Properties

Label 234.4.l.b.127.4
Level $234$
Weight $4$
Character 234.127
Analytic conductor $13.806$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,4,Mod(127,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.127"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 234.l (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,16,0,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.8064469413\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 122x^{6} + 5305x^{4} + 97056x^{2} + 627264 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.4
Root \(4.95620i\) of defining polynomial
Character \(\chi\) \(=\) 234.127
Dual form 234.4.l.b.199.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 - 1.00000i) q^{2} +(2.00000 - 3.46410i) q^{4} +13.0327i q^{5} +(-3.11419 - 1.79798i) q^{7} -8.00000i q^{8} +(13.0327 + 22.5733i) q^{10} +(24.2951 - 14.0268i) q^{11} +(40.6883 + 23.2693i) q^{13} -7.19192 q^{14} +(-8.00000 - 13.8564i) q^{16} +(-57.7378 + 100.005i) q^{17} +(112.111 + 64.7274i) q^{19} +(45.1465 + 26.0654i) q^{20} +(28.0536 - 48.5903i) q^{22} +(87.4123 + 151.403i) q^{23} -44.8507 q^{25} +(93.7435 - 0.384640i) q^{26} +(-12.4568 + 7.19192i) q^{28} +(-109.596 - 189.825i) q^{29} +53.3357i q^{31} +(-27.7128 - 16.0000i) q^{32} +230.951i q^{34} +(23.4325 - 40.5863i) q^{35} +(109.784 - 63.3839i) q^{37} +258.910 q^{38} +104.261 q^{40} +(222.786 - 128.625i) q^{41} +(-14.2476 + 24.6775i) q^{43} -112.214i q^{44} +(302.805 + 174.825i) q^{46} +108.626i q^{47} +(-165.035 - 285.848i) q^{49} +(-77.6837 + 44.8507i) q^{50} +(161.984 - 94.4098i) q^{52} -215.231 q^{53} +(182.807 + 316.631i) q^{55} +(-14.3838 + 24.9135i) q^{56} +(-379.651 - 219.191i) q^{58} +(-339.576 - 196.055i) q^{59} +(112.459 - 194.785i) q^{61} +(53.3357 + 92.3802i) q^{62} -64.0000 q^{64} +(-303.262 + 530.278i) q^{65} +(-120.801 + 69.7442i) q^{67} +(230.951 + 400.019i) q^{68} -93.7299i q^{70} +(-550.285 - 317.707i) q^{71} +946.887i q^{73} +(126.768 - 219.568i) q^{74} +(448.445 - 258.910i) q^{76} -100.880 q^{77} -198.927 q^{79} +(180.586 - 104.261i) q^{80} +(257.251 - 445.571i) q^{82} -692.956i q^{83} +(-1303.33 - 752.478i) q^{85} +56.9903i q^{86} +(-112.214 - 194.361i) q^{88} +(701.782 - 405.174i) q^{89} +(-84.8734 - 145.622i) q^{91} +699.298 q^{92} +(108.626 + 188.146i) q^{94} +(-843.572 + 1461.11i) q^{95} +(-996.265 - 575.194i) q^{97} +(-571.696 - 330.069i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} + 18 q^{7} - 8 q^{10} + 18 q^{11} - 130 q^{13} - 80 q^{14} - 64 q^{16} - 112 q^{17} + 594 q^{19} - 72 q^{20} - 72 q^{22} + 230 q^{23} - 180 q^{25} + 184 q^{26} + 72 q^{28} - 32 q^{29} + 128 q^{35}+ \cdots - 4272 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.00000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 13.0327i 1.16568i 0.812588 + 0.582839i \(0.198058\pi\)
−0.812588 + 0.582839i \(0.801942\pi\)
\(6\) 0 0
\(7\) −3.11419 1.79798i −0.168151 0.0970817i 0.413563 0.910476i \(-0.364284\pi\)
−0.581713 + 0.813394i \(0.697617\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 13.0327 + 22.5733i 0.412129 + 0.713829i
\(11\) 24.2951 14.0268i 0.665933 0.384477i −0.128601 0.991696i \(-0.541049\pi\)
0.794534 + 0.607220i \(0.207715\pi\)
\(12\) 0 0
\(13\) 40.6883 + 23.2693i 0.868070 + 0.496442i
\(14\) −7.19192 −0.137294
\(15\) 0 0
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −57.7378 + 100.005i −0.823733 + 1.42675i 0.0791507 + 0.996863i \(0.474779\pi\)
−0.902884 + 0.429885i \(0.858554\pi\)
\(18\) 0 0
\(19\) 112.111 + 64.7274i 1.35369 + 0.781552i 0.988764 0.149485i \(-0.0477616\pi\)
0.364924 + 0.931037i \(0.381095\pi\)
\(20\) 45.1465 + 26.0654i 0.504753 + 0.291420i
\(21\) 0 0
\(22\) 28.0536 48.5903i 0.271866 0.470886i
\(23\) 87.4123 + 151.403i 0.792466 + 1.37259i 0.924436 + 0.381338i \(0.124537\pi\)
−0.131970 + 0.991254i \(0.542130\pi\)
\(24\) 0 0
\(25\) −44.8507 −0.358806
\(26\) 93.7435 0.384640i 0.707101 0.00290131i
\(27\) 0 0
\(28\) −12.4568 + 7.19192i −0.0840753 + 0.0485409i
\(29\) −109.596 189.825i −0.701773 1.21551i −0.967844 0.251553i \(-0.919059\pi\)
0.266071 0.963953i \(-0.414274\pi\)
\(30\) 0 0
\(31\) 53.3357i 0.309012i 0.987992 + 0.154506i \(0.0493786\pi\)
−0.987992 + 0.154506i \(0.950621\pi\)
\(32\) −27.7128 16.0000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 230.951i 1.16493i
\(35\) 23.4325 40.5863i 0.113166 0.196009i
\(36\) 0 0
\(37\) 109.784 63.3839i 0.487794 0.281628i −0.235865 0.971786i \(-0.575792\pi\)
0.723659 + 0.690158i \(0.242459\pi\)
\(38\) 258.910 1.10528
\(39\) 0 0
\(40\) 104.261 0.412129
\(41\) 222.786 128.625i 0.848616 0.489949i −0.0115677 0.999933i \(-0.503682\pi\)
0.860184 + 0.509984i \(0.170349\pi\)
\(42\) 0 0
\(43\) −14.2476 + 24.6775i −0.0505287 + 0.0875183i −0.890184 0.455602i \(-0.849424\pi\)
0.839655 + 0.543120i \(0.182757\pi\)
\(44\) 112.214i 0.384477i
\(45\) 0 0
\(46\) 302.805 + 174.825i 0.970569 + 0.560358i
\(47\) 108.626i 0.337122i 0.985691 + 0.168561i \(0.0539120\pi\)
−0.985691 + 0.168561i \(0.946088\pi\)
\(48\) 0 0
\(49\) −165.035 285.848i −0.481150 0.833377i
\(50\) −77.6837 + 44.8507i −0.219723 + 0.126857i
\(51\) 0 0
\(52\) 161.984 94.4098i 0.431983 0.251775i
\(53\) −215.231 −0.557817 −0.278908 0.960318i \(-0.589973\pi\)
−0.278908 + 0.960318i \(0.589973\pi\)
\(54\) 0 0
\(55\) 182.807 + 316.631i 0.448176 + 0.776264i
\(56\) −14.3838 + 24.9135i −0.0343236 + 0.0594502i
\(57\) 0 0
\(58\) −379.651 219.191i −0.859493 0.496228i
\(59\) −339.576 196.055i −0.749306 0.432612i 0.0761368 0.997097i \(-0.475741\pi\)
−0.825443 + 0.564485i \(0.809075\pi\)
\(60\) 0 0
\(61\) 112.459 194.785i 0.236048 0.408848i −0.723529 0.690294i \(-0.757481\pi\)
0.959577 + 0.281447i \(0.0908143\pi\)
\(62\) 53.3357 + 92.3802i 0.109252 + 0.189231i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) −303.262 + 530.278i −0.578692 + 1.01189i
\(66\) 0 0
\(67\) −120.801 + 69.7442i −0.220271 + 0.127173i −0.606076 0.795407i \(-0.707257\pi\)
0.385805 + 0.922580i \(0.373924\pi\)
\(68\) 230.951 + 400.019i 0.411867 + 0.713374i
\(69\) 0 0
\(70\) 93.7299i 0.160041i
\(71\) −550.285 317.707i −0.919815 0.531055i −0.0362388 0.999343i \(-0.511538\pi\)
−0.883576 + 0.468288i \(0.844871\pi\)
\(72\) 0 0
\(73\) 946.887i 1.51815i 0.651005 + 0.759073i \(0.274348\pi\)
−0.651005 + 0.759073i \(0.725652\pi\)
\(74\) 126.768 219.568i 0.199141 0.344923i
\(75\) 0 0
\(76\) 448.445 258.910i 0.676844 0.390776i
\(77\) −100.880 −0.149303
\(78\) 0 0
\(79\) −198.927 −0.283305 −0.141652 0.989916i \(-0.545242\pi\)
−0.141652 + 0.989916i \(0.545242\pi\)
\(80\) 180.586 104.261i 0.252377 0.145710i
\(81\) 0 0
\(82\) 257.251 445.571i 0.346446 0.600062i
\(83\) 692.956i 0.916408i −0.888847 0.458204i \(-0.848493\pi\)
0.888847 0.458204i \(-0.151507\pi\)
\(84\) 0 0
\(85\) −1303.33 752.478i −1.66313 0.960208i
\(86\) 56.9903i 0.0714584i
\(87\) 0 0
\(88\) −112.214 194.361i −0.135933 0.235443i
\(89\) 701.782 405.174i 0.835829 0.482566i −0.0200152 0.999800i \(-0.506371\pi\)
0.855844 + 0.517234i \(0.173038\pi\)
\(90\) 0 0
\(91\) −84.8734 145.622i −0.0977709 0.167751i
\(92\) 699.298 0.792466
\(93\) 0 0
\(94\) 108.626 + 188.146i 0.119191 + 0.206444i
\(95\) −843.572 + 1461.11i −0.911038 + 1.57796i
\(96\) 0 0
\(97\) −996.265 575.194i −1.04284 0.602083i −0.122203 0.992505i \(-0.538996\pi\)
−0.920636 + 0.390422i \(0.872329\pi\)
\(98\) −571.696 330.069i −0.589286 0.340225i
\(99\) 0 0
\(100\) −89.7014 + 155.367i −0.0897014 + 0.155367i
\(101\) −90.5627 156.859i −0.0892211 0.154535i 0.817961 0.575274i \(-0.195104\pi\)
−0.907182 + 0.420738i \(0.861771\pi\)
\(102\) 0 0
\(103\) 1767.21 1.69057 0.845284 0.534318i \(-0.179431\pi\)
0.845284 + 0.534318i \(0.179431\pi\)
\(104\) 186.155 325.506i 0.175519 0.306909i
\(105\) 0 0
\(106\) −372.792 + 215.231i −0.341592 + 0.197218i
\(107\) 145.226 + 251.538i 0.131210 + 0.227263i 0.924143 0.382046i \(-0.124780\pi\)
−0.792933 + 0.609309i \(0.791447\pi\)
\(108\) 0 0
\(109\) 903.654i 0.794077i −0.917802 0.397039i \(-0.870038\pi\)
0.917802 0.397039i \(-0.129962\pi\)
\(110\) 633.262 + 365.614i 0.548901 + 0.316908i
\(111\) 0 0
\(112\) 57.5353i 0.0485409i
\(113\) 446.360 773.119i 0.371593 0.643619i −0.618217 0.786007i \(-0.712145\pi\)
0.989811 + 0.142389i \(0.0454782\pi\)
\(114\) 0 0
\(115\) −1973.18 + 1139.22i −1.60000 + 0.923761i
\(116\) −876.766 −0.701773
\(117\) 0 0
\(118\) −784.218 −0.611806
\(119\) 359.613 207.623i 0.277022 0.159939i
\(120\) 0 0
\(121\) −271.997 + 471.113i −0.204356 + 0.353954i
\(122\) 449.837i 0.333823i
\(123\) 0 0
\(124\) 184.760 + 106.671i 0.133806 + 0.0772531i
\(125\) 1044.56i 0.747426i
\(126\) 0 0
\(127\) −283.278 490.652i −0.197928 0.342821i 0.749929 0.661519i \(-0.230088\pi\)
−0.947856 + 0.318698i \(0.896755\pi\)
\(128\) −110.851 + 64.0000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 5.01288 + 1221.73i 0.00338199 + 0.824252i
\(131\) −1998.74 −1.33306 −0.666528 0.745480i \(-0.732221\pi\)
−0.666528 + 0.745480i \(0.732221\pi\)
\(132\) 0 0
\(133\) −232.757 403.147i −0.151749 0.262837i
\(134\) −139.488 + 241.601i −0.0899252 + 0.155755i
\(135\) 0 0
\(136\) 800.038 + 461.902i 0.504431 + 0.291234i
\(137\) −857.379 495.008i −0.534678 0.308696i 0.208241 0.978077i \(-0.433226\pi\)
−0.742919 + 0.669381i \(0.766559\pi\)
\(138\) 0 0
\(139\) −898.616 + 1556.45i −0.548343 + 0.949757i 0.450046 + 0.893005i \(0.351408\pi\)
−0.998388 + 0.0567517i \(0.981926\pi\)
\(140\) −93.7299 162.345i −0.0565830 0.0980047i
\(141\) 0 0
\(142\) −1270.83 −0.751026
\(143\) 1314.92 5.39527i 0.768947 0.00315507i
\(144\) 0 0
\(145\) 2473.93 1428.33i 1.41689 0.818041i
\(146\) 946.887 + 1640.06i 0.536746 + 0.929671i
\(147\) 0 0
\(148\) 507.071i 0.281628i
\(149\) 367.740 + 212.315i 0.202191 + 0.116735i 0.597677 0.801737i \(-0.296090\pi\)
−0.395486 + 0.918472i \(0.629424\pi\)
\(150\) 0 0
\(151\) 3045.16i 1.64114i −0.571547 0.820569i \(-0.693657\pi\)
0.571547 0.820569i \(-0.306343\pi\)
\(152\) 517.820 896.890i 0.276320 0.478601i
\(153\) 0 0
\(154\) −174.729 + 100.880i −0.0914288 + 0.0527865i
\(155\) −695.108 −0.360209
\(156\) 0 0
\(157\) 1349.62 0.686061 0.343031 0.939324i \(-0.388546\pi\)
0.343031 + 0.939324i \(0.388546\pi\)
\(158\) −344.552 + 198.927i −0.173488 + 0.100163i
\(159\) 0 0
\(160\) 208.523 361.172i 0.103032 0.178457i
\(161\) 628.662i 0.307736i
\(162\) 0 0
\(163\) −937.821 541.451i −0.450649 0.260182i 0.257455 0.966290i \(-0.417116\pi\)
−0.708104 + 0.706108i \(0.750449\pi\)
\(164\) 1029.00i 0.489949i
\(165\) 0 0
\(166\) −692.956 1200.24i −0.323999 0.561183i
\(167\) −740.513 + 427.535i −0.343129 + 0.198106i −0.661655 0.749808i \(-0.730146\pi\)
0.318526 + 0.947914i \(0.396812\pi\)
\(168\) 0 0
\(169\) 1114.08 + 1893.58i 0.507090 + 0.861893i
\(170\) −3009.91 −1.35794
\(171\) 0 0
\(172\) 56.9903 + 98.7101i 0.0252644 + 0.0437591i
\(173\) 1825.83 3162.43i 0.802401 1.38980i −0.115631 0.993292i \(-0.536889\pi\)
0.918032 0.396507i \(-0.129778\pi\)
\(174\) 0 0
\(175\) 139.674 + 80.6407i 0.0603334 + 0.0348335i
\(176\) −388.722 224.429i −0.166483 0.0961191i
\(177\) 0 0
\(178\) 810.349 1403.56i 0.341226 0.591020i
\(179\) 951.190 + 1647.51i 0.397180 + 0.687936i 0.993377 0.114902i \(-0.0366555\pi\)
−0.596197 + 0.802838i \(0.703322\pi\)
\(180\) 0 0
\(181\) 2019.38 0.829277 0.414639 0.909986i \(-0.363908\pi\)
0.414639 + 0.909986i \(0.363908\pi\)
\(182\) −292.627 167.351i −0.119181 0.0681587i
\(183\) 0 0
\(184\) 1211.22 699.298i 0.485284 0.280179i
\(185\) 826.062 + 1430.78i 0.328288 + 0.568611i
\(186\) 0 0
\(187\) 3239.51i 1.26682i
\(188\) 376.292 + 217.252i 0.145978 + 0.0842805i
\(189\) 0 0
\(190\) 3374.29i 1.28840i
\(191\) 776.636 1345.17i 0.294217 0.509599i −0.680586 0.732669i \(-0.738275\pi\)
0.974802 + 0.223070i \(0.0716079\pi\)
\(192\) 0 0
\(193\) 520.344 300.421i 0.194068 0.112045i −0.399817 0.916595i \(-0.630926\pi\)
0.593886 + 0.804549i \(0.297593\pi\)
\(194\) −2300.77 −0.851474
\(195\) 0 0
\(196\) −1320.28 −0.481150
\(197\) 1525.58 880.793i 0.551741 0.318548i −0.198083 0.980185i \(-0.563472\pi\)
0.749824 + 0.661638i \(0.230138\pi\)
\(198\) 0 0
\(199\) 1708.66 2959.49i 0.608662 1.05423i −0.382799 0.923832i \(-0.625040\pi\)
0.991461 0.130402i \(-0.0416269\pi\)
\(200\) 358.806i 0.126857i
\(201\) 0 0
\(202\) −313.718 181.125i −0.109273 0.0630888i
\(203\) 788.203i 0.272517i
\(204\) 0 0
\(205\) 1676.33 + 2903.49i 0.571122 + 0.989213i
\(206\) 3060.90 1767.21i 1.03526 0.597706i
\(207\) 0 0
\(208\) −3.07712 749.948i −0.00102577 0.249998i
\(209\) 3631.68 1.20195
\(210\) 0 0
\(211\) 1314.36 + 2276.54i 0.428836 + 0.742766i 0.996770 0.0803079i \(-0.0255904\pi\)
−0.567934 + 0.823074i \(0.692257\pi\)
\(212\) −430.463 + 745.583i −0.139454 + 0.241542i
\(213\) 0 0
\(214\) 503.076 + 290.451i 0.160699 + 0.0927796i
\(215\) −321.614 185.684i −0.102018 0.0589002i
\(216\) 0 0
\(217\) 95.8965 166.098i 0.0299995 0.0519606i
\(218\) −903.654 1565.18i −0.280749 0.486271i
\(219\) 0 0
\(220\) 1462.46 0.448176
\(221\) −4676.29 + 2725.50i −1.42336 + 0.829580i
\(222\) 0 0
\(223\) −2105.52 + 1215.62i −0.632269 + 0.365040i −0.781630 0.623742i \(-0.785612\pi\)
0.149361 + 0.988783i \(0.452278\pi\)
\(224\) 57.5353 + 99.6541i 0.0171618 + 0.0297251i
\(225\) 0 0
\(226\) 1785.44i 0.525512i
\(227\) 5662.09 + 3269.01i 1.65553 + 0.955823i 0.974738 + 0.223351i \(0.0716997\pi\)
0.680797 + 0.732472i \(0.261634\pi\)
\(228\) 0 0
\(229\) 2167.38i 0.625434i 0.949846 + 0.312717i \(0.101239\pi\)
−0.949846 + 0.312717i \(0.898761\pi\)
\(230\) −2278.43 + 3946.36i −0.653197 + 1.13137i
\(231\) 0 0
\(232\) −1518.60 + 876.766i −0.429746 + 0.248114i
\(233\) 3040.55 0.854906 0.427453 0.904038i \(-0.359411\pi\)
0.427453 + 0.904038i \(0.359411\pi\)
\(234\) 0 0
\(235\) −1415.69 −0.392976
\(236\) −1358.31 + 784.218i −0.374653 + 0.216306i
\(237\) 0 0
\(238\) 415.245 719.226i 0.113094 0.195884i
\(239\) 4747.31i 1.28485i 0.766351 + 0.642423i \(0.222071\pi\)
−0.766351 + 0.642423i \(0.777929\pi\)
\(240\) 0 0
\(241\) −2367.90 1367.11i −0.632904 0.365408i 0.148972 0.988841i \(-0.452404\pi\)
−0.781876 + 0.623434i \(0.785737\pi\)
\(242\) 1087.99i 0.289002i
\(243\) 0 0
\(244\) −449.837 779.141i −0.118024 0.204424i
\(245\) 3725.37 2150.84i 0.971449 0.560866i
\(246\) 0 0
\(247\) 3055.45 + 5242.40i 0.787100 + 1.35047i
\(248\) 426.686 0.109252
\(249\) 0 0
\(250\) 1044.56 + 1809.23i 0.264255 + 0.457703i
\(251\) −210.392 + 364.410i −0.0529077 + 0.0916389i −0.891266 0.453480i \(-0.850182\pi\)
0.838359 + 0.545119i \(0.183516\pi\)
\(252\) 0 0
\(253\) 4247.39 + 2452.23i 1.05546 + 0.609369i
\(254\) −981.303 566.556i −0.242411 0.139956i
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −1744.07 3020.82i −0.423316 0.733205i 0.572945 0.819594i \(-0.305801\pi\)
−0.996262 + 0.0863885i \(0.972467\pi\)
\(258\) 0 0
\(259\) −455.852 −0.109364
\(260\) 1230.41 + 2111.08i 0.293488 + 0.503554i
\(261\) 0 0
\(262\) −3461.91 + 1998.74i −0.816327 + 0.471307i
\(263\) −1664.65 2883.26i −0.390291 0.676005i 0.602196 0.798348i \(-0.294292\pi\)
−0.992488 + 0.122343i \(0.960959\pi\)
\(264\) 0 0
\(265\) 2805.04i 0.650235i
\(266\) −806.294 465.514i −0.185854 0.107303i
\(267\) 0 0
\(268\) 557.954i 0.127173i
\(269\) 2898.78 5020.84i 0.657033 1.13801i −0.324347 0.945938i \(-0.605145\pi\)
0.981380 0.192076i \(-0.0615220\pi\)
\(270\) 0 0
\(271\) 195.689 112.981i 0.0438645 0.0253252i −0.477907 0.878410i \(-0.658605\pi\)
0.521772 + 0.853085i \(0.325271\pi\)
\(272\) 1847.61 0.411867
\(273\) 0 0
\(274\) −1980.03 −0.436563
\(275\) −1089.65 + 629.113i −0.238941 + 0.137952i
\(276\) 0 0
\(277\) 3071.46 5319.92i 0.666232 1.15395i −0.312718 0.949846i \(-0.601240\pi\)
0.978950 0.204101i \(-0.0654271\pi\)
\(278\) 3594.46i 0.775473i
\(279\) 0 0
\(280\) −324.690 187.460i −0.0692998 0.0400103i
\(281\) 2631.82i 0.558724i −0.960186 0.279362i \(-0.909877\pi\)
0.960186 0.279362i \(-0.0901229\pi\)
\(282\) 0 0
\(283\) −1634.26 2830.62i −0.343275 0.594569i 0.641764 0.766902i \(-0.278203\pi\)
−0.985039 + 0.172333i \(0.944870\pi\)
\(284\) −2201.14 + 1270.83i −0.459907 + 0.265528i
\(285\) 0 0
\(286\) 2272.12 1324.27i 0.469766 0.273796i
\(287\) −925.062 −0.190260
\(288\) 0 0
\(289\) −4210.80 7293.31i −0.857072 1.48449i
\(290\) 2856.65 4947.86i 0.578443 1.00189i
\(291\) 0 0
\(292\) 3280.11 + 1893.77i 0.657377 + 0.379537i
\(293\) −6160.79 3556.93i −1.22839 0.709209i −0.261694 0.965151i \(-0.584281\pi\)
−0.966692 + 0.255942i \(0.917614\pi\)
\(294\) 0 0
\(295\) 2555.12 4425.59i 0.504287 0.873450i
\(296\) −507.071 878.273i −0.0995706 0.172461i
\(297\) 0 0
\(298\) 849.260 0.165088
\(299\) 33.6222 + 8194.34i 0.00650309 + 1.58492i
\(300\) 0 0
\(301\) 88.7393 51.2337i 0.0169929 0.00981083i
\(302\) −3045.16 5274.38i −0.580230 1.00499i
\(303\) 0 0
\(304\) 2071.28i 0.390776i
\(305\) 2538.57 + 1465.65i 0.476585 + 0.275156i
\(306\) 0 0
\(307\) 5015.75i 0.932456i 0.884665 + 0.466228i \(0.154387\pi\)
−0.884665 + 0.466228i \(0.845613\pi\)
\(308\) −201.759 + 349.457i −0.0373257 + 0.0646499i
\(309\) 0 0
\(310\) −1203.96 + 695.108i −0.220582 + 0.127353i
\(311\) −563.698 −0.102779 −0.0513897 0.998679i \(-0.516365\pi\)
−0.0513897 + 0.998679i \(0.516365\pi\)
\(312\) 0 0
\(313\) −1516.36 −0.273832 −0.136916 0.990583i \(-0.543719\pi\)
−0.136916 + 0.990583i \(0.543719\pi\)
\(314\) 2337.62 1349.62i 0.420125 0.242559i
\(315\) 0 0
\(316\) −397.855 + 689.105i −0.0708262 + 0.122675i
\(317\) 2358.19i 0.417820i −0.977935 0.208910i \(-0.933008\pi\)
0.977935 0.208910i \(-0.0669915\pi\)
\(318\) 0 0
\(319\) −5325.29 3074.56i −0.934667 0.539630i
\(320\) 834.091i 0.145710i
\(321\) 0 0
\(322\) −628.662 1088.87i −0.108801 0.188449i
\(323\) −12946.1 + 7474.43i −2.23016 + 1.28758i
\(324\) 0 0
\(325\) −1824.90 1043.65i −0.311468 0.178126i
\(326\) −2165.80 −0.367953
\(327\) 0 0
\(328\) −1029.00 1782.28i −0.173223 0.300031i
\(329\) 195.307 338.282i 0.0327284 0.0566873i
\(330\) 0 0
\(331\) −1472.43 850.110i −0.244508 0.141167i 0.372739 0.927936i \(-0.378419\pi\)
−0.617247 + 0.786769i \(0.711752\pi\)
\(332\) −2400.47 1385.91i −0.396816 0.229102i
\(333\) 0 0
\(334\) −855.071 + 1481.03i −0.140082 + 0.242629i
\(335\) −908.954 1574.36i −0.148243 0.256765i
\(336\) 0 0
\(337\) −11512.3 −1.86087 −0.930437 0.366453i \(-0.880572\pi\)
−0.930437 + 0.366453i \(0.880572\pi\)
\(338\) 3823.22 + 2165.70i 0.615253 + 0.348516i
\(339\) 0 0
\(340\) −5213.32 + 3009.91i −0.831564 + 0.480104i
\(341\) 748.130 + 1295.80i 0.118808 + 0.205781i
\(342\) 0 0
\(343\) 2420.33i 0.381007i
\(344\) 197.420 + 113.981i 0.0309424 + 0.0178646i
\(345\) 0 0
\(346\) 7303.32i 1.13477i
\(347\) −90.7510 + 157.185i −0.0140397 + 0.0243174i −0.872960 0.487792i \(-0.837802\pi\)
0.858920 + 0.512109i \(0.171136\pi\)
\(348\) 0 0
\(349\) −4504.64 + 2600.76i −0.690911 + 0.398898i −0.803953 0.594693i \(-0.797274\pi\)
0.113042 + 0.993590i \(0.463940\pi\)
\(350\) 322.563 0.0492620
\(351\) 0 0
\(352\) −897.716 −0.135933
\(353\) 4190.52 2419.40i 0.631839 0.364792i −0.149625 0.988743i \(-0.547807\pi\)
0.781464 + 0.623951i \(0.214473\pi\)
\(354\) 0 0
\(355\) 4140.58 7171.69i 0.619040 1.07221i
\(356\) 3241.39i 0.482566i
\(357\) 0 0
\(358\) 3295.02 + 1902.38i 0.486444 + 0.280849i
\(359\) 2374.12i 0.349029i −0.984655 0.174514i \(-0.944164\pi\)
0.984655 0.174514i \(-0.0558356\pi\)
\(360\) 0 0
\(361\) 4949.78 + 8573.27i 0.721648 + 1.24993i
\(362\) 3497.67 2019.38i 0.507827 0.293194i
\(363\) 0 0
\(364\) −674.196 + 2.76630i −0.0970809 + 0.000398333i
\(365\) −12340.5 −1.76967
\(366\) 0 0
\(367\) 3241.30 + 5614.10i 0.461021 + 0.798512i 0.999012 0.0444389i \(-0.0141500\pi\)
−0.537991 + 0.842950i \(0.680817\pi\)
\(368\) 1398.60 2422.44i 0.198117 0.343148i
\(369\) 0 0
\(370\) 2861.56 + 1652.12i 0.402069 + 0.232135i
\(371\) 670.272 + 386.981i 0.0937972 + 0.0541538i
\(372\) 0 0
\(373\) 156.532 271.121i 0.0217290 0.0376357i −0.854956 0.518700i \(-0.826416\pi\)
0.876685 + 0.481064i \(0.159750\pi\)
\(374\) 3239.51 + 5610.99i 0.447890 + 0.775768i
\(375\) 0 0
\(376\) 869.009 0.119191
\(377\) −42.1548 10273.9i −0.00575885 1.40353i
\(378\) 0 0
\(379\) 2093.43 1208.64i 0.283727 0.163810i −0.351383 0.936232i \(-0.614288\pi\)
0.635109 + 0.772422i \(0.280955\pi\)
\(380\) 3374.29 + 5844.44i 0.455519 + 0.788982i
\(381\) 0 0
\(382\) 3106.54i 0.416085i
\(383\) −1031.33 595.441i −0.137595 0.0794402i 0.429623 0.903009i \(-0.358647\pi\)
−0.567217 + 0.823568i \(0.691980\pi\)
\(384\) 0 0
\(385\) 1314.73i 0.174039i
\(386\) 600.841 1040.69i 0.0792280 0.137227i
\(387\) 0 0
\(388\) −3985.06 + 2300.77i −0.521419 + 0.301042i
\(389\) 2337.99 0.304732 0.152366 0.988324i \(-0.451311\pi\)
0.152366 + 0.988324i \(0.451311\pi\)
\(390\) 0 0
\(391\) −20188.0 −2.61112
\(392\) −2286.79 + 1320.28i −0.294643 + 0.170112i
\(393\) 0 0
\(394\) 1761.59 3051.16i 0.225247 0.390140i
\(395\) 2592.56i 0.330242i
\(396\) 0 0
\(397\) −12017.7 6938.45i −1.51928 0.877156i −0.999742 0.0227072i \(-0.992771\pi\)
−0.519536 0.854448i \(-0.673895\pi\)
\(398\) 6834.64i 0.860778i
\(399\) 0 0
\(400\) 358.806 + 621.470i 0.0448507 + 0.0776837i
\(401\) −7850.46 + 4532.46i −0.977639 + 0.564440i −0.901556 0.432661i \(-0.857575\pi\)
−0.0760824 + 0.997102i \(0.524241\pi\)
\(402\) 0 0
\(403\) −1241.09 + 2170.14i −0.153407 + 0.268244i
\(404\) −724.502 −0.0892211
\(405\) 0 0
\(406\) 788.203 + 1365.21i 0.0963494 + 0.166882i
\(407\) 1778.15 3079.84i 0.216559 0.375091i
\(408\) 0 0
\(409\) 12316.6 + 7111.00i 1.48904 + 0.859698i 0.999922 0.0125189i \(-0.00398500\pi\)
0.489119 + 0.872217i \(0.337318\pi\)
\(410\) 5806.98 + 3352.66i 0.699479 + 0.403845i
\(411\) 0 0
\(412\) 3534.42 6121.80i 0.422642 0.732037i
\(413\) 705.004 + 1221.10i 0.0839975 + 0.145488i
\(414\) 0 0
\(415\) 9031.08 1.06824
\(416\) −755.278 1295.87i −0.0890158 0.152729i
\(417\) 0 0
\(418\) 6290.25 3631.68i 0.736044 0.424955i
\(419\) −143.734 248.955i −0.0167587 0.0290269i 0.857524 0.514443i \(-0.172001\pi\)
−0.874283 + 0.485416i \(0.838668\pi\)
\(420\) 0 0
\(421\) 12089.3i 1.39952i −0.714380 0.699758i \(-0.753291\pi\)
0.714380 0.699758i \(-0.246709\pi\)
\(422\) 4553.09 + 2628.73i 0.525215 + 0.303233i
\(423\) 0 0
\(424\) 1721.85i 0.197218i
\(425\) 2589.58 4485.28i 0.295560 0.511925i
\(426\) 0 0
\(427\) −700.440 + 404.399i −0.0793833 + 0.0458319i
\(428\) 1161.80 0.131210
\(429\) 0 0
\(430\) −742.736 −0.0832975
\(431\) 132.526 76.5139i 0.0148110 0.00855115i −0.492576 0.870269i \(-0.663945\pi\)
0.507387 + 0.861718i \(0.330611\pi\)
\(432\) 0 0
\(433\) 4806.82 8325.66i 0.533490 0.924032i −0.465745 0.884919i \(-0.654213\pi\)
0.999235 0.0391128i \(-0.0124532\pi\)
\(434\) 383.586i 0.0424256i
\(435\) 0 0
\(436\) −3130.35 1807.31i −0.343845 0.198519i
\(437\) 22631.9i 2.47741i
\(438\) 0 0
\(439\) 6582.62 + 11401.4i 0.715652 + 1.23955i 0.962708 + 0.270544i \(0.0872036\pi\)
−0.247056 + 0.969001i \(0.579463\pi\)
\(440\) 2533.05 1462.46i 0.274451 0.158454i
\(441\) 0 0
\(442\) −5374.08 + 9397.01i −0.578323 + 1.01124i
\(443\) 15445.0 1.65647 0.828235 0.560382i \(-0.189346\pi\)
0.828235 + 0.560382i \(0.189346\pi\)
\(444\) 0 0
\(445\) 5280.51 + 9146.11i 0.562517 + 0.974308i
\(446\) −2431.24 + 4211.04i −0.258123 + 0.447081i
\(447\) 0 0
\(448\) 199.308 + 115.071i 0.0210188 + 0.0121352i
\(449\) 1831.13 + 1057.20i 0.192464 + 0.111119i 0.593136 0.805103i \(-0.297890\pi\)
−0.400671 + 0.916222i \(0.631223\pi\)
\(450\) 0 0
\(451\) 3608.41 6249.94i 0.376748 0.652546i
\(452\) −1785.44 3092.48i −0.185797 0.321809i
\(453\) 0 0
\(454\) 13076.0 1.35174
\(455\) 1897.84 1106.13i 0.195543 0.113969i
\(456\) 0 0
\(457\) −7359.07 + 4248.76i −0.753267 + 0.434899i −0.826873 0.562389i \(-0.809882\pi\)
0.0736064 + 0.997287i \(0.476549\pi\)
\(458\) 2167.38 + 3754.01i 0.221124 + 0.382999i
\(459\) 0 0
\(460\) 9113.73i 0.923761i
\(461\) −6756.14 3900.66i −0.682570 0.394082i 0.118253 0.992984i \(-0.462271\pi\)
−0.800823 + 0.598902i \(0.795604\pi\)
\(462\) 0 0
\(463\) 9734.48i 0.977105i 0.872535 + 0.488552i \(0.162475\pi\)
−0.872535 + 0.488552i \(0.837525\pi\)
\(464\) −1753.53 + 3037.21i −0.175443 + 0.303877i
\(465\) 0 0
\(466\) 5266.39 3040.55i 0.523521 0.302255i
\(467\) −9446.38 −0.936031 −0.468015 0.883720i \(-0.655031\pi\)
−0.468015 + 0.883720i \(0.655031\pi\)
\(468\) 0 0
\(469\) 501.595 0.0493849
\(470\) −2452.05 + 1415.69i −0.240648 + 0.138938i
\(471\) 0 0
\(472\) −1568.44 + 2716.61i −0.152952 + 0.264920i
\(473\) 799.392i 0.0777084i
\(474\) 0 0
\(475\) −5028.27 2903.07i −0.485711 0.280425i
\(476\) 1660.98i 0.159939i
\(477\) 0 0
\(478\) 4747.31 + 8222.58i 0.454261 + 0.786804i
\(479\) −2926.17 + 1689.43i −0.279124 + 0.161152i −0.633027 0.774130i \(-0.718188\pi\)
0.353903 + 0.935282i \(0.384854\pi\)
\(480\) 0 0
\(481\) 5941.83 24.3799i 0.563252 0.00231108i
\(482\) −5468.44 −0.516764
\(483\) 0 0
\(484\) 1087.99 + 1884.45i 0.102178 + 0.176977i
\(485\) 7496.31 12984.0i 0.701835 1.21561i
\(486\) 0 0
\(487\) −15593.2 9002.76i −1.45092 0.837688i −0.452384 0.891823i \(-0.649426\pi\)
−0.998534 + 0.0541352i \(0.982760\pi\)
\(488\) −1558.28 899.675i −0.144549 0.0834556i
\(489\) 0 0
\(490\) 4301.68 7450.74i 0.396592 0.686918i
\(491\) 1353.21 + 2343.83i 0.124378 + 0.215429i 0.921490 0.388403i \(-0.126973\pi\)
−0.797112 + 0.603832i \(0.793640\pi\)
\(492\) 0 0
\(493\) 25311.2 2.31229
\(494\) 10534.6 + 6024.66i 0.959462 + 0.548709i
\(495\) 0 0
\(496\) 739.042 426.686i 0.0669031 0.0386265i
\(497\) 1142.46 + 1978.80i 0.103112 + 0.178594i
\(498\) 0 0
\(499\) 8991.30i 0.806625i 0.915062 + 0.403313i \(0.132141\pi\)
−0.915062 + 0.403313i \(0.867859\pi\)
\(500\) 3618.46 + 2089.12i 0.323645 + 0.186857i
\(501\) 0 0
\(502\) 841.569i 0.0748228i
\(503\) −6204.92 + 10747.2i −0.550028 + 0.952676i 0.448244 + 0.893911i \(0.352049\pi\)
−0.998272 + 0.0587647i \(0.981284\pi\)
\(504\) 0 0
\(505\) 2044.30 1180.27i 0.180139 0.104003i
\(506\) 9808.92 0.861778
\(507\) 0 0
\(508\) −2266.22 −0.197928
\(509\) −2670.76 + 1541.96i −0.232572 + 0.134276i −0.611758 0.791045i \(-0.709537\pi\)
0.379186 + 0.925321i \(0.376204\pi\)
\(510\) 0 0
\(511\) 1702.48 2948.79i 0.147384 0.255277i
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) −6041.64 3488.14i −0.518454 0.299330i
\(515\) 23031.5i 1.97066i
\(516\) 0 0
\(517\) 1523.68 + 2639.09i 0.129616 + 0.224501i
\(518\) −789.558 + 455.852i −0.0669714 + 0.0386660i
\(519\) 0 0
\(520\) 4242.22 + 2426.09i 0.357757 + 0.204599i
\(521\) −3824.30 −0.321584 −0.160792 0.986988i \(-0.551405\pi\)
−0.160792 + 0.986988i \(0.551405\pi\)
\(522\) 0 0
\(523\) 2012.17 + 3485.19i 0.168234 + 0.291389i 0.937799 0.347179i \(-0.112860\pi\)
−0.769565 + 0.638568i \(0.779527\pi\)
\(524\) −3997.47 + 6923.83i −0.333264 + 0.577231i
\(525\) 0 0
\(526\) −5766.51 3329.30i −0.478007 0.275978i
\(527\) −5333.83 3079.49i −0.440883 0.254544i
\(528\) 0 0
\(529\) −9198.32 + 15932.0i −0.756005 + 1.30944i
\(530\) −2805.04 4858.47i −0.229893 0.398186i
\(531\) 0 0
\(532\) −1862.06 −0.151749
\(533\) 12057.8 49.4744i 0.979889 0.00402059i
\(534\) 0 0
\(535\) −3278.21 + 1892.68i −0.264915 + 0.152949i
\(536\) 557.954 + 966.405i 0.0449626 + 0.0778775i
\(537\) 0 0
\(538\) 11595.1i 0.929184i
\(539\) −8019.08 4629.82i −0.640828 0.369982i
\(540\) 0 0
\(541\) 2764.37i 0.219685i −0.993949 0.109842i \(-0.964965\pi\)
0.993949 0.109842i \(-0.0350346\pi\)
\(542\) 225.962 391.379i 0.0179076 0.0310169i
\(543\) 0 0
\(544\) 3200.15 1847.61i 0.252216 0.145617i
\(545\) 11777.0 0.925638
\(546\) 0 0
\(547\) 24620.8 1.92451 0.962255 0.272148i \(-0.0877341\pi\)
0.962255 + 0.272148i \(0.0877341\pi\)
\(548\) −3429.52 + 1980.03i −0.267339 + 0.154348i
\(549\) 0 0
\(550\) −1258.23 + 2179.31i −0.0975471 + 0.168957i
\(551\) 28375.4i 2.19389i
\(552\) 0 0
\(553\) 619.498 + 357.667i 0.0476379 + 0.0275037i
\(554\) 12285.8i 0.942194i
\(555\) 0 0
\(556\) 3594.46 + 6225.79i 0.274171 + 0.474879i
\(557\) 8405.82 4853.10i 0.639437 0.369179i −0.144961 0.989437i \(-0.546306\pi\)
0.784397 + 0.620259i \(0.212972\pi\)
\(558\) 0 0
\(559\) −1153.94 + 672.555i −0.0873102 + 0.0508874i
\(560\) −749.840 −0.0565830
\(561\) 0 0
\(562\) −2631.82 4558.45i −0.197539 0.342147i
\(563\) 9984.31 17293.3i 0.747404 1.29454i −0.201659 0.979456i \(-0.564633\pi\)
0.949063 0.315087i \(-0.102034\pi\)
\(564\) 0 0
\(565\) 10075.8 + 5817.27i 0.750252 + 0.433158i
\(566\) −5661.25 3268.52i −0.420424 0.242732i
\(567\) 0 0
\(568\) −2541.66 + 4402.28i −0.187756 + 0.325204i
\(569\) 5753.03 + 9964.54i 0.423865 + 0.734156i 0.996314 0.0857843i \(-0.0273396\pi\)
−0.572448 + 0.819941i \(0.694006\pi\)
\(570\) 0 0
\(571\) −16173.1 −1.18533 −0.592666 0.805448i \(-0.701925\pi\)
−0.592666 + 0.805448i \(0.701925\pi\)
\(572\) 2611.16 4565.82i 0.190870 0.333752i
\(573\) 0 0
\(574\) −1602.25 + 925.062i −0.116510 + 0.0672672i
\(575\) −3920.50 6790.51i −0.284341 0.492494i
\(576\) 0 0
\(577\) 23233.2i 1.67627i −0.545462 0.838136i \(-0.683646\pi\)
0.545462 0.838136i \(-0.316354\pi\)
\(578\) −14586.6 8421.59i −1.04969 0.606042i
\(579\) 0 0
\(580\) 11426.6i 0.818041i
\(581\) −1245.92 + 2158.00i −0.0889665 + 0.154094i
\(582\) 0 0
\(583\) −5229.08 + 3019.01i −0.371469 + 0.214468i
\(584\) 7575.09 0.536746
\(585\) 0 0
\(586\) −14227.7 −1.00297
\(587\) −3663.35 + 2115.04i −0.257585 + 0.148717i −0.623233 0.782037i \(-0.714181\pi\)
0.365647 + 0.930754i \(0.380848\pi\)
\(588\) 0 0
\(589\) −3452.29 + 5979.53i −0.241509 + 0.418306i
\(590\) 10220.5i 0.713169i
\(591\) 0 0
\(592\) −1756.55 1014.14i −0.121949 0.0704071i
\(593\) 2252.09i 0.155956i 0.996955 + 0.0779782i \(0.0248465\pi\)
−0.996955 + 0.0779782i \(0.975154\pi\)
\(594\) 0 0
\(595\) 2705.88 + 4686.72i 0.186437 + 0.322919i
\(596\) 1470.96 849.260i 0.101096 0.0583675i
\(597\) 0 0
\(598\) 8252.57 + 14159.4i 0.564336 + 0.968262i
\(599\) −2097.38 −0.143066 −0.0715331 0.997438i \(-0.522789\pi\)
−0.0715331 + 0.997438i \(0.522789\pi\)
\(600\) 0 0
\(601\) −6187.67 10717.4i −0.419967 0.727405i 0.575968 0.817472i \(-0.304625\pi\)
−0.995936 + 0.0900673i \(0.971292\pi\)
\(602\) 102.467 177.479i 0.00693731 0.0120158i
\(603\) 0 0
\(604\) −10548.8 6090.33i −0.710634 0.410285i
\(605\) −6139.86 3544.85i −0.412597 0.238213i
\(606\) 0 0
\(607\) 12164.8 21070.1i 0.813435 1.40891i −0.0970120 0.995283i \(-0.530929\pi\)
0.910447 0.413627i \(-0.135738\pi\)
\(608\) −2071.28 3587.56i −0.138160 0.239301i
\(609\) 0 0
\(610\) 5862.59 0.389130
\(611\) −2527.66 + 4419.81i −0.167362 + 0.292646i
\(612\) 0 0
\(613\) −12595.5 + 7272.00i −0.829896 + 0.479141i −0.853817 0.520573i \(-0.825718\pi\)
0.0239210 + 0.999714i \(0.492385\pi\)
\(614\) 5015.75 + 8687.54i 0.329673 + 0.571010i
\(615\) 0 0
\(616\) 807.037i 0.0527865i
\(617\) 5213.40 + 3009.96i 0.340168 + 0.196396i 0.660346 0.750961i \(-0.270410\pi\)
−0.320178 + 0.947357i \(0.603743\pi\)
\(618\) 0 0
\(619\) 11663.1i 0.757320i 0.925536 + 0.378660i \(0.123615\pi\)
−0.925536 + 0.378660i \(0.876385\pi\)
\(620\) −1390.22 + 2407.92i −0.0900522 + 0.155975i
\(621\) 0 0
\(622\) −976.354 + 563.698i −0.0629393 + 0.0363380i
\(623\) −2913.98 −0.187393
\(624\) 0 0
\(625\) −19219.8 −1.23006
\(626\) −2626.41 + 1516.36i −0.167687 + 0.0968144i
\(627\) 0 0
\(628\) 2699.25 4675.23i 0.171515 0.297073i
\(629\) 14638.6i 0.927946i
\(630\) 0 0
\(631\) −4828.46 2787.71i −0.304624 0.175875i 0.339894 0.940464i \(-0.389609\pi\)
−0.644518 + 0.764589i \(0.722942\pi\)
\(632\) 1591.42i 0.100163i
\(633\) 0 0
\(634\) −2358.19 4084.50i −0.147722 0.255861i
\(635\) 6394.50 3691.87i 0.399619 0.230720i
\(636\) 0 0
\(637\) −63.4788 15470.9i −0.00394839 0.962292i
\(638\) −12298.2 −0.763153
\(639\) 0 0
\(640\) −834.091 1444.69i −0.0515162 0.0892287i
\(641\) −9908.76 + 17162.5i −0.610566 + 1.05753i 0.380580 + 0.924748i \(0.375725\pi\)
−0.991145 + 0.132782i \(0.957609\pi\)
\(642\) 0 0
\(643\) 17250.8 + 9959.77i 1.05802 + 0.610848i 0.924884 0.380250i \(-0.124162\pi\)
0.133135 + 0.991098i \(0.457495\pi\)
\(644\) −2177.75 1257.32i −0.133254 0.0769340i
\(645\) 0 0
\(646\) −14948.9 + 25892.2i −0.910457 + 1.57696i
\(647\) 12381.7 + 21445.7i 0.752356 + 1.30312i 0.946678 + 0.322180i \(0.104416\pi\)
−0.194323 + 0.980938i \(0.562251\pi\)
\(648\) 0 0
\(649\) −11000.1 −0.665317
\(650\) −4204.47 + 17.2514i −0.253712 + 0.00104101i
\(651\) 0 0
\(652\) −3751.28 + 2165.80i −0.225324 + 0.130091i
\(653\) −3230.41 5595.23i −0.193592 0.335311i 0.752846 0.658197i \(-0.228680\pi\)
−0.946438 + 0.322885i \(0.895347\pi\)
\(654\) 0 0
\(655\) 26048.9i 1.55392i
\(656\) −3564.57 2058.00i −0.212154 0.122487i
\(657\) 0 0
\(658\) 781.230i 0.0462850i
\(659\) 9995.68 17313.0i 0.590860 1.02340i −0.403257 0.915087i \(-0.632122\pi\)
0.994117 0.108312i \(-0.0345446\pi\)
\(660\) 0 0
\(661\) −11657.5 + 6730.43i −0.685964 + 0.396042i −0.802098 0.597192i \(-0.796283\pi\)
0.116134 + 0.993234i \(0.462950\pi\)
\(662\) −3400.44 −0.199640
\(663\) 0 0
\(664\) −5543.65 −0.323999
\(665\) 5254.09 3033.45i 0.306383 0.176890i
\(666\) 0 0
\(667\) 19160.0 33186.1i 1.11226 1.92649i
\(668\) 3420.28i 0.198106i
\(669\) 0 0
\(670\) −3148.71 1817.91i −0.181560 0.104824i
\(671\) 6309.78i 0.363020i
\(672\) 0 0
\(673\) 2099.82 + 3636.99i 0.120271 + 0.208315i 0.919874 0.392213i \(-0.128290\pi\)
−0.799604 + 0.600528i \(0.794957\pi\)
\(674\) −19939.9 + 11512.3i −1.13955 + 0.657918i
\(675\) 0 0
\(676\) 8787.70 72.1149i 0.499983 0.00410304i
\(677\) −7849.62 −0.445621 −0.222811 0.974862i \(-0.571523\pi\)
−0.222811 + 0.974862i \(0.571523\pi\)
\(678\) 0 0
\(679\) 2068.37 + 3582.53i 0.116903 + 0.202481i
\(680\) −6019.82 + 10426.6i −0.339485 + 0.588005i
\(681\) 0 0
\(682\) 2591.60 + 1496.26i 0.145509 + 0.0840099i
\(683\) 11924.1 + 6884.39i 0.668028 + 0.385686i 0.795329 0.606178i \(-0.207298\pi\)
−0.127301 + 0.991864i \(0.540631\pi\)
\(684\) 0 0
\(685\) 6451.28 11174.0i 0.359841 0.623262i
\(686\) 2420.33 + 4192.13i 0.134706 + 0.233318i
\(687\) 0 0
\(688\) 455.922 0.0252644
\(689\) −8757.40 5008.29i −0.484224 0.276924i
\(690\) 0 0
\(691\) −19812.4 + 11438.7i −1.09074 + 0.629738i −0.933773 0.357866i \(-0.883504\pi\)
−0.156965 + 0.987604i \(0.550171\pi\)
\(692\) −7303.32 12649.7i −0.401200 0.694900i
\(693\) 0 0
\(694\) 363.004i 0.0198551i
\(695\) −20284.7 11711.4i −1.10711 0.639191i
\(696\) 0 0
\(697\) 29706.1i 1.61435i
\(698\) −5201.51 + 9009.28i −0.282063 + 0.488548i
\(699\) 0 0
\(700\) 558.695 322.563i 0.0301667 0.0174167i
\(701\) 3514.23 0.189345 0.0946724 0.995508i \(-0.469820\pi\)
0.0946724 + 0.995508i \(0.469820\pi\)
\(702\) 0 0
\(703\) 16410.7 0.880429
\(704\) −1554.89 + 897.716i −0.0832416 + 0.0480596i
\(705\) 0 0
\(706\) 4838.80 8381.05i 0.257947 0.446777i
\(707\) 651.320i 0.0346469i
\(708\) 0 0
\(709\) −6139.10 3544.41i −0.325189 0.187748i 0.328514 0.944499i \(-0.393452\pi\)
−0.653703 + 0.756751i \(0.726785\pi\)
\(710\) 16562.3i 0.875454i
\(711\) 0 0
\(712\) −3241.39 5614.26i −0.170613 0.295510i
\(713\) −8075.17 + 4662.20i −0.424148 + 0.244882i
\(714\) 0 0
\(715\) 70.3148 + 17137.0i 0.00367779 + 0.896344i
\(716\) 7609.52 0.397180
\(717\) 0 0
\(718\) −2374.12 4112.10i −0.123400 0.213736i
\(719\) 7572.65 13116.2i 0.392785 0.680323i −0.600031 0.799977i \(-0.704845\pi\)
0.992816 + 0.119654i \(0.0381784\pi\)
\(720\) 0 0
\(721\) −5503.43 3177.41i −0.284270 0.164123i
\(722\) 17146.5 + 9899.56i 0.883834 + 0.510282i
\(723\) 0 0
\(724\) 4038.76 6995.33i 0.207319 0.359088i
\(725\) 4915.45 + 8513.80i 0.251800 + 0.436131i
\(726\) 0 0
\(727\) −3785.73 −0.193129 −0.0965645 0.995327i \(-0.530785\pi\)
−0.0965645 + 0.995327i \(0.530785\pi\)
\(728\) −1164.97 + 678.987i −0.0593089 + 0.0345672i
\(729\) 0 0
\(730\) −21374.3 + 12340.5i −1.08370 + 0.625673i
\(731\) −1645.25 2849.65i −0.0832443 0.144183i
\(732\) 0 0
\(733\) 1412.04i 0.0711528i 0.999367 + 0.0355764i \(0.0113267\pi\)
−0.999367 + 0.0355764i \(0.988673\pi\)
\(734\) 11228.2 + 6482.61i 0.564633 + 0.325991i
\(735\) 0 0
\(736\) 5594.39i 0.280179i
\(737\) −1956.58 + 3388.89i −0.0977904 + 0.169378i
\(738\) 0 0
\(739\) 761.097 439.420i 0.0378855 0.0218732i −0.480938 0.876755i \(-0.659704\pi\)
0.518823 + 0.854882i \(0.326370\pi\)
\(740\) 6608.49 0.328288
\(741\) 0 0
\(742\) 1547.93 0.0765851
\(743\) −3375.21 + 1948.68i −0.166655 + 0.0962181i −0.581007 0.813898i \(-0.697341\pi\)
0.414353 + 0.910116i \(0.364008\pi\)
\(744\) 0 0
\(745\) −2767.03 + 4792.64i −0.136076 + 0.235690i
\(746\) 626.128i 0.0307294i
\(747\) 0 0
\(748\) 11222.0 + 6479.01i 0.548551 + 0.316706i
\(749\) 1044.45i 0.0509524i
\(750\) 0 0
\(751\) −10476.9 18146.5i −0.509064 0.881724i −0.999945 0.0104978i \(-0.996658\pi\)
0.490881 0.871227i \(-0.336675\pi\)
\(752\) 1505.17 869.009i 0.0729891 0.0421403i
\(753\) 0 0
\(754\) −10346.9 17752.7i −0.499751 0.857449i
\(755\) 39686.6 1.91304
\(756\) 0 0
\(757\) 10219.6 + 17700.8i 0.490669 + 0.849863i 0.999942 0.0107414i \(-0.00341914\pi\)
−0.509273 + 0.860605i \(0.670086\pi\)
\(758\) 2417.29 4186.87i 0.115831 0.200625i
\(759\) 0 0
\(760\) 11688.9 + 6748.58i 0.557895 + 0.322101i
\(761\) −16771.2 9682.87i −0.798892 0.461240i 0.0441918 0.999023i \(-0.485929\pi\)
−0.843083 + 0.537783i \(0.819262\pi\)
\(762\) 0 0
\(763\) −1624.75 + 2814.15i −0.0770904 + 0.133524i
\(764\) −3106.54 5380.69i −0.147108 0.254799i
\(765\) 0 0
\(766\) −2381.76 −0.112345
\(767\) −9254.73 15878.8i −0.435683 0.747525i
\(768\) 0 0
\(769\) 32141.9 18557.1i 1.50724 0.870203i 0.507272 0.861786i \(-0.330654\pi\)
0.999965 0.00841718i \(-0.00267930\pi\)
\(770\) −1314.73 2277.18i −0.0615320 0.106577i
\(771\) 0 0
\(772\) 2403.36i 0.112045i
\(773\) 8387.78 + 4842.69i 0.390281 + 0.225329i 0.682282 0.731089i \(-0.260988\pi\)
−0.292001 + 0.956418i \(0.594321\pi\)
\(774\) 0 0
\(775\) 2392.15i 0.110875i
\(776\) −4601.55 + 7970.12i −0.212869 + 0.368699i
\(777\) 0 0
\(778\) 4049.51 2337.99i 0.186609 0.107739i
\(779\) 33302.3 1.53168
\(780\) 0 0
\(781\) −17825.7 −0.816713
\(782\) −34966.6 + 20188.0i −1.59898 + 0.923171i
\(783\) 0 0
\(784\) −2640.55 + 4573.57i −0.120288 + 0.208344i
\(785\) 17589.2i 0.799727i
\(786\) 0 0
\(787\) −17642.7 10186.0i −0.799103 0.461362i 0.0440543 0.999029i \(-0.485973\pi\)
−0.843157 + 0.537667i \(0.819306\pi\)
\(788\) 7046.34i 0.318548i
\(789\) 0 0
\(790\) −2592.56 4490.44i −0.116758 0.202231i
\(791\) −2780.10 + 1605.09i −0.124967 + 0.0721499i
\(792\) 0 0
\(793\) 9108.30 5308.63i 0.407876 0.237724i
\(794\) −27753.8 −1.24049
\(795\) 0 0
\(796\) −6834.64 11838.0i −0.304331 0.527117i
\(797\) 12703.7 22003.5i 0.564603 0.977921i −0.432484 0.901642i \(-0.642363\pi\)
0.997087 0.0762789i \(-0.0243039\pi\)
\(798\) 0 0
\(799\) −10863.1 6271.83i −0.480988 0.277699i
\(800\) 1242.94 + 717.611i 0.0549307 + 0.0317142i
\(801\) 0 0
\(802\) −9064.93 + 15700.9i −0.399119 + 0.691295i
\(803\) 13281.8 + 23004.8i 0.583692 + 1.01098i
\(804\) 0 0
\(805\) 8193.15 0.358721
\(806\) 20.5150 + 4999.88i 0.000896540 + 0.218503i
\(807\) 0 0
\(808\) −1254.87 + 724.502i −0.0546365 + 0.0315444i
\(809\) −3240.16 5612.12i −0.140813 0.243896i 0.786990 0.616966i \(-0.211638\pi\)
−0.927803 + 0.373070i \(0.878305\pi\)
\(810\) 0 0
\(811\) 30651.9i 1.32717i 0.748102 + 0.663584i \(0.230966\pi\)
−0.748102 + 0.663584i \(0.769034\pi\)
\(812\) 2730.42 + 1576.41i 0.118003 + 0.0681293i
\(813\) 0 0
\(814\) 7112.59i 0.306261i
\(815\) 7056.56 12222.3i 0.303289 0.525312i
\(816\) 0 0
\(817\) −3194.63 + 1844.42i −0.136800 + 0.0789817i
\(818\) 28444.0 1.21580
\(819\) 0 0
\(820\) 13410.7 0.571122
\(821\) −29694.2 + 17144.0i −1.26228 + 0.728780i −0.973516 0.228619i \(-0.926579\pi\)
−0.288768 + 0.957399i \(0.593246\pi\)
\(822\) 0 0
\(823\) −10447.4 + 18095.5i −0.442496 + 0.766426i −0.997874 0.0651720i \(-0.979240\pi\)
0.555378 + 0.831598i \(0.312574\pi\)
\(824\) 14137.7i 0.597706i
\(825\) 0 0
\(826\) 2442.21 + 1410.01i 0.102876 + 0.0593952i
\(827\) 8158.74i 0.343056i −0.985179 0.171528i \(-0.945130\pi\)
0.985179 0.171528i \(-0.0548704\pi\)
\(828\) 0 0
\(829\) −5080.52 8799.72i −0.212851 0.368669i 0.739754 0.672877i \(-0.234942\pi\)
−0.952606 + 0.304208i \(0.901608\pi\)
\(830\) 15642.3 9031.08i 0.654159 0.377679i
\(831\) 0 0
\(832\) −2604.05 1489.24i −0.108509 0.0620553i
\(833\) 38114.9 1.58536
\(834\) 0 0
\(835\) −5571.93 9650.87i −0.230928 0.399979i
\(836\) 7263.36 12580.5i 0.300489 0.520461i
\(837\) 0 0
\(838\) −497.910 287.469i −0.0205251 0.0118502i
\(839\) −26886.9 15523.2i −1.10636 0.638759i −0.168478 0.985705i \(-0.553885\pi\)
−0.937885 + 0.346946i \(0.887219\pi\)
\(840\) 0 0
\(841\) −11827.9 + 20486.6i −0.484970 + 0.839993i
\(842\) −12089.3 20939.3i −0.494803 0.857024i
\(843\) 0 0
\(844\) 10514.9 0.428836
\(845\) −24678.4 + 14519.4i −1.00469 + 0.591104i
\(846\) 0 0
\(847\) 1694.10 978.091i 0.0687250 0.0396784i
\(848\) 1721.85 + 2982.33i 0.0697271 + 0.120771i
\(849\) 0 0
\(850\) 10358.3i 0.417985i
\(851\) 19193.0 + 11081.1i 0.773121 + 0.446362i
\(852\) 0 0
\(853\) 15549.5i 0.624155i 0.950057 + 0.312077i \(0.101025\pi\)
−0.950057 + 0.312077i \(0.898975\pi\)
\(854\) −808.798 + 1400.88i −0.0324081 + 0.0561324i
\(855\) 0 0
\(856\) 2012.30 1161.80i 0.0803495 0.0463898i
\(857\) −44590.9 −1.77736 −0.888678 0.458531i \(-0.848376\pi\)
−0.888678 + 0.458531i \(0.848376\pi\)
\(858\) 0 0
\(859\) 41540.7 1.65000 0.825001 0.565131i \(-0.191174\pi\)
0.825001 + 0.565131i \(0.191174\pi\)
\(860\) −1286.46 + 742.736i −0.0510091 + 0.0294501i
\(861\) 0 0
\(862\) 153.028 265.052i 0.00604657 0.0104730i
\(863\) 6952.24i 0.274226i 0.990555 + 0.137113i \(0.0437823\pi\)
−0.990555 + 0.137113i \(0.956218\pi\)
\(864\) 0 0
\(865\) 41215.0 + 23795.5i 1.62006 + 0.935341i
\(866\) 19227.3i 0.754469i
\(867\) 0 0
\(868\) −383.586 664.391i −0.0149997 0.0259803i
\(869\) −4832.97 + 2790.32i −0.188662 + 0.108924i
\(870\) 0 0
\(871\) −6538.07 + 26.8264i −0.254345 + 0.00104360i
\(872\) −7229.24 −0.280749
\(873\) 0 0
\(874\) 22631.9 + 39199.6i 0.875898 + 1.51710i
\(875\) 1878.10 3252.96i 0.0725614 0.125680i
\(876\) 0 0
\(877\) −20404.4 11780.5i −0.785643 0.453591i 0.0527837 0.998606i \(-0.483191\pi\)
−0.838426 + 0.545015i \(0.816524\pi\)
\(878\) 22802.9 + 13165.2i 0.876491 + 0.506042i
\(879\) 0 0
\(880\) 2924.91 5066.09i 0.112044 0.194066i
\(881\) −15950.6 27627.3i −0.609978 1.05651i −0.991243 0.132047i \(-0.957845\pi\)
0.381266 0.924465i \(-0.375488\pi\)
\(882\) 0 0
\(883\) 20282.6 0.773004 0.386502 0.922288i \(-0.373683\pi\)
0.386502 + 0.922288i \(0.373683\pi\)
\(884\) 88.8329 + 21650.2i 0.00337983 + 0.823726i
\(885\) 0 0
\(886\) 26751.6 15445.0i 1.01438 0.585650i
\(887\) 4916.10 + 8514.94i 0.186095 + 0.322327i 0.943945 0.330103i \(-0.107083\pi\)
−0.757850 + 0.652429i \(0.773750\pi\)
\(888\) 0 0
\(889\) 2037.31i 0.0768607i
\(890\) 18292.2 + 10561.0i 0.688940 + 0.397759i
\(891\) 0 0
\(892\) 9724.97i 0.365040i
\(893\) −7031.09 + 12178.2i −0.263479 + 0.456358i
\(894\) 0 0
\(895\) −21471.5 + 12396.5i −0.801912 + 0.462984i
\(896\) 460.283 0.0171618
\(897\) 0 0
\(898\) 4228.82 0.157146
\(899\) 10124.5 5845.37i 0.375606 0.216856i
\(900\) 0 0
\(901\) 12427.0 21524.1i 0.459492 0.795864i
\(902\) 14433.6i 0.532802i
\(903\) 0 0
\(904\) −6184.95 3570.88i −0.227554 0.131378i
\(905\) 26317.9i 0.966670i
\(906\) 0 0
\(907\) 8271.94 + 14327.4i 0.302828 + 0.524514i 0.976775 0.214265i \(-0.0687357\pi\)
−0.673947 + 0.738780i \(0.735402\pi\)
\(908\) 22648.4 13076.0i 0.827767 0.477912i
\(909\) 0 0
\(910\) 2181.03 3813.71i 0.0794511 0.138927i
\(911\) 24198.4 0.880053 0.440027 0.897985i \(-0.354969\pi\)
0.440027 + 0.897985i \(0.354969\pi\)
\(912\) 0 0
\(913\) −9719.97 16835.5i −0.352337 0.610266i
\(914\) −8497.52 + 14718.1i −0.307520 + 0.532640i
\(915\) 0 0
\(916\) 7508.02 + 4334.76i 0.270821 + 0.156359i
\(917\) 6224.45 + 3593.69i 0.224154 + 0.129415i
\(918\) 0 0
\(919\) 15554.9 26941.8i 0.558332 0.967060i −0.439303 0.898339i \(-0.644775\pi\)
0.997636 0.0687214i \(-0.0218920\pi\)
\(920\) 9113.73 + 15785.4i 0.326599 + 0.565686i
\(921\) 0 0
\(922\) −15602.6 −0.557316
\(923\) −14997.3 25731.7i −0.534825 0.917628i
\(924\) 0 0
\(925\) −4923.90 + 2842.81i −0.175023 + 0.101050i
\(926\) 9734.48 + 16860.6i 0.345459 + 0.598352i
\(927\) 0 0
\(928\) 7014.12i 0.248114i
\(929\) 18504.8 + 10683.7i 0.653521 + 0.377311i 0.789804 0.613359i \(-0.210182\pi\)
−0.136283 + 0.990670i \(0.543516\pi\)
\(930\) 0 0
\(931\) 42729.1i 1.50418i
\(932\) 6081.10 10532.8i 0.213727 0.370185i
\(933\) 0 0
\(934\) −16361.6 + 9446.38i −0.573199 + 0.330937i
\(935\) −42219.4 −1.47671
\(936\) 0 0
\(937\) −955.004 −0.0332963 −0.0166481 0.999861i \(-0.505300\pi\)
−0.0166481 + 0.999861i \(0.505300\pi\)
\(938\) 868.788 501.595i 0.0302419 0.0174602i
\(939\) 0 0
\(940\) −2831.38 + 4904.09i −0.0982440 + 0.170164i
\(941\) 41533.1i 1.43883i −0.694580 0.719416i \(-0.744410\pi\)
0.694580 0.719416i \(-0.255590\pi\)
\(942\) 0 0
\(943\) 38948.4 + 22486.9i 1.34500 + 0.776535i
\(944\) 6273.75i 0.216306i
\(945\) 0 0
\(946\) 799.392 + 1384.59i 0.0274741 + 0.0475865i
\(947\) −27485.3 + 15868.7i −0.943139 + 0.544522i −0.890943 0.454115i \(-0.849955\pi\)
−0.0521963 + 0.998637i \(0.516622\pi\)
\(948\) 0 0
\(949\) −22033.4 + 38527.2i −0.753672 + 1.31786i
\(950\) −11612.3 −0.396581
\(951\) 0 0
\(952\) −1660.98 2876.90i −0.0565469 0.0979422i
\(953\) −16032.6 + 27769.2i −0.544959 + 0.943896i 0.453651 + 0.891180i \(0.350121\pi\)
−0.998610 + 0.0527168i \(0.983212\pi\)
\(954\) 0 0
\(955\) 17531.2 + 10121.6i 0.594028 + 0.342962i
\(956\) 16445.2 + 9494.62i 0.556354 + 0.321211i
\(957\) 0 0
\(958\) −3378.85 + 5852.34i −0.113952 + 0.197370i
\(959\) 1780.03 + 3083.10i 0.0599376 + 0.103815i
\(960\) 0 0
\(961\) 26946.3 0.904511
\(962\) 10267.2 5984.06i 0.344103 0.200555i
\(963\) 0 0
\(964\) −9471.61 + 5468.44i −0.316452 + 0.182704i
\(965\) 3915.29 + 6781.47i 0.130609 + 0.226221i
\(966\) 0 0
\(967\) 11821.6i 0.393131i −0.980491 0.196565i \(-0.937021\pi\)
0.980491 0.196565i \(-0.0629788\pi\)
\(968\) 3768.90 + 2175.98i 0.125142 + 0.0722506i
\(969\) 0 0
\(970\) 29985.3i 0.992545i
\(971\) −7792.48 + 13497.0i −0.257541 + 0.446075i −0.965583 0.260096i \(-0.916246\pi\)
0.708041 + 0.706171i \(0.249579\pi\)
\(972\) 0 0
\(973\) 5596.92 3231.39i 0.184408 0.106468i
\(974\) −36011.0 −1.18467
\(975\) 0 0
\(976\) −3598.70 −0.118024
\(977\) 46550.1 26875.7i 1.52433 0.880072i 0.524744 0.851260i \(-0.324161\pi\)
0.999585 0.0288119i \(-0.00917240\pi\)
\(978\) 0 0
\(979\) 11366.6 19687.5i 0.371071 0.642713i
\(980\) 17206.7i 0.560866i
\(981\) 0 0
\(982\) 4687.65 + 2706.42i 0.152331 + 0.0879483i
\(983\) 30852.0i 1.00104i −0.865724 0.500521i \(-0.833142\pi\)
0.865724 0.500521i \(-0.166858\pi\)
\(984\) 0 0
\(985\) 11479.1 + 19882.4i 0.371324 + 0.643152i
\(986\) 43840.3 25311.2i 1.41598 0.817519i
\(987\) 0 0
\(988\) 24271.1 99.5869i 0.781546 0.00320676i
\(989\) −4981.65 −0.160169
\(990\) 0 0
\(991\) −22122.8 38317.8i −0.709136 1.22826i −0.965178 0.261594i \(-0.915752\pi\)
0.256042 0.966666i \(-0.417581\pi\)
\(992\) 853.372 1478.08i 0.0273131 0.0473077i
\(993\) 0 0
\(994\) 3957.61 + 2284.92i 0.126285 + 0.0729109i
\(995\) 38570.1 + 22268.4i 1.22890 + 0.709504i
\(996\) 0 0
\(997\) −27178.8 + 47075.1i −0.863352 + 1.49537i 0.00532306 + 0.999986i \(0.498306\pi\)
−0.868675 + 0.495383i \(0.835028\pi\)
\(998\) 8991.30 + 15573.4i 0.285185 + 0.493955i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.4.l.b.127.4 8
3.2 odd 2 26.4.e.a.23.1 yes 8
12.11 even 2 208.4.w.d.49.3 8
13.4 even 6 inner 234.4.l.b.199.3 8
39.2 even 12 338.4.a.l.1.3 4
39.5 even 4 338.4.c.n.315.2 8
39.8 even 4 338.4.c.m.315.2 8
39.11 even 12 338.4.a.m.1.3 4
39.17 odd 6 26.4.e.a.17.1 8
39.20 even 12 338.4.c.m.191.2 8
39.23 odd 6 338.4.b.g.337.7 8
39.29 odd 6 338.4.b.g.337.3 8
39.32 even 12 338.4.c.n.191.2 8
39.35 odd 6 338.4.e.e.147.3 8
39.38 odd 2 338.4.e.e.23.3 8
156.95 even 6 208.4.w.d.17.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.e.a.17.1 8 39.17 odd 6
26.4.e.a.23.1 yes 8 3.2 odd 2
208.4.w.d.17.3 8 156.95 even 6
208.4.w.d.49.3 8 12.11 even 2
234.4.l.b.127.4 8 1.1 even 1 trivial
234.4.l.b.199.3 8 13.4 even 6 inner
338.4.a.l.1.3 4 39.2 even 12
338.4.a.m.1.3 4 39.11 even 12
338.4.b.g.337.3 8 39.29 odd 6
338.4.b.g.337.7 8 39.23 odd 6
338.4.c.m.191.2 8 39.20 even 12
338.4.c.m.315.2 8 39.8 even 4
338.4.c.n.191.2 8 39.32 even 12
338.4.c.n.315.2 8 39.5 even 4
338.4.e.e.23.3 8 39.38 odd 2
338.4.e.e.147.3 8 39.35 odd 6