L(s) = 1 | + (0.707 + 0.707i)5-s + (−2.78 − 2.78i)7-s + (−0.479 + 0.479i)11-s + (−1.10 + 3.43i)13-s + 3.43·17-s − 0.154·23-s + 1.00i·25-s − 0.454i·29-s + (2.21 − 2.21i)31-s − 3.94i·35-s + (5.32 + 5.32i)37-s + (5.48 + 5.48i)41-s + 5.35i·43-s + (5.81 − 5.81i)47-s + 8.53i·49-s + ⋯ |
L(s) = 1 | + (0.316 + 0.316i)5-s + (−1.05 − 1.05i)7-s + (−0.144 + 0.144i)11-s + (−0.307 + 0.951i)13-s + 0.833·17-s − 0.0321·23-s + 0.200i·25-s − 0.0844i·29-s + (0.398 − 0.398i)31-s − 0.666i·35-s + (0.875 + 0.875i)37-s + (0.856 + 0.856i)41-s + 0.816i·43-s + (0.847 − 0.847i)47-s + 1.21i·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.150i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 - 0.150i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.572999370\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.572999370\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
| 13 | \( 1 + (1.10 - 3.43i)T \) |
good | 7 | \( 1 + (2.78 + 2.78i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.479 - 0.479i)T - 11iT^{2} \) |
| 17 | \( 1 - 3.43T + 17T^{2} \) |
| 19 | \( 1 - 19iT^{2} \) |
| 23 | \( 1 + 0.154T + 23T^{2} \) |
| 29 | \( 1 + 0.454iT - 29T^{2} \) |
| 31 | \( 1 + (-2.21 + 2.21i)T - 31iT^{2} \) |
| 37 | \( 1 + (-5.32 - 5.32i)T + 37iT^{2} \) |
| 41 | \( 1 + (-5.48 - 5.48i)T + 41iT^{2} \) |
| 43 | \( 1 - 5.35iT - 43T^{2} \) |
| 47 | \( 1 + (-5.81 + 5.81i)T - 47iT^{2} \) |
| 53 | \( 1 + 11.6iT - 53T^{2} \) |
| 59 | \( 1 + (1.91 - 1.91i)T - 59iT^{2} \) |
| 61 | \( 1 - 9.97T + 61T^{2} \) |
| 67 | \( 1 + (-7.57 + 7.57i)T - 67iT^{2} \) |
| 71 | \( 1 + (-4.26 - 4.26i)T + 71iT^{2} \) |
| 73 | \( 1 + (-3.18 - 3.18i)T + 73iT^{2} \) |
| 79 | \( 1 - 13.3T + 79T^{2} \) |
| 83 | \( 1 + (12.7 + 12.7i)T + 83iT^{2} \) |
| 89 | \( 1 + (-10.6 + 10.6i)T - 89iT^{2} \) |
| 97 | \( 1 + (8.68 - 8.68i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.251330735341178300179288326275, −8.107065932206462852068086767388, −7.37364872359636694160488954544, −6.65125380565830535835470566477, −6.13633842870339595847108912738, −4.98419631960606131687585006081, −4.06252777439459077471468609486, −3.29451558190515219709496188505, −2.26635536907510033669641495810, −0.852732926387324783470819514247,
0.75333384362968107670387485333, 2.36432674546193336020127266181, 3.00738727523481614221251135017, 4.04372903993043775993339524583, 5.39801612568752141687753001331, 5.64434819563664076110487236536, 6.50681941099254567253495882064, 7.50388744804066955496696363251, 8.257616638223795021186744122595, 9.120762979568782000080822983691