0.581802\pi\)
\(492\) 0 0
\(493\) 1.56363i 0.0704222i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23.7907i 1.06716i
\(498\) 0 0
\(499\) 15.5398 15.5398i 0.695658 0.695658i −0.267813 0.963471i \(-0.586301\pi\)
0.963471 + 0.267813i \(0.0863009\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 24.9699i 1.11335i 0.830730 + 0.556676i \(0.187924\pi\)
−0.830730 + 0.556676i \(0.812076\pi\)
\(504\) 0 0
\(505\) 5.43637 + 5.43637i 0.241915 + 0.241915i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −27.7079 27.7079i −1.22813 1.22813i −0.964670 0.263462i \(-0.915136\pi\)
−0.263462 0.964670i \(-0.584864\pi\)
\(510\) 0 0
\(511\) 17.7455i 0.785014i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.98878 + 7.98878i −0.352028 + 0.352028i
\(516\) 0 0
\(517\) 5.57491i 0.245184i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 25.2599i 1.10666i 0.832963 + 0.553329i \(0.186643\pi\)
−0.832963 + 0.553329i \(0.813357\pi\)
\(522\) 0 0
\(523\) −9.09093 −0.397519 −0.198759 0.980048i \(-0.563691\pi\)
−0.198759 + 0.980048i \(0.563691\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.62518 7.62518i 0.332158 0.332158i
\(528\) 0 0
\(529\) −22.9762 −0.998965
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −24.9043 + 12.7359i −1.07873 + 0.551653i
\(534\) 0 0
\(535\) 7.61383 7.61383i 0.329175 0.329175i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.09634 4.09634i −0.176442 0.176442i
\(540\) 0 0
\(541\) 12.1035 + 12.1035i 0.520368 + 0.520368i 0.917683 0.397315i \(-0.130058\pi\)
−0.397315 + 0.917683i \(0.630058\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.46384 0.0627039
\(546\) 0 0
\(547\) −39.1022 −1.67189 −0.835945 0.548813i \(-0.815080\pi\)
−0.835945 + 0.548813i \(0.815080\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −37.1649 37.1649i −1.58041 1.58041i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20.0579 20.0579i 0.849882 0.849882i −0.140236 0.990118i \(-0.544786\pi\)
0.990118 + 0.140236i \(0.0447862\pi\)
\(558\) 0 0
\(559\) −18.3775 5.94111i −0.777285 0.251282i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.964763 −0.0406599 −0.0203300 0.999793i \(-0.506472\pi\)
−0.0203300 + 0.999793i \(0.506472\pi\)
\(564\) 0 0
\(565\) −5.89655 + 5.89655i −0.248070 + 0.248070i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.5060 0.985425 0.492712 0.870192i \(-0.336005\pi\)
0.492712 + 0.870192i \(0.336005\pi\)
\(570\) 0 0
\(571\) 19.9762i 0.835978i −0.908452 0.417989i \(-0.862735\pi\)
0.908452 0.417989i \(-0.137265\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.154281i 0.00643397i
\(576\) 0 0
\(577\) −2.83202 + 2.83202i −0.117898 + 0.117898i −0.763594 0.645696i \(-0.776567\pi\)
0.645696 + 0.763594i \(0.276567\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 71.0015i 2.94564i
\(582\) 0 0
\(583\) 5.57874 + 5.57874i 0.231048 + 0.231048i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.1098 11.1098i −0.458551 0.458551i 0.439629 0.898180i \(-0.355110\pi\)
−0.898180 + 0.439629i \(0.855110\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.8770 25.8770i 1.06264 1.06264i 0.0647408 0.997902i \(-0.479378\pi\)
0.997902 0.0647408i \(-0.0206221\pi\)
\(594\) 0 0
\(595\) 13.5511i 0.555541i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 28.5592i 1.16690i −0.812150 0.583448i \(-0.801703\pi\)
0.812150 0.583448i \(-0.198297\pi\)
\(600\) 0 0
\(601\) 18.2533 0.744567 0.372283 0.928119i \(-0.378575\pi\)
0.372283 + 0.928119i \(0.378575\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.45278 + 7.45278i −0.302999 + 0.302999i
\(606\) 0 0
\(607\) −3.12725 −0.126931 −0.0634656 0.997984i \(-0.520215\pi\)
−0.0634656 + 0.997984i \(0.520215\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.4913 + 26.3815i 0.545802 + 1.06728i
\(612\) 0 0
\(613\) 5.74108 5.74108i 0.231880 0.231880i −0.581597 0.813477i \(-0.697572\pi\)
0.813477 + 0.581597i \(0.197572\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.31463 5.31463i −0.213959 0.213959i 0.591988 0.805947i \(-0.298343\pi\)
−0.805947 + 0.591988i \(0.798343\pi\)
\(618\) 0 0
\(619\) −0.538009 0.538009i −0.0216244 0.0216244i 0.696212 0.717836i \(-0.254867\pi\)
−0.717836 + 0.696212i \(0.754867\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −59.5832 −2.38715
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 18.3129 + 18.3129i 0.730184 + 0.730184i
\(630\) 0 0
\(631\) 17.8044 + 17.8044i 0.708781 + 0.708781i 0.966279 0.257498i \(-0.0828979\pi\)
−0.257498 + 0.966279i \(0.582898\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.50257 + 5.50257i −0.218363 + 0.218363i
\(636\) 0 0
\(637\) −29.2978 9.47146i −1.16082 0.375273i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14.9056 −0.588734 −0.294367 0.955692i \(-0.595109\pi\)
−0.294367 + 0.955692i \(0.595109\pi\)
\(642\) 0 0
\(643\) 15.5009 15.5009i 0.611296 0.611296i −0.331988 0.943284i \(-0.607719\pi\)
0.943284 + 0.331988i \(0.107719\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.9910 0.903870 0.451935 0.892051i \(-0.350734\pi\)
0.451935 + 0.892051i \(0.350734\pi\)
\(648\) 0 0
\(649\) 1.84070i 0.0722540i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 40.1840i 1.57252i −0.617895 0.786261i \(-0.712014\pi\)
0.617895 0.786261i \(-0.287986\pi\)
\(654\) 0 0
\(655\) −5.07965 + 5.07965i −0.198478 + 0.198478i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 38.5109i 1.50017i −0.661341 0.750085i \(-0.730013\pi\)
0.661341 0.750085i \(-0.269987\pi\)
\(660\) 0 0
\(661\) −6.28655 6.28655i −0.244518 0.244518i 0.574198 0.818716i \(-0.305314\pi\)
−0.818716 + 0.574198i \(0.805314\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.0701770i 0.00271726i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.78533 + 4.78533i −0.184736 + 0.184736i
\(672\) 0 0
\(673\) 11.2087i 0.432064i 0.976386 + 0.216032i \(0.0693116\pi\)
−0.976386 + 0.216032i \(0.930688\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.6309i 1.56157i 0.624799 + 0.780786i \(0.285181\pi\)
−0.624799 + 0.780786i \(0.714819\pi\)
\(678\) 0 0
\(679\) 48.4126 1.85790
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.9721 15.9721i 0.611157 0.611157i −0.332091 0.943247i \(-0.607754\pi\)
0.943247 + 0.332091i \(0.107754\pi\)
\(684\) 0 0
\(685\) −8.28836 −0.316682
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 39.9003 + 12.8990i 1.52008 + 0.491414i
\(690\) 0 0
\(691\) 25.9875 25.9875i 0.988610 0.988610i −0.0113254 0.999936i \(-0.503605\pi\)
0.999936 + 0.0113254i \(0.00360507\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.34043 6.34043i −0.240506 0.240506i
\(696\) 0 0
\(697\) 18.8576 + 18.8576i 0.714284 + 0.714284i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.4625 1.07501 0.537507 0.843259i \(-0.319366\pi\)
0.537507 + 0.843259i \(0.319366\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −21.4305 21.4305i −0.805977 0.805977i
\(708\) 0 0
\(709\) 7.48275 + 7.48275i 0.281020 + 0.281020i 0.833516 0.552495i \(-0.186324\pi\)
−0.552495 + 0.833516i \(0.686324\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.342225 + 0.342225i −0.0128164 + 0.0128164i
\(714\) 0 0
\(715\) 0.752368 2.32728i 0.0281370 0.0870353i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 18.0400 0.672778 0.336389 0.941723i \(-0.390794\pi\)
0.336389 + 0.941723i \(0.390794\pi\)
\(720\) 0 0
\(721\) 31.4922 31.4922i 1.17283 1.17283i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.454864 0.0168932
\(726\) 0 0
\(727\) 0.920352i 0.0341340i −0.999854 0.0170670i \(-0.994567\pi\)
0.999854 0.0170670i \(-0.00543285\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.4141i 0.681071i
\(732\) 0 0
\(733\) −37.1430 + 37.1430i −1.37191 + 1.37191i −0.514290 + 0.857617i \(0.671944\pi\)
−0.857617 + 0.514290i \(0.828056\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.26699i 0.267683i
\(738\) 0 0
\(739\) −33.5273 33.5273i −1.23332 1.23332i −0.962680 0.270642i \(-0.912764\pi\)
−0.270642 0.962680i \(-0.587236\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.18371 7.18371i −0.263545 0.263545i 0.562948 0.826492i \(-0.309667\pi\)
−0.826492 + 0.562948i \(0.809667\pi\)
\(744\) 0 0
\(745\) 7.75801i 0.284232i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −30.0142 + 30.0142i −1.09669 + 1.09669i
\(750\) 0 0
\(751\) 11.5173i 0.420271i 0.977672 + 0.210135i \(0.0673904\pi\)
−0.977672 + 0.210135i \(0.932610\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.1828i 0.479771i
\(756\) 0 0
\(757\) 34.5880 1.25712 0.628561 0.777760i \(-0.283644\pi\)
0.628561 + 0.777760i \(0.283644\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 20.4817 20.4817i 0.742461 0.742461i −0.230590 0.973051i \(-0.574066\pi\)
0.973051 + 0.230590i \(0.0740656\pi\)
\(762\) 0 0
\(763\) −5.77053 −0.208907
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.45452 8.71056i −0.160844 0.314520i
\(768\) 0 0
\(769\) −5.14035 + 5.14035i −0.185366 + 0.185366i −0.793689 0.608323i \(-0.791842\pi\)
0.608323 + 0.793689i \(0.291842\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.7103 19.7103i −0.708930 0.708930i 0.257380 0.966310i \(-0.417141\pi\)
−0.966310 + 0.257380i \(0.917141\pi\)
\(774\) 0 0
\(775\) 2.21819 + 2.21819i 0.0796796 + 0.0796796i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −4.09398 −0.146494
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.601165 0.601165i −0.0214565 0.0214565i
\(786\) 0 0
\(787\) −16.5731 16.5731i −0.590767 0.590767i 0.347072 0.937839i \(-0.387176\pi\)
−0.937839 + 0.347072i \(0.887176\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 23.2445 23.2445i 0.826481 0.826481i
\(792\) 0 0
\(793\) −11.0645 + 34.2256i −0.392913 + 1.21539i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.0912650 −0.00323277 −0.00161639 0.999999i \(-0.500515\pi\)
−0.00161639 + 0.999999i \(0.500515\pi\)
\(798\) 0 0
\(799\) 19.9762 19.9762i 0.706707 0.706707i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.05370 −0.107763
\(804\) 0 0
\(805\) 0.608186i 0.0214357i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 38.4427i 1.35157i −0.737097 0.675787i \(-0.763804\pi\)
0.737097 0.675787i \(-0.236196\pi\)
\(810\) 0 0
\(811\) −5.64509 + 5.64509i −0.198226 + 0.198226i −0.799239 0.601013i \(-0.794764\pi\)
0.601013 + 0.799239i \(0.294764\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 14.6546i 0.513328i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33.1511 + 33.1511i 1.15698 + 1.15698i 0.985121 + 0.171862i \(0.0549783\pi\)
0.171862 + 0.985121i \(0.445022\pi\)
\(822\) 0 0
\(823\) 7.22766i 0.251940i 0.992034 + 0.125970i \(0.0402044\pi\)
−0.992034 + 0.125970i \(0.959796\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.1972 14.1972i 0.493684 0.493684i −0.415781 0.909465i \(-0.636492\pi\)
0.909465 + 0.415781i \(0.136492\pi\)
\(828\) 0 0
\(829\) 32.0891i 1.11450i 0.830344 + 0.557251i \(0.188144\pi\)
−0.830344 + 0.557251i \(0.811856\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 29.3563i 1.01713i
\(834\) 0 0
\(835\) 12.2182 0.422828
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.74060 + 2.74060i −0.0946160 + 0.0946160i −0.752830 0.658214i \(-0.771312\pi\)
0.658214 + 0.752830i \(0.271312\pi\)
\(840\) 0 0
\(841\) 28.7931 0.992865
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.07170 12.8339i −0.0712686 0.441498i
\(846\) 0 0
\(847\) 29.3793 29.3793i 1.00948 1.00948i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.821900 0.821900i −0.0281744 0.0281744i
\(852\) 0 0
\(853\) −9.19056 9.19056i −0.314679 0.314679i 0.532040 0.846719i \(-0.321425\pi\)
−0.846719 + 0.532040i \(0.821425\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.6143 −0.396737 −0.198368 0.980128i \(-0.563564\pi\)
−0.198368 + 0.980128i \(0.563564\pi\)
\(858\) 0 0
\(859\) −25.3555 −0.865118 −0.432559 0.901606i \(-0.642389\pi\)
−0.432559 + 0.901606i \(0.642389\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.5125 24.5125i −0.834414 0.834414i 0.153703 0.988117i \(-0.450880\pi\)
−0.988117 + 0.153703i \(0.950880\pi\)
\(864\) 0 0
\(865\) 11.4715 + 11.4715i 0.390041 + 0.390041i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −6.39547 + 6.39547i −0.216951 + 0.216951i
\(870\) 0 0
\(871\) 17.5862 + 34.3888i 0.595886 + 1.16522i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.94206 0.133266
\(876\) 0 0
\(877\) 4.61000 4.61000i 0.155669 0.155669i −0.624976 0.780644i \(-0.714891\pi\)
0.780644 + 0.624976i \(0.214891\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −30.5301 −1.02858 −0.514292 0.857615i \(-0.671945\pi\)
−0.514292 + 0.857615i \(0.671945\pi\)
\(882\) 0 0
\(883\) 34.4477i 1.15926i −0.814881 0.579628i \(-0.803198\pi\)
0.814881 0.579628i \(-0.196802\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.66517i 0.0559110i −0.999609 0.0279555i \(-0.991100\pi\)
0.999609 0.0279555i \(-0.00889968\pi\)
\(888\) 0 0
\(889\) 21.6915 21.6915i 0.727508 0.727508i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 9.32164 + 9.32164i 0.311588 + 0.311588i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.00897 1.00897i −0.0336511 0.0336511i
\(900\) 0 0
\(901\) 39.9798i 1.33192i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.25016 + 7.25016i −0.241003 + 0.241003i
\(906\) 0 0
\(907\) 52.1706i 1.73230i 0.499788 + 0.866148i \(0.333411\pi\)
−0.499788 + 0.866148i \(0.666589\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 17.1354i 0.567721i 0.958866 + 0.283860i \(0.0916152\pi\)
−0.958866 + 0.283860i \(0.908385\pi\)
\(912\) 0 0
\(913\) 12.2182 0.404363
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.0243 20.0243i 0.661260 0.661260i
\(918\) 0 0
\(919\) −51.2664 −1.69112 −0.845561 0.533879i \(-0.820734\pi\)
−0.845561 + 0.533879i \(0.820734\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −19.3735 + 9.90748i −0.637686 + 0.326109i
\(924\) 0 0
\(925\) −5.32728 + 5.32728i −0.175160 + 0.175160i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −30.9575 30.9575i −1.01568 1.01568i −0.999875 0.0158091i \(-0.994968\pi\)
−0.0158091 0.999875i \(-0.505032\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.33192 −0.0762620
\(936\) 0 0
\(937\) −24.5654 −0.802518 −0.401259 0.915965i \(-0.631427\pi\)
−0.401259 + 0.915965i \(0.631427\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 17.4166 + 17.4166i 0.567764 + 0.567764i 0.931502 0.363737i \(-0.118499\pi\)
−0.363737 + 0.931502i \(0.618499\pi\)
\(942\) 0 0
\(943\) −0.846347 0.846347i −0.0275609 0.0275609i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −31.9001 + 31.9001i −1.03661 + 1.03661i −0.0373091 + 0.999304i \(0.511879\pi\)
−0.999304 + 0.0373091i \(0.988121\pi\)
\(948\) 0 0
\(949\) −14.4507 + 7.39000i −0.469090 + 0.239890i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 39.5067 1.27975 0.639874 0.768480i \(-0.278987\pi\)
0.639874 + 0.768480i \(0.278987\pi\)
\(954\) 0 0
\(955\) −10.4013 + 10.4013i −0.336578 + 0.336578i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 32.6732 1.05507
\(960\) 0 0
\(961\) 21.1593i 0.682558i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.56849i 0.0504916i
\(966\) 0 0
\(967\) −3.85199 + 3.85199i −0.123872 + 0.123872i −0.766325 0.642453i \(-0.777917\pi\)
0.642453 + 0.766325i \(0.277917\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 59.4626i 1.90824i 0.299418 + 0.954122i \(0.403208\pi\)
−0.299418 + 0.954122i \(0.596792\pi\)
\(972\) 0 0
\(973\) 24.9944 + 24.9944i 0.801282 + 0.801282i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −31.1207 31.1207i −0.995639 0.995639i 0.00435181 0.999991i \(-0.498615\pi\)
−0.999991 + 0.00435181i \(0.998615\pi\)
\(978\) 0 0
\(979\) 10.2533i 0.327696i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 36.4929 36.4929i 1.16394 1.16394i 0.180338 0.983605i \(-0.442281\pi\)
0.983605 0.180338i \(-0.0577193\pi\)
\(984\) 0 0
\(985\) 10.6546i 0.339483i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.826443i 0.0262793i
\(990\) 0 0
\(991\) 18.1129 0.575376 0.287688 0.957724i \(-0.407113\pi\)
0.287688 + 0.957724i \(0.407113\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −14.8089 + 14.8089i −0.469473 + 0.469473i
\(996\) 0 0
\(997\) −23.5273 −0.745117 −0.372559 0.928009i \(-0.621519\pi\)
−0.372559 + 0.928009i \(0.621519\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.bi.c.161.4 yes 12
3.2 odd 2 inner 2340.2.bi.c.161.1 12
13.8 odd 4 inner 2340.2.bi.c.1061.1 yes 12
39.8 even 4 inner 2340.2.bi.c.1061.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.bi.c.161.1 12 3.2 odd 2 inner
2340.2.bi.c.161.4 yes 12 1.1 even 1 trivial
2340.2.bi.c.1061.1 yes 12 13.8 odd 4 inner
2340.2.bi.c.1061.4 yes 12 39.8 even 4 inner