Properties

Label 26.4.e.a.23.1
Level $26$
Weight $4$
Character 26.23
Analytic conductor $1.534$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [26,4,Mod(17,26)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(26, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("26.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 26.e (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.53404966015\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 122x^{6} + 5305x^{4} + 97056x^{2} + 627264 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.1
Root \(4.95620i\) of defining polynomial
Character \(\chi\) \(=\) 26.23
Dual form 26.4.e.a.17.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 + 1.00000i) q^{2} +(-2.97810 - 5.15822i) q^{3} +(2.00000 - 3.46410i) q^{4} -13.0327i q^{5} +(10.3164 + 5.95620i) q^{6} +(-3.11419 - 1.79798i) q^{7} +8.00000i q^{8} +(-4.23814 + 7.34068i) q^{9} +(13.0327 + 22.5733i) q^{10} +(-24.2951 + 14.0268i) q^{11} -23.8248 q^{12} +(40.6883 + 23.2693i) q^{13} +7.19192 q^{14} +(-67.2254 + 38.8126i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(57.7378 - 100.005i) q^{17} -16.9526i q^{18} +(112.111 + 64.7274i) q^{19} +(-45.1465 - 26.0654i) q^{20} +21.4182i q^{21} +(28.0536 - 48.5903i) q^{22} +(-87.4123 - 151.403i) q^{23} +(41.2657 - 23.8248i) q^{24} -44.8507 q^{25} +(-93.7435 + 0.384640i) q^{26} -110.331 q^{27} +(-12.4568 + 7.19192i) q^{28} +(109.596 + 189.825i) q^{29} +(77.6252 - 134.451i) q^{30} +53.3357i q^{31} +(27.7128 + 16.0000i) q^{32} +(144.707 + 83.5465i) q^{33} +230.951i q^{34} +(-23.4325 + 40.5863i) q^{35} +(16.9526 + 29.3627i) q^{36} +(109.784 - 63.3839i) q^{37} -258.910 q^{38} +(-1.14549 - 279.178i) q^{39} +104.261 q^{40} +(-222.786 + 128.625i) q^{41} +(-21.4182 - 37.0975i) q^{42} +(-14.2476 + 24.6775i) q^{43} +112.214i q^{44} +(95.6687 + 55.2344i) q^{45} +(302.805 + 174.825i) q^{46} -108.626i q^{47} +(-47.6496 + 82.5315i) q^{48} +(-165.035 - 285.848i) q^{49} +(77.6837 - 44.8507i) q^{50} -687.795 q^{51} +(161.984 - 94.4098i) q^{52} +215.231 q^{53} +(191.099 - 110.331i) q^{54} +(182.807 + 316.631i) q^{55} +(14.3838 - 24.9135i) q^{56} -771.059i q^{57} +(-379.651 - 219.191i) q^{58} +(339.576 + 196.055i) q^{59} +310.501i q^{60} +(112.459 - 194.785i) q^{61} +(-53.3357 - 92.3802i) q^{62} +(26.3968 - 15.2402i) q^{63} -64.0000 q^{64} +(303.262 - 530.278i) q^{65} -334.186 q^{66} +(-120.801 + 69.7442i) q^{67} +(-230.951 - 400.019i) q^{68} +(-520.645 + 901.783i) q^{69} -93.7299i q^{70} +(550.285 + 317.707i) q^{71} +(-58.7254 - 33.9051i) q^{72} +946.887i q^{73} +(-126.768 + 219.568i) q^{74} +(133.570 + 231.350i) q^{75} +(448.445 - 258.910i) q^{76} +100.880 q^{77} +(281.162 + 482.404i) q^{78} -198.927 q^{79} +(-180.586 + 104.261i) q^{80} +(443.006 + 767.309i) q^{81} +(257.251 - 445.571i) q^{82} +692.956i q^{83} +(74.1950 + 42.8365i) q^{84} +(-1303.33 - 752.478i) q^{85} -56.9903i q^{86} +(652.774 - 1130.64i) q^{87} +(-112.214 - 194.361i) q^{88} +(-701.782 + 405.174i) q^{89} -220.937 q^{90} +(-84.8734 - 145.622i) q^{91} -699.298 q^{92} +(275.117 - 158.839i) q^{93} +(108.626 + 188.146i) q^{94} +(843.572 - 1461.11i) q^{95} -190.598i q^{96} +(-996.265 - 575.194i) q^{97} +(571.696 + 330.069i) q^{98} -237.791i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} + 16 q^{4} + 18 q^{7} - 22 q^{9} - 8 q^{10} - 18 q^{11} - 48 q^{12} - 130 q^{13} + 80 q^{14} - 192 q^{15} - 64 q^{16} + 112 q^{17} + 594 q^{19} + 72 q^{20} - 72 q^{22} - 230 q^{23} - 180 q^{25}+ \cdots + 4272 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/26\mathbb{Z}\right)^\times\).

\(n\) \(15\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 + 1.00000i −0.612372 + 0.353553i
\(3\) −2.97810 5.15822i −0.573135 0.992700i −0.996241 0.0866194i \(-0.972394\pi\)
0.423106 0.906080i \(-0.360940\pi\)
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 13.0327i 1.16568i −0.812588 0.582839i \(-0.801942\pi\)
0.812588 0.582839i \(-0.198058\pi\)
\(6\) 10.3164 + 5.95620i 0.701945 + 0.405268i
\(7\) −3.11419 1.79798i −0.168151 0.0970817i 0.413563 0.910476i \(-0.364284\pi\)
−0.581713 + 0.813394i \(0.697617\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −4.23814 + 7.34068i −0.156968 + 0.271877i
\(10\) 13.0327 + 22.5733i 0.412129 + 0.713829i
\(11\) −24.2951 + 14.0268i −0.665933 + 0.384477i −0.794534 0.607220i \(-0.792285\pi\)
0.128601 + 0.991696i \(0.458951\pi\)
\(12\) −23.8248 −0.573135
\(13\) 40.6883 + 23.2693i 0.868070 + 0.496442i
\(14\) 7.19192 0.137294
\(15\) −67.2254 + 38.8126i −1.15717 + 0.668091i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 57.7378 100.005i 0.823733 1.42675i −0.0791507 0.996863i \(-0.525221\pi\)
0.902884 0.429885i \(-0.141446\pi\)
\(18\) 16.9526i 0.221987i
\(19\) 112.111 + 64.7274i 1.35369 + 0.781552i 0.988764 0.149485i \(-0.0477616\pi\)
0.364924 + 0.931037i \(0.381095\pi\)
\(20\) −45.1465 26.0654i −0.504753 0.291420i
\(21\) 21.4182i 0.222564i
\(22\) 28.0536 48.5903i 0.271866 0.470886i
\(23\) −87.4123 151.403i −0.792466 1.37259i −0.924436 0.381338i \(-0.875463\pi\)
0.131970 0.991254i \(-0.457870\pi\)
\(24\) 41.2657 23.8248i 0.350972 0.202634i
\(25\) −44.8507 −0.358806
\(26\) −93.7435 + 0.384640i −0.707101 + 0.00290131i
\(27\) −110.331 −0.786414
\(28\) −12.4568 + 7.19192i −0.0840753 + 0.0485409i
\(29\) 109.596 + 189.825i 0.701773 + 1.21551i 0.967844 + 0.251553i \(0.0809411\pi\)
−0.266071 + 0.963953i \(0.585726\pi\)
\(30\) 77.6252 134.451i 0.472412 0.818242i
\(31\) 53.3357i 0.309012i 0.987992 + 0.154506i \(0.0493786\pi\)
−0.987992 + 0.154506i \(0.950621\pi\)
\(32\) 27.7128 + 16.0000i 0.153093 + 0.0883883i
\(33\) 144.707 + 83.5465i 0.763339 + 0.440714i
\(34\) 230.951i 1.16493i
\(35\) −23.4325 + 40.5863i −0.113166 + 0.196009i
\(36\) 16.9526 + 29.3627i 0.0784841 + 0.135939i
\(37\) 109.784 63.3839i 0.487794 0.281628i −0.235865 0.971786i \(-0.575792\pi\)
0.723659 + 0.690158i \(0.242459\pi\)
\(38\) −258.910 −1.10528
\(39\) −1.14549 279.178i −0.00470323 1.14626i
\(40\) 104.261 0.412129
\(41\) −222.786 + 128.625i −0.848616 + 0.489949i −0.860184 0.509984i \(-0.829651\pi\)
0.0115677 + 0.999933i \(0.496318\pi\)
\(42\) −21.4182 37.0975i −0.0786882 0.136292i
\(43\) −14.2476 + 24.6775i −0.0505287 + 0.0875183i −0.890184 0.455602i \(-0.849424\pi\)
0.839655 + 0.543120i \(0.182757\pi\)
\(44\) 112.214i 0.384477i
\(45\) 95.6687 + 55.2344i 0.316921 + 0.182975i
\(46\) 302.805 + 174.825i 0.970569 + 0.560358i
\(47\) 108.626i 0.337122i −0.985691 0.168561i \(-0.946088\pi\)
0.985691 0.168561i \(-0.0539120\pi\)
\(48\) −47.6496 + 82.5315i −0.143284 + 0.248175i
\(49\) −165.035 285.848i −0.481150 0.833377i
\(50\) 77.6837 44.8507i 0.219723 0.126857i
\(51\) −687.795 −1.88844
\(52\) 161.984 94.4098i 0.431983 0.251775i
\(53\) 215.231 0.557817 0.278908 0.960318i \(-0.410027\pi\)
0.278908 + 0.960318i \(0.410027\pi\)
\(54\) 191.099 110.331i 0.481579 0.278039i
\(55\) 182.807 + 316.631i 0.448176 + 0.776264i
\(56\) 14.3838 24.9135i 0.0343236 0.0594502i
\(57\) 771.059i 1.79174i
\(58\) −379.651 219.191i −0.859493 0.496228i
\(59\) 339.576 + 196.055i 0.749306 + 0.432612i 0.825443 0.564485i \(-0.190925\pi\)
−0.0761368 + 0.997097i \(0.524259\pi\)
\(60\) 310.501i 0.668091i
\(61\) 112.459 194.785i 0.236048 0.408848i −0.723529 0.690294i \(-0.757481\pi\)
0.959577 + 0.281447i \(0.0908143\pi\)
\(62\) −53.3357 92.3802i −0.109252 0.189231i
\(63\) 26.3968 15.2402i 0.0527886 0.0304775i
\(64\) −64.0000 −0.125000
\(65\) 303.262 530.278i 0.578692 1.01189i
\(66\) −334.186 −0.623264
\(67\) −120.801 + 69.7442i −0.220271 + 0.127173i −0.606076 0.795407i \(-0.707257\pi\)
0.385805 + 0.922580i \(0.373924\pi\)
\(68\) −230.951 400.019i −0.411867 0.713374i
\(69\) −520.645 + 901.783i −0.908381 + 1.57336i
\(70\) 93.7299i 0.160041i
\(71\) 550.285 + 317.707i 0.919815 + 0.531055i 0.883576 0.468288i \(-0.155129\pi\)
0.0362388 + 0.999343i \(0.488462\pi\)
\(72\) −58.7254 33.9051i −0.0961231 0.0554967i
\(73\) 946.887i 1.51815i 0.651005 + 0.759073i \(0.274348\pi\)
−0.651005 + 0.759073i \(0.725652\pi\)
\(74\) −126.768 + 219.568i −0.199141 + 0.344923i
\(75\) 133.570 + 231.350i 0.205644 + 0.356186i
\(76\) 448.445 258.910i 0.676844 0.390776i
\(77\) 100.880 0.149303
\(78\) 281.162 + 482.404i 0.408145 + 0.700276i
\(79\) −198.927 −0.283305 −0.141652 0.989916i \(-0.545242\pi\)
−0.141652 + 0.989916i \(0.545242\pi\)
\(80\) −180.586 + 104.261i −0.252377 + 0.145710i
\(81\) 443.006 + 767.309i 0.607690 + 1.05255i
\(82\) 257.251 445.571i 0.346446 0.600062i
\(83\) 692.956i 0.916408i 0.888847 + 0.458204i \(0.151507\pi\)
−0.888847 + 0.458204i \(0.848493\pi\)
\(84\) 74.1950 + 42.8365i 0.0963730 + 0.0556410i
\(85\) −1303.33 752.478i −1.66313 0.960208i
\(86\) 56.9903i 0.0714584i
\(87\) 652.774 1130.64i 0.804422 1.39330i
\(88\) −112.214 194.361i −0.135933 0.235443i
\(89\) −701.782 + 405.174i −0.835829 + 0.482566i −0.855844 0.517234i \(-0.826962\pi\)
0.0200152 + 0.999800i \(0.493629\pi\)
\(90\) −220.937 −0.258765
\(91\) −84.8734 145.622i −0.0977709 0.167751i
\(92\) −699.298 −0.792466
\(93\) 275.117 158.839i 0.306756 0.177106i
\(94\) 108.626 + 188.146i 0.119191 + 0.206444i
\(95\) 843.572 1461.11i 0.911038 1.57796i
\(96\) 190.598i 0.202634i
\(97\) −996.265 575.194i −1.04284 0.602083i −0.122203 0.992505i \(-0.538996\pi\)
−0.920636 + 0.390422i \(0.872329\pi\)
\(98\) 571.696 + 330.069i 0.589286 + 0.340225i
\(99\) 237.791i 0.241403i
\(100\) −89.7014 + 155.367i −0.0897014 + 0.155367i
\(101\) 90.5627 + 156.859i 0.0892211 + 0.154535i 0.907182 0.420738i \(-0.138229\pi\)
−0.817961 + 0.575274i \(0.804896\pi\)
\(102\) 1191.30 687.795i 1.15643 0.667665i
\(103\) 1767.21 1.69057 0.845284 0.534318i \(-0.179431\pi\)
0.845284 + 0.534318i \(0.179431\pi\)
\(104\) −186.155 + 325.506i −0.175519 + 0.306909i
\(105\) 279.137 0.259438
\(106\) −372.792 + 215.231i −0.341592 + 0.197218i
\(107\) −145.226 251.538i −0.131210 0.227263i 0.792933 0.609309i \(-0.208553\pi\)
−0.924143 + 0.382046i \(0.875220\pi\)
\(108\) −220.662 + 382.197i −0.196604 + 0.340527i
\(109\) 903.654i 0.794077i −0.917802 0.397039i \(-0.870038\pi\)
0.917802 0.397039i \(-0.129962\pi\)
\(110\) −633.262 365.614i −0.548901 0.316908i
\(111\) −653.896 377.527i −0.559145 0.322822i
\(112\) 57.5353i 0.0485409i
\(113\) −446.360 + 773.119i −0.371593 + 0.643619i −0.989811 0.142389i \(-0.954522\pi\)
0.618217 + 0.786007i \(0.287855\pi\)
\(114\) 771.059 + 1335.51i 0.633476 + 1.09721i
\(115\) −1973.18 + 1139.22i −1.60000 + 0.923761i
\(116\) 876.766 0.701773
\(117\) −343.256 + 200.061i −0.271231 + 0.158082i
\(118\) −784.218 −0.611806
\(119\) −359.613 + 207.623i −0.277022 + 0.159939i
\(120\) −310.501 537.803i −0.236206 0.409121i
\(121\) −271.997 + 471.113i −0.204356 + 0.353954i
\(122\) 449.837i 0.333823i
\(123\) 1326.95 + 766.118i 0.972744 + 0.561614i
\(124\) 184.760 + 106.671i 0.133806 + 0.0772531i
\(125\) 1044.56i 0.747426i
\(126\) −30.4804 + 52.7936i −0.0215509 + 0.0373272i
\(127\) −283.278 490.652i −0.197928 0.342821i 0.749929 0.661519i \(-0.230088\pi\)
−0.947856 + 0.318698i \(0.896755\pi\)
\(128\) 110.851 64.0000i 0.0765466 0.0441942i
\(129\) 169.723 0.115839
\(130\) 5.01288 + 1221.73i 0.00338199 + 0.824252i
\(131\) 1998.74 1.33306 0.666528 0.745480i \(-0.267779\pi\)
0.666528 + 0.745480i \(0.267779\pi\)
\(132\) 578.827 334.186i 0.381670 0.220357i
\(133\) −232.757 403.147i −0.151749 0.262837i
\(134\) 139.488 241.601i 0.0899252 0.155755i
\(135\) 1437.91i 0.916706i
\(136\) 800.038 + 461.902i 0.504431 + 0.291234i
\(137\) 857.379 + 495.008i 0.534678 + 0.308696i 0.742919 0.669381i \(-0.233441\pi\)
−0.208241 + 0.978077i \(0.566774\pi\)
\(138\) 2082.58i 1.28464i
\(139\) −898.616 + 1556.45i −0.548343 + 0.949757i 0.450046 + 0.893005i \(0.351408\pi\)
−0.998388 + 0.0567517i \(0.981926\pi\)
\(140\) 93.7299 + 162.345i 0.0565830 + 0.0980047i
\(141\) −560.317 + 323.499i −0.334661 + 0.193217i
\(142\) −1270.83 −0.751026
\(143\) −1314.92 + 5.39527i −0.768947 + 0.00315507i
\(144\) 135.621 0.0784841
\(145\) 2473.93 1428.33i 1.41689 0.818041i
\(146\) −946.887 1640.06i −0.536746 0.929671i
\(147\) −982.978 + 1702.57i −0.551528 + 0.955275i
\(148\) 507.071i 0.281628i
\(149\) −367.740 212.315i −0.202191 0.116735i 0.395486 0.918472i \(-0.370576\pi\)
−0.597677 + 0.801737i \(0.703910\pi\)
\(150\) −462.700 267.140i −0.251862 0.145412i
\(151\) 3045.16i 1.64114i −0.571547 0.820569i \(-0.693657\pi\)
0.571547 0.820569i \(-0.306343\pi\)
\(152\) −517.820 + 896.890i −0.276320 + 0.478601i
\(153\) 489.402 + 847.669i 0.258600 + 0.447908i
\(154\) −174.729 + 100.880i −0.0914288 + 0.0527865i
\(155\) 695.108 0.360209
\(156\) −969.390 554.387i −0.497521 0.284529i
\(157\) 1349.62 0.686061 0.343031 0.939324i \(-0.388546\pi\)
0.343031 + 0.939324i \(0.388546\pi\)
\(158\) 344.552 198.927i 0.173488 0.100163i
\(159\) −640.980 1110.21i −0.319705 0.553745i
\(160\) 208.523 361.172i 0.103032 0.178457i
\(161\) 628.662i 0.307736i
\(162\) −1534.62 886.012i −0.744265 0.429702i
\(163\) −937.821 541.451i −0.450649 0.260182i 0.257455 0.966290i \(-0.417116\pi\)
−0.708104 + 0.706108i \(0.750449\pi\)
\(164\) 1029.00i 0.489949i
\(165\) 1088.83 1885.92i 0.513731 0.889808i
\(166\) −692.956 1200.24i −0.323999 0.561183i
\(167\) 740.513 427.535i 0.343129 0.198106i −0.318526 0.947914i \(-0.603188\pi\)
0.661655 + 0.749808i \(0.269854\pi\)
\(168\) −171.346 −0.0786882
\(169\) 1114.08 + 1893.58i 0.507090 + 0.861893i
\(170\) 3009.91 1.35794
\(171\) −950.287 + 548.648i −0.424972 + 0.245358i
\(172\) 56.9903 + 98.7101i 0.0252644 + 0.0437591i
\(173\) −1825.83 + 3162.43i −0.802401 + 1.38980i 0.115631 + 0.993292i \(0.463111\pi\)
−0.918032 + 0.396507i \(0.870222\pi\)
\(174\) 2611.09i 1.13762i
\(175\) 139.674 + 80.6407i 0.0603334 + 0.0348335i
\(176\) 388.722 + 224.429i 0.166483 + 0.0961191i
\(177\) 2335.48i 0.991782i
\(178\) 810.349 1403.56i 0.341226 0.591020i
\(179\) −951.190 1647.51i −0.397180 0.687936i 0.596197 0.802838i \(-0.296678\pi\)
−0.993377 + 0.114902i \(0.963345\pi\)
\(180\) 382.675 220.937i 0.158461 0.0914873i
\(181\) 2019.38 0.829277 0.414639 0.909986i \(-0.363908\pi\)
0.414639 + 0.909986i \(0.363908\pi\)
\(182\) 292.627 + 167.351i 0.119181 + 0.0681587i
\(183\) −1339.66 −0.541150
\(184\) 1211.22 699.298i 0.485284 0.280179i
\(185\) −826.062 1430.78i −0.328288 0.568611i
\(186\) −317.678 + 550.235i −0.125233 + 0.216910i
\(187\) 3239.51i 1.26682i
\(188\) −376.292 217.252i −0.145978 0.0842805i
\(189\) 343.591 + 198.373i 0.132236 + 0.0763465i
\(190\) 3374.29i 1.28840i
\(191\) −776.636 + 1345.17i −0.294217 + 0.509599i −0.974802 0.223070i \(-0.928392\pi\)
0.680586 + 0.732669i \(0.261725\pi\)
\(192\) 190.598 + 330.126i 0.0716419 + 0.124087i
\(193\) 520.344 300.421i 0.194068 0.112045i −0.399817 0.916595i \(-0.630926\pi\)
0.593886 + 0.804549i \(0.297593\pi\)
\(194\) 2300.77 0.851474
\(195\) −3638.43 + 14.9289i −1.33617 + 0.00548245i
\(196\) −1320.28 −0.481150
\(197\) −1525.58 + 880.793i −0.551741 + 0.318548i −0.749824 0.661638i \(-0.769862\pi\)
0.198083 + 0.980185i \(0.436528\pi\)
\(198\) 237.791 + 411.865i 0.0853487 + 0.147828i
\(199\) 1708.66 2959.49i 0.608662 1.05423i −0.382799 0.923832i \(-0.625040\pi\)
0.991461 0.130402i \(-0.0416269\pi\)
\(200\) 358.806i 0.126857i
\(201\) 719.512 + 415.410i 0.252490 + 0.145775i
\(202\) −313.718 181.125i −0.109273 0.0630888i
\(203\) 788.203i 0.272517i
\(204\) −1375.59 + 2382.59i −0.472111 + 0.817719i
\(205\) 1676.33 + 2903.49i 0.571122 + 0.989213i
\(206\) −3060.90 + 1767.21i −1.03526 + 0.597706i
\(207\) 1481.86 0.497568
\(208\) −3.07712 749.948i −0.00102577 0.249998i
\(209\) −3631.68 −1.20195
\(210\) −483.479 + 279.137i −0.158873 + 0.0917252i
\(211\) 1314.36 + 2276.54i 0.428836 + 0.742766i 0.996770 0.0803079i \(-0.0255904\pi\)
−0.567934 + 0.823074i \(0.692257\pi\)
\(212\) 430.463 745.583i 0.139454 0.241542i
\(213\) 3784.66i 1.21747i
\(214\) 503.076 + 290.451i 0.160699 + 0.0927796i
\(215\) 321.614 + 185.684i 0.102018 + 0.0589002i
\(216\) 882.647i 0.278039i
\(217\) 95.8965 166.098i 0.0299995 0.0519606i
\(218\) 903.654 + 1565.18i 0.280749 + 0.486271i
\(219\) 4884.25 2819.92i 1.50706 0.870104i
\(220\) 1462.46 0.448176
\(221\) 4676.29 2725.50i 1.42336 0.829580i
\(222\) 1510.11 0.456540
\(223\) −2105.52 + 1215.62i −0.632269 + 0.365040i −0.781630 0.623742i \(-0.785612\pi\)
0.149361 + 0.988783i \(0.452278\pi\)
\(224\) −57.5353 99.6541i −0.0171618 0.0297251i
\(225\) 190.084 329.235i 0.0563211 0.0975510i
\(226\) 1785.44i 0.525512i
\(227\) −5662.09 3269.01i −1.65553 0.955823i −0.974738 0.223351i \(-0.928300\pi\)
−0.680797 0.732472i \(-0.738366\pi\)
\(228\) −2671.03 1542.12i −0.775847 0.447935i
\(229\) 2167.38i 0.625434i 0.949846 + 0.312717i \(0.101239\pi\)
−0.949846 + 0.312717i \(0.898761\pi\)
\(230\) 2278.43 3946.36i 0.653197 1.13137i
\(231\) −300.430 520.359i −0.0855706 0.148213i
\(232\) −1518.60 + 876.766i −0.429746 + 0.248114i
\(233\) −3040.55 −0.854906 −0.427453 0.904038i \(-0.640589\pi\)
−0.427453 + 0.904038i \(0.640589\pi\)
\(234\) 394.475 689.772i 0.110204 0.192700i
\(235\) −1415.69 −0.392976
\(236\) 1358.31 784.218i 0.374653 0.216306i
\(237\) 592.425 + 1026.11i 0.162372 + 0.281237i
\(238\) 415.245 719.226i 0.113094 0.195884i
\(239\) 4747.31i 1.28485i −0.766351 0.642423i \(-0.777929\pi\)
0.766351 0.642423i \(-0.222071\pi\)
\(240\) 1075.61 + 621.002i 0.289292 + 0.167023i
\(241\) −2367.90 1367.11i −0.632904 0.365408i 0.148972 0.988841i \(-0.452404\pi\)
−0.781876 + 0.623434i \(0.785737\pi\)
\(242\) 1087.99i 0.289002i
\(243\) 1149.17 1990.41i 0.303370 0.525453i
\(244\) −449.837 779.141i −0.118024 0.204424i
\(245\) −3725.37 + 2150.84i −0.971449 + 0.560866i
\(246\) −3064.47 −0.794242
\(247\) 3055.45 + 5242.40i 0.787100 + 1.35047i
\(248\) −426.686 −0.109252
\(249\) 3574.42 2063.69i 0.909718 0.525226i
\(250\) 1044.56 + 1809.23i 0.264255 + 0.457703i
\(251\) 210.392 364.410i 0.0529077 0.0916389i −0.838359 0.545119i \(-0.816484\pi\)
0.891266 + 0.453480i \(0.149818\pi\)
\(252\) 121.922i 0.0304775i
\(253\) 4247.39 + 2452.23i 1.05546 + 0.609369i
\(254\) 981.303 + 566.556i 0.242411 + 0.139956i
\(255\) 8963.81i 2.20132i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) 1744.07 + 3020.82i 0.423316 + 0.733205i 0.996262 0.0863885i \(-0.0275326\pi\)
−0.572945 + 0.819594i \(0.694199\pi\)
\(258\) −293.968 + 169.723i −0.0709367 + 0.0409553i
\(259\) −455.852 −0.109364
\(260\) −1230.41 2111.08i −0.293488 0.503554i
\(261\) −1857.93 −0.440624
\(262\) −3461.91 + 1998.74i −0.816327 + 0.471307i
\(263\) 1664.65 + 2883.26i 0.390291 + 0.676005i 0.992488 0.122343i \(-0.0390409\pi\)
−0.602196 + 0.798348i \(0.705708\pi\)
\(264\) −668.372 + 1157.65i −0.155816 + 0.269881i
\(265\) 2805.04i 0.650235i
\(266\) 806.294 + 465.514i 0.185854 + 0.107303i
\(267\) 4179.95 + 2413.30i 0.958086 + 0.553151i
\(268\) 557.954i 0.127173i
\(269\) −2898.78 + 5020.84i −0.657033 + 1.13801i 0.324347 + 0.945938i \(0.394855\pi\)
−0.981380 + 0.192076i \(0.938478\pi\)
\(270\) −1437.91 2490.53i −0.324105 0.561366i
\(271\) 195.689 112.981i 0.0438645 0.0253252i −0.477907 0.878410i \(-0.658605\pi\)
0.521772 + 0.853085i \(0.325271\pi\)
\(272\) −1847.61 −0.411867
\(273\) −498.388 + 871.472i −0.110490 + 0.193201i
\(274\) −1980.03 −0.436563
\(275\) 1089.65 629.113i 0.238941 0.137952i
\(276\) 2082.58 + 3607.13i 0.454190 + 0.786681i
\(277\) 3071.46 5319.92i 0.666232 1.15395i −0.312718 0.949846i \(-0.601240\pi\)
0.978950 0.204101i \(-0.0654271\pi\)
\(278\) 3594.46i 0.775473i
\(279\) −391.521 226.045i −0.0840134 0.0485051i
\(280\) −324.690 187.460i −0.0692998 0.0400103i
\(281\) 2631.82i 0.558724i 0.960186 + 0.279362i \(0.0901229\pi\)
−0.960186 + 0.279362i \(0.909877\pi\)
\(282\) 646.998 1120.63i 0.136625 0.236641i
\(283\) −1634.26 2830.62i −0.343275 0.594569i 0.641764 0.766902i \(-0.278203\pi\)
−0.985039 + 0.172333i \(0.944870\pi\)
\(284\) 2201.14 1270.83i 0.459907 0.265528i
\(285\) −10049.0 −2.08859
\(286\) 2272.12 1324.27i 0.469766 0.273796i
\(287\) 925.062 0.190260
\(288\) −234.902 + 135.621i −0.0480615 + 0.0277483i
\(289\) −4210.80 7293.31i −0.857072 1.48449i
\(290\) −2856.65 + 4947.86i −0.578443 + 1.00189i
\(291\) 6851.93i 1.38030i
\(292\) 3280.11 + 1893.77i 0.657377 + 0.379537i
\(293\) 6160.79 + 3556.93i 1.22839 + 0.709209i 0.966692 0.255942i \(-0.0823855\pi\)
0.261694 + 0.965151i \(0.415719\pi\)
\(294\) 3931.91i 0.779979i
\(295\) 2555.12 4425.59i 0.504287 0.873450i
\(296\) 507.071 + 878.273i 0.0995706 + 0.172461i
\(297\) 2680.51 1547.59i 0.523699 0.302358i
\(298\) 849.260 0.165088
\(299\) −33.6222 8194.34i −0.00650309 1.58492i
\(300\) 1068.56 0.205644
\(301\) 88.7393 51.2337i 0.0169929 0.00981083i
\(302\) 3045.16 + 5274.38i 0.580230 + 1.00499i
\(303\) 539.409 934.285i 0.102271 0.177139i
\(304\) 2071.28i 0.390776i
\(305\) −2538.57 1465.65i −0.476585 0.275156i
\(306\) −1695.34 978.804i −0.316719 0.182858i
\(307\) 5015.75i 0.932456i 0.884665 + 0.466228i \(0.154387\pi\)
−0.884665 + 0.466228i \(0.845613\pi\)
\(308\) 201.759 349.457i 0.0373257 0.0646499i
\(309\) −5262.93 9115.66i −0.968924 1.67823i
\(310\) −1203.96 + 695.108i −0.220582 + 0.127353i
\(311\) 563.698 0.102779 0.0513897 0.998679i \(-0.483635\pi\)
0.0513897 + 0.998679i \(0.483635\pi\)
\(312\) 2233.42 9.16396i 0.405264 0.00166284i
\(313\) −1516.36 −0.273832 −0.136916 0.990583i \(-0.543719\pi\)
−0.136916 + 0.990583i \(0.543719\pi\)
\(314\) −2337.62 + 1349.62i −0.420125 + 0.242559i
\(315\) −198.620 344.021i −0.0355270 0.0615345i
\(316\) −397.855 + 689.105i −0.0708262 + 0.122675i
\(317\) 2358.19i 0.417820i 0.977935 + 0.208910i \(0.0669915\pi\)
−0.977935 + 0.208910i \(0.933008\pi\)
\(318\) 2220.42 + 1281.96i 0.391557 + 0.226065i
\(319\) −5325.29 3074.56i −0.934667 0.539630i
\(320\) 834.091i 0.145710i
\(321\) −864.992 + 1498.21i −0.150402 + 0.260505i
\(322\) −628.662 1088.87i −0.108801 0.188449i
\(323\) 12946.1 7474.43i 2.23016 1.28758i
\(324\) 3544.05 0.607690
\(325\) −1824.90 1043.65i −0.311468 0.178126i
\(326\) 2165.80 0.367953
\(327\) −4661.25 + 2691.17i −0.788280 + 0.455114i
\(328\) −1029.00 1782.28i −0.173223 0.300031i
\(329\) −195.307 + 338.282i −0.0327284 + 0.0566873i
\(330\) 4355.34i 0.726525i
\(331\) −1472.43 850.110i −0.244508 0.141167i 0.372739 0.927936i \(-0.378419\pi\)
−0.617247 + 0.786769i \(0.711752\pi\)
\(332\) 2400.47 + 1385.91i 0.396816 + 0.229102i
\(333\) 1074.52i 0.176827i
\(334\) −855.071 + 1481.03i −0.140082 + 0.242629i
\(335\) 908.954 + 1574.36i 0.148243 + 0.256765i
\(336\) 296.780 171.346i 0.0481865 0.0278205i
\(337\) −11512.3 −1.86087 −0.930437 0.366453i \(-0.880572\pi\)
−0.930437 + 0.366453i \(0.880572\pi\)
\(338\) −3823.22 2165.70i −0.615253 0.348516i
\(339\) 5317.22 0.851893
\(340\) −5213.32 + 3009.91i −0.831564 + 0.480104i
\(341\) −748.130 1295.80i −0.118808 0.205781i
\(342\) 1097.30 1900.57i 0.173494 0.300501i
\(343\) 2420.33i 0.381007i
\(344\) −197.420 113.981i −0.0309424 0.0178646i
\(345\) 11752.7 + 6785.40i 1.83403 + 1.05888i
\(346\) 7303.32i 1.13477i
\(347\) 90.7510 157.185i 0.0140397 0.0243174i −0.858920 0.512109i \(-0.828864\pi\)
0.872960 + 0.487792i \(0.162198\pi\)
\(348\) −2611.09 4522.55i −0.402211 0.696650i
\(349\) −4504.64 + 2600.76i −0.690911 + 0.398898i −0.803953 0.594693i \(-0.797274\pi\)
0.113042 + 0.993590i \(0.463940\pi\)
\(350\) −322.563 −0.0492620
\(351\) −4489.18 2567.33i −0.682662 0.390409i
\(352\) −897.716 −0.135933
\(353\) −4190.52 + 2419.40i −0.631839 + 0.364792i −0.781464 0.623951i \(-0.785527\pi\)
0.149625 + 0.988743i \(0.452193\pi\)
\(354\) 2335.48 + 4045.17i 0.350648 + 0.607340i
\(355\) 4140.58 7171.69i 0.619040 1.07221i
\(356\) 3241.39i 0.482566i
\(357\) 2141.92 + 1236.64i 0.317543 + 0.183333i
\(358\) 3295.02 + 1902.38i 0.486444 + 0.280849i
\(359\) 2374.12i 0.349029i 0.984655 + 0.174514i \(0.0558356\pi\)
−0.984655 + 0.174514i \(0.944164\pi\)
\(360\) −441.875 + 765.350i −0.0646913 + 0.112049i
\(361\) 4949.78 + 8573.27i 0.721648 + 1.24993i
\(362\) −3497.67 + 2019.38i −0.507827 + 0.293194i
\(363\) 3240.14 0.468493
\(364\) −674.196 + 2.76630i −0.0970809 + 0.000398333i
\(365\) 12340.5 1.76967
\(366\) 2320.36 1339.66i 0.331386 0.191326i
\(367\) 3241.30 + 5614.10i 0.461021 + 0.798512i 0.999012 0.0444389i \(-0.0141500\pi\)
−0.537991 + 0.842950i \(0.680817\pi\)
\(368\) −1398.60 + 2422.44i −0.198117 + 0.343148i
\(369\) 2180.53i 0.307626i
\(370\) 2861.56 + 1652.12i 0.402069 + 0.232135i
\(371\) −670.272 386.981i −0.0937972 0.0541538i
\(372\) 1270.71i 0.177106i
\(373\) 156.532 271.121i 0.0217290 0.0376357i −0.854956 0.518700i \(-0.826416\pi\)
0.876685 + 0.481064i \(0.159750\pi\)
\(374\) −3239.51 5610.99i −0.447890 0.775768i
\(375\) −5388.07 + 3110.80i −0.741970 + 0.428376i
\(376\) 869.009 0.119191
\(377\) 42.1548 + 10273.9i 0.00575885 + 1.40353i
\(378\) −793.491 −0.107970
\(379\) 2093.43 1208.64i 0.283727 0.163810i −0.351383 0.936232i \(-0.614288\pi\)
0.635109 + 0.772422i \(0.280955\pi\)
\(380\) −3374.29 5844.44i −0.455519 0.788982i
\(381\) −1687.26 + 2922.42i −0.226879 + 0.392966i
\(382\) 3106.54i 0.416085i
\(383\) 1031.33 + 595.441i 0.137595 + 0.0794402i 0.567217 0.823568i \(-0.308020\pi\)
−0.429623 + 0.903009i \(0.641353\pi\)
\(384\) −660.252 381.197i −0.0877431 0.0506585i
\(385\) 1314.73i 0.174039i
\(386\) −600.841 + 1040.69i −0.0792280 + 0.137227i
\(387\) −120.767 209.174i −0.0158628 0.0274752i
\(388\) −3985.06 + 2300.77i −0.521419 + 0.301042i
\(389\) −2337.99 −0.304732 −0.152366 0.988324i \(-0.548689\pi\)
−0.152366 + 0.988324i \(0.548689\pi\)
\(390\) 6287.02 3664.29i 0.816296 0.475765i
\(391\) −20188.0 −2.61112
\(392\) 2286.79 1320.28i 0.294643 0.170112i
\(393\) −5952.44 10309.9i −0.764022 1.32333i
\(394\) 1761.59 3051.16i 0.225247 0.390140i
\(395\) 2592.56i 0.330242i
\(396\) −823.731 475.581i −0.104530 0.0603506i
\(397\) −12017.7 6938.45i −1.51928 0.877156i −0.999742 0.0227072i \(-0.992771\pi\)
−0.519536 0.854448i \(-0.673895\pi\)
\(398\) 6834.64i 0.860778i
\(399\) −1386.35 + 2401.22i −0.173945 + 0.301282i
\(400\) 358.806 + 621.470i 0.0448507 + 0.0776837i
\(401\) 7850.46 4532.46i 0.977639 0.564440i 0.0760824 0.997102i \(-0.475759\pi\)
0.901556 + 0.432661i \(0.142425\pi\)
\(402\) −1661.64 −0.206157
\(403\) −1241.09 + 2170.14i −0.153407 + 0.268244i
\(404\) 724.502 0.0892211
\(405\) 10000.1 5773.56i 1.22693 0.708371i
\(406\) 788.203 + 1365.21i 0.0963494 + 0.166882i
\(407\) −1778.15 + 3079.84i −0.216559 + 0.375091i
\(408\) 5502.36i 0.667665i
\(409\) 12316.6 + 7111.00i 1.48904 + 0.859698i 0.999922 0.0125189i \(-0.00398500\pi\)
0.489119 + 0.872217i \(0.337318\pi\)
\(410\) −5806.98 3352.66i −0.699479 0.403845i
\(411\) 5896.73i 0.707699i
\(412\) 3534.42 6121.80i 0.422642 0.732037i
\(413\) −705.004 1221.10i −0.0839975 0.145488i
\(414\) −2566.66 + 1481.86i −0.304697 + 0.175917i
\(415\) 9031.08 1.06824
\(416\) 755.278 + 1295.87i 0.0890158 + 0.152729i
\(417\) 10704.7 1.25710
\(418\) 6290.25 3631.68i 0.736044 0.424955i
\(419\) 143.734 + 248.955i 0.0167587 + 0.0290269i 0.874283 0.485416i \(-0.161332\pi\)
−0.857524 + 0.514443i \(0.827999\pi\)
\(420\) 558.274 966.959i 0.0648595 0.112340i
\(421\) 12089.3i 1.39952i −0.714380 0.699758i \(-0.753291\pi\)
0.714380 0.699758i \(-0.246709\pi\)
\(422\) −4553.09 2628.73i −0.525215 0.303233i
\(423\) 797.389 + 460.373i 0.0916558 + 0.0529175i
\(424\) 1721.85i 0.197218i
\(425\) −2589.58 + 4485.28i −0.295560 + 0.511925i
\(426\) 3784.66 + 6555.22i 0.430439 + 0.745543i
\(427\) −700.440 + 404.399i −0.0793833 + 0.0458319i
\(428\) −1161.80 −0.131210
\(429\) 3943.80 + 6766.59i 0.443843 + 0.761525i
\(430\) −742.736 −0.0832975
\(431\) −132.526 + 76.5139i −0.0148110 + 0.00855115i −0.507387 0.861718i \(-0.669389\pi\)
0.492576 + 0.870269i \(0.336055\pi\)
\(432\) 882.647 + 1528.79i 0.0983018 + 0.170264i
\(433\) 4806.82 8325.66i 0.533490 0.924032i −0.465745 0.884919i \(-0.654213\pi\)
0.999235 0.0391128i \(-0.0124532\pi\)
\(434\) 383.586i 0.0424256i
\(435\) −14735.2 8507.39i −1.62414 0.937697i
\(436\) −3130.35 1807.31i −0.343845 0.198519i
\(437\) 22631.9i 2.47741i
\(438\) −5639.84 + 9768.50i −0.615256 + 1.06565i
\(439\) 6582.62 + 11401.4i 0.715652 + 1.23955i 0.962708 + 0.270544i \(0.0872036\pi\)
−0.247056 + 0.969001i \(0.579463\pi\)
\(440\) −2533.05 + 1462.46i −0.274451 + 0.158454i
\(441\) 2797.76 0.302101
\(442\) −5374.08 + 9397.01i −0.578323 + 1.01124i
\(443\) −15445.0 −1.65647 −0.828235 0.560382i \(-0.810654\pi\)
−0.828235 + 0.560382i \(0.810654\pi\)
\(444\) −2615.58 + 1510.11i −0.279572 + 0.161411i
\(445\) 5280.51 + 9146.11i 0.562517 + 0.974308i
\(446\) 2431.24 4211.04i 0.258123 0.447081i
\(447\) 2529.18i 0.267620i
\(448\) 199.308 + 115.071i 0.0210188 + 0.0121352i
\(449\) −1831.13 1057.20i −0.192464 0.111119i 0.400671 0.916222i \(-0.368777\pi\)
−0.593136 + 0.805103i \(0.702110\pi\)
\(450\) 760.335i 0.0796501i
\(451\) 3608.41 6249.94i 0.376748 0.652546i
\(452\) 1785.44 + 3092.48i 0.185797 + 0.321809i
\(453\) −15707.6 + 9068.80i −1.62916 + 0.940594i
\(454\) 13076.0 1.35174
\(455\) −1897.84 + 1106.13i −0.195543 + 0.113969i
\(456\) 6168.47 0.633476
\(457\) −7359.07 + 4248.76i −0.753267 + 0.434899i −0.826873 0.562389i \(-0.809882\pi\)
0.0736064 + 0.997287i \(0.476549\pi\)
\(458\) −2167.38 3754.01i −0.221124 0.382999i
\(459\) −6370.26 + 11033.6i −0.647796 + 1.12201i
\(460\) 9113.73i 0.923761i
\(461\) 6756.14 + 3900.66i 0.682570 + 0.394082i 0.800823 0.598902i \(-0.204396\pi\)
−0.118253 + 0.992984i \(0.537729\pi\)
\(462\) 1040.72 + 600.859i 0.104802 + 0.0605076i
\(463\) 9734.48i 0.977105i 0.872535 + 0.488552i \(0.162475\pi\)
−0.872535 + 0.488552i \(0.837525\pi\)
\(464\) 1753.53 3037.21i 0.175443 0.303877i
\(465\) −2070.10 3585.52i −0.206448 0.357579i
\(466\) 5266.39 3040.55i 0.523521 0.302255i
\(467\) 9446.38 0.936031 0.468015 0.883720i \(-0.344969\pi\)
0.468015 + 0.883720i \(0.344969\pi\)
\(468\) 6.52063 + 1589.19i 0.000644052 + 0.156967i
\(469\) 501.595 0.0493849
\(470\) 2452.05 1415.69i 0.240648 0.138938i
\(471\) −4019.31 6961.65i −0.393206 0.681053i
\(472\) −1568.44 + 2716.61i −0.152952 + 0.264920i
\(473\) 799.392i 0.0777084i
\(474\) −2052.22 1184.85i −0.198864 0.114814i
\(475\) −5028.27 2903.07i −0.485711 0.280425i
\(476\) 1660.98i 0.159939i
\(477\) −912.181 + 1579.94i −0.0875596 + 0.151658i
\(478\) 4747.31 + 8222.58i 0.454261 + 0.786804i
\(479\) 2926.17 1689.43i 0.279124 0.161152i −0.353903 0.935282i \(-0.615146\pi\)
0.633027 + 0.774130i \(0.281812\pi\)
\(480\) −2484.01 −0.236206
\(481\) 5941.83 24.3799i 0.563252 0.00231108i
\(482\) 5468.44 0.516764
\(483\) 3242.78 1872.22i 0.305489 0.176374i
\(484\) 1087.99 + 1884.45i 0.102178 + 0.176977i
\(485\) −7496.31 + 12984.0i −0.701835 + 1.21561i
\(486\) 4596.66i 0.429030i
\(487\) −15593.2 9002.76i −1.45092 0.837688i −0.452384 0.891823i \(-0.649426\pi\)
−0.998534 + 0.0541352i \(0.982760\pi\)
\(488\) 1558.28 + 899.675i 0.144549 + 0.0834556i
\(489\) 6449.98i 0.596479i
\(490\) 4301.68 7450.74i 0.396592 0.686918i
\(491\) −1353.21 2343.83i −0.124378 0.215429i 0.797112 0.603832i \(-0.206360\pi\)
−0.921490 + 0.388403i \(0.873027\pi\)
\(492\) 5307.82 3064.47i 0.486372 0.280807i
\(493\) 25311.2 2.31229
\(494\) −10534.6 6024.66i −0.959462 0.548709i
\(495\) −3099.05 −0.281398
\(496\) 739.042 426.686i 0.0669031 0.0386265i
\(497\) −1142.46 1978.80i −0.103112 0.178594i
\(498\) −4127.39 + 7148.84i −0.371391 + 0.643268i
\(499\) 8991.30i 0.806625i 0.915062 + 0.403313i \(0.132141\pi\)
−0.915062 + 0.403313i \(0.867859\pi\)
\(500\) −3618.46 2089.12i −0.323645 0.186857i
\(501\) −4410.64 2546.49i −0.393319 0.227083i
\(502\) 841.569i 0.0748228i
\(503\) 6204.92 10747.2i 0.550028 0.952676i −0.448244 0.893911i \(-0.647951\pi\)
0.998272 0.0587647i \(-0.0187162\pi\)
\(504\) 121.922 + 211.174i 0.0107754 + 0.0186636i
\(505\) 2044.30 1180.27i 0.180139 0.104003i
\(506\) −9808.92 −0.861778
\(507\) 6449.67 11385.9i 0.564970 0.997369i
\(508\) −2266.22 −0.197928
\(509\) 2670.76 1541.96i 0.232572 0.134276i −0.379186 0.925321i \(-0.623796\pi\)
0.611758 + 0.791045i \(0.290463\pi\)
\(510\) −8963.81 15525.8i −0.778283 1.34803i
\(511\) 1702.48 2948.79i 0.147384 0.255277i
\(512\) 512.000i 0.0441942i
\(513\) −12369.3 7141.44i −1.06456 0.614624i
\(514\) −6041.64 3488.14i −0.518454 0.299330i
\(515\) 23031.5i 1.97066i
\(516\) 339.445 587.937i 0.0289598 0.0501598i
\(517\) 1523.68 + 2639.09i 0.129616 + 0.224501i
\(518\) 789.558 455.852i 0.0669714 0.0386660i
\(519\) 21750.0 1.83954
\(520\) 4242.22 + 2426.09i 0.357757 + 0.204599i
\(521\) 3824.30 0.321584 0.160792 0.986988i \(-0.448595\pi\)
0.160792 + 0.986988i \(0.448595\pi\)
\(522\) 3218.03 1857.93i 0.269826 0.155784i
\(523\) 2012.17 + 3485.19i 0.168234 + 0.291389i 0.937799 0.347179i \(-0.112860\pi\)
−0.769565 + 0.638568i \(0.779527\pi\)
\(524\) 3997.47 6923.83i 0.333264 0.577231i
\(525\) 960.623i 0.0798572i
\(526\) −5766.51 3329.30i −0.478007 0.275978i
\(527\) 5333.83 + 3079.49i 0.440883 + 0.254544i
\(528\) 2673.49i 0.220357i
\(529\) −9198.32 + 15932.0i −0.756005 + 1.30944i
\(530\) 2805.04 + 4858.47i 0.229893 + 0.398186i
\(531\) −2878.35 + 1661.81i −0.235235 + 0.135813i
\(532\) −1862.06 −0.151749
\(533\) −12057.8 + 49.4744i −0.979889 + 0.00402059i
\(534\) −9653.19 −0.782274
\(535\) −3278.21 + 1892.68i −0.264915 + 0.152949i
\(536\) −557.954 966.405i −0.0449626 0.0778775i
\(537\) −5665.47 + 9812.89i −0.455276 + 0.788561i
\(538\) 11595.1i 0.929184i
\(539\) 8019.08 + 4629.82i 0.640828 + 0.369982i
\(540\) 4981.06 + 2875.81i 0.396945 + 0.229177i
\(541\) 2764.37i 0.219685i −0.993949 0.109842i \(-0.964965\pi\)
0.993949 0.109842i \(-0.0350346\pi\)
\(542\) −225.962 + 391.379i −0.0179076 + 0.0310169i
\(543\) −6013.91 10416.4i −0.475288 0.823223i
\(544\) 3200.15 1847.61i 0.252216 0.145617i
\(545\) −11777.0 −0.925638
\(546\) −8.23830 2007.82i −0.000645727 0.157375i
\(547\) 24620.8 1.92451 0.962255 0.272148i \(-0.0877341\pi\)
0.962255 + 0.272148i \(0.0877341\pi\)
\(548\) 3429.52 1980.03i 0.267339 0.154348i
\(549\) 953.238 + 1651.06i 0.0741042 + 0.128352i
\(550\) −1258.23 + 2179.31i −0.0975471 + 0.168957i
\(551\) 28375.4i 2.19389i
\(552\) −7214.27 4165.16i −0.556267 0.321161i
\(553\) 619.498 + 357.667i 0.0476379 + 0.0275037i
\(554\) 12285.8i 0.942194i
\(555\) −4920.19 + 8522.01i −0.376307 + 0.651783i
\(556\) 3594.46 + 6225.79i 0.274171 + 0.474879i
\(557\) −8405.82 + 4853.10i −0.639437 + 0.369179i −0.784397 0.620259i \(-0.787028\pi\)
0.144961 + 0.989437i \(0.453694\pi\)
\(558\) 904.178 0.0685966
\(559\) −1153.94 + 672.555i −0.0873102 + 0.0508874i
\(560\) 749.840 0.0565830
\(561\) 16710.1 9647.57i 1.25758 0.726062i
\(562\) −2631.82 4558.45i −0.197539 0.342147i
\(563\) −9984.31 + 17293.3i −0.747404 + 1.29454i 0.201659 + 0.979456i \(0.435367\pi\)
−0.949063 + 0.315087i \(0.897966\pi\)
\(564\) 2587.99i 0.193217i
\(565\) 10075.8 + 5817.27i 0.750252 + 0.433158i
\(566\) 5661.25 + 3268.52i 0.420424 + 0.242732i
\(567\) 3186.06i 0.235983i
\(568\) −2541.66 + 4402.28i −0.187756 + 0.325204i
\(569\) −5753.03 9964.54i −0.423865 0.734156i 0.572448 0.819941i \(-0.305994\pi\)
−0.996314 + 0.0857843i \(0.972660\pi\)
\(570\) 17405.3 10049.0i 1.27900 0.738429i
\(571\) −16173.1 −1.18533 −0.592666 0.805448i \(-0.701925\pi\)
−0.592666 + 0.805448i \(0.701925\pi\)
\(572\) −2611.16 + 4565.82i −0.190870 + 0.333752i
\(573\) 9251.60 0.674504
\(574\) −1602.25 + 925.062i −0.116510 + 0.0672672i
\(575\) 3920.50 + 6790.51i 0.284341 + 0.492494i
\(576\) 271.241 469.804i 0.0196210 0.0339846i
\(577\) 23233.2i 1.67627i −0.545462 0.838136i \(-0.683646\pi\)
0.545462 0.838136i \(-0.316354\pi\)
\(578\) 14586.6 + 8421.59i 1.04969 + 0.606042i
\(579\) −3099.27 1789.36i −0.222455 0.128434i
\(580\) 11426.6i 0.818041i
\(581\) 1245.92 2158.00i 0.0889665 0.154094i
\(582\) −6851.93 11867.9i −0.488010 0.845258i
\(583\) −5229.08 + 3019.01i −0.371469 + 0.214468i
\(584\) −7575.09 −0.536746
\(585\) 2607.33 + 4473.54i 0.184273 + 0.316168i
\(586\) −14227.7 −1.00297
\(587\) 3663.35 2115.04i 0.257585 0.148717i −0.365647 0.930754i \(-0.619152\pi\)
0.623233 + 0.782037i \(0.285819\pi\)
\(588\) 3931.91 + 6810.27i 0.275764 + 0.477638i
\(589\) −3452.29 + 5979.53i −0.241509 + 0.418306i
\(590\) 10220.5i 0.713169i
\(591\) 9086.65 + 5246.18i 0.632444 + 0.365142i
\(592\) −1756.55 1014.14i −0.121949 0.0704071i
\(593\) 2252.09i 0.155956i −0.996955 0.0779782i \(-0.975154\pi\)
0.996955 0.0779782i \(-0.0248465\pi\)
\(594\) −3095.18 + 5361.01i −0.213799 + 0.370311i
\(595\) 2705.88 + 4686.72i 0.186437 + 0.322919i
\(596\) −1470.96 + 849.260i −0.101096 + 0.0583675i
\(597\) −20354.2 −1.39538
\(598\) 8252.57 + 14159.4i 0.564336 + 0.968262i
\(599\) 2097.38 0.143066 0.0715331 0.997438i \(-0.477211\pi\)
0.0715331 + 0.997438i \(0.477211\pi\)
\(600\) −1850.80 + 1068.56i −0.125931 + 0.0727062i
\(601\) −6187.67 10717.4i −0.419967 0.727405i 0.575968 0.817472i \(-0.304625\pi\)
−0.995936 + 0.0900673i \(0.971292\pi\)
\(602\) −102.467 + 177.479i −0.00693731 + 0.0120158i
\(603\) 1182.34i 0.0798487i
\(604\) −10548.8 6090.33i −0.710634 0.410285i
\(605\) 6139.86 + 3544.85i 0.412597 + 0.238213i
\(606\) 2157.64i 0.144634i
\(607\) 12164.8 21070.1i 0.813435 1.40891i −0.0970120 0.995283i \(-0.530929\pi\)
0.910447 0.413627i \(-0.135738\pi\)
\(608\) 2071.28 + 3587.56i 0.138160 + 0.239301i
\(609\) −4065.72 + 2347.35i −0.270528 + 0.156189i
\(610\) 5862.59 0.389130
\(611\) 2527.66 4419.81i 0.167362 0.292646i
\(612\) 3915.21 0.258600
\(613\) −12595.5 + 7272.00i −0.829896 + 0.479141i −0.853817 0.520573i \(-0.825718\pi\)
0.0239210 + 0.999714i \(0.492385\pi\)
\(614\) −5015.75 8687.54i −0.329673 0.571010i
\(615\) 9984.56 17293.8i 0.654661 1.13391i
\(616\) 807.037i 0.0527865i
\(617\) −5213.40 3009.96i −0.340168 0.196396i 0.320178 0.947357i \(-0.396257\pi\)
−0.660346 + 0.750961i \(0.729590\pi\)
\(618\) 18231.3 + 10525.9i 1.18668 + 0.685133i
\(619\) 11663.1i 0.757320i 0.925536 + 0.378660i \(0.123615\pi\)
−0.925536 + 0.378660i \(0.876385\pi\)
\(620\) 1390.22 2407.92i 0.0900522 0.155975i
\(621\) 9644.28 + 16704.4i 0.623207 + 1.07943i
\(622\) −976.354 + 563.698i −0.0629393 + 0.0363380i
\(623\) 2913.98 0.187393
\(624\) −3859.23 + 2249.29i −0.247585 + 0.144301i
\(625\) −19219.8 −1.23006
\(626\) 2626.41 1516.36i 0.167687 0.0968144i
\(627\) 10815.5 + 18733.0i 0.688882 + 1.19318i
\(628\) 2699.25 4675.23i 0.171515 0.297073i
\(629\) 14638.6i 0.927946i
\(630\) 688.042 + 397.241i 0.0435115 + 0.0251214i
\(631\) −4828.46 2787.71i −0.304624 0.175875i 0.339894 0.940464i \(-0.389609\pi\)
−0.644518 + 0.764589i \(0.722942\pi\)
\(632\) 1591.42i 0.100163i
\(633\) 7828.60 13559.5i 0.491563 0.851411i
\(634\) −2358.19 4084.50i −0.147722 0.255861i
\(635\) −6394.50 + 3691.87i −0.399619 + 0.230720i
\(636\) −5127.84 −0.319705
\(637\) −63.4788 15470.9i −0.00394839 0.962292i
\(638\) 12298.2 0.763153
\(639\) −4664.38 + 2692.98i −0.288763 + 0.166718i
\(640\) −834.091 1444.69i −0.0515162 0.0892287i
\(641\) 9908.76 17162.5i 0.610566 1.05753i −0.380580 0.924748i \(-0.624275\pi\)
0.991145 0.132782i \(-0.0423912\pi\)
\(642\) 3459.97i 0.212701i
\(643\) 17250.8 + 9959.77i 1.05802 + 0.610848i 0.924884 0.380250i \(-0.124162\pi\)
0.133135 + 0.991098i \(0.457495\pi\)
\(644\) 2177.75 + 1257.32i 0.133254 + 0.0769340i
\(645\) 2211.94i 0.135031i
\(646\) −14948.9 + 25892.2i −0.910457 + 1.57696i
\(647\) −12381.7 21445.7i −0.752356 1.30312i −0.946678 0.322180i \(-0.895584\pi\)
0.194323 0.980938i \(-0.437749\pi\)
\(648\) −6138.47 + 3544.05i −0.372133 + 0.214851i
\(649\) −11000.1 −0.665317
\(650\) 4204.47 17.2514i 0.253712 0.00104101i
\(651\) −1142.36 −0.0687750
\(652\) −3751.28 + 2165.80i −0.225324 + 0.130091i
\(653\) 3230.41 + 5595.23i 0.193592 + 0.335311i 0.946438 0.322885i \(-0.104653\pi\)
−0.752846 + 0.658197i \(0.771320\pi\)
\(654\) 5382.34 9322.49i 0.321814 0.557398i
\(655\) 26048.9i 1.55392i
\(656\) 3564.57 + 2058.00i 0.212154 + 0.122487i
\(657\) −6950.79 4013.04i −0.412749 0.238301i
\(658\) 781.230i 0.0462850i
\(659\) −9995.68 + 17313.0i −0.590860 + 1.02340i 0.403257 + 0.915087i \(0.367878\pi\)
−0.994117 + 0.108312i \(0.965455\pi\)
\(660\) −4355.34 7543.66i −0.256866 0.444904i
\(661\) −11657.5 + 6730.43i −0.685964 + 0.396042i −0.802098 0.597192i \(-0.796283\pi\)
0.116134 + 0.993234i \(0.462950\pi\)
\(662\) 3400.44 0.199640
\(663\) −27985.2 16004.5i −1.63930 0.937503i
\(664\) −5543.65 −0.323999
\(665\) −5254.09 + 3033.45i −0.306383 + 0.176890i
\(666\) −1074.52 1861.12i −0.0625177 0.108284i
\(667\) 19160.0 33186.1i 1.11226 1.92649i
\(668\) 3420.28i 0.198106i
\(669\) 12540.9 + 7240.48i 0.724751 + 0.418435i
\(670\) −3148.71 1817.91i −0.181560 0.104824i
\(671\) 6309.78i 0.363020i
\(672\) −342.692 + 593.560i −0.0196721 + 0.0340730i
\(673\) 2099.82 + 3636.99i 0.120271 + 0.208315i 0.919874 0.392213i \(-0.128290\pi\)
−0.799604 + 0.600528i \(0.794957\pi\)
\(674\) 19939.9 11512.3i 1.13955 0.657918i
\(675\) 4948.42 0.282170
\(676\) 8787.70 72.1149i 0.499983 0.00410304i
\(677\) 7849.62 0.445621 0.222811 0.974862i \(-0.428477\pi\)
0.222811 + 0.974862i \(0.428477\pi\)
\(678\) −9209.70 + 5317.22i −0.521676 + 0.301190i
\(679\) 2068.37 + 3582.53i 0.116903 + 0.202481i
\(680\) 6019.82 10426.6i 0.339485 0.588005i
\(681\) 38941.8i 2.19126i
\(682\) 2591.60 + 1496.26i 0.145509 + 0.0840099i
\(683\) −11924.1 6884.39i −0.668028 0.385686i 0.127301 0.991864i \(-0.459369\pi\)
−0.795329 + 0.606178i \(0.792702\pi\)
\(684\) 4389.19i 0.245358i
\(685\) 6451.28 11174.0i 0.359841 0.623262i
\(686\) −2420.33 4192.13i −0.134706 0.233318i
\(687\) 11179.8 6454.67i 0.620868 0.358458i
\(688\) 455.922 0.0252644
\(689\) 8757.40 + 5008.29i 0.484224 + 0.276924i
\(690\) −27141.6 −1.49748
\(691\) −19812.4 + 11438.7i −1.09074 + 0.629738i −0.933773 0.357866i \(-0.883504\pi\)
−0.156965 + 0.987604i \(0.550171\pi\)
\(692\) 7303.32 + 12649.7i 0.401200 + 0.694900i
\(693\) −427.542 + 740.525i −0.0234358 + 0.0405920i
\(694\) 363.004i 0.0198551i
\(695\) 20284.7 + 11711.4i 1.10711 + 0.639191i
\(696\) 9045.10 + 5222.19i 0.492606 + 0.284406i
\(697\) 29706.1i 1.61435i
\(698\) 5201.51 9009.28i 0.282063 0.488548i
\(699\) 9055.06 + 15683.8i 0.489977 + 0.848665i
\(700\) 558.695 322.563i 0.0301667 0.0174167i
\(701\) −3514.23 −0.189345 −0.0946724 0.995508i \(-0.530180\pi\)
−0.0946724 + 0.995508i \(0.530180\pi\)
\(702\) 10342.8 42.4376i 0.556074 0.00228163i
\(703\) 16410.7 0.880429
\(704\) 1554.89 897.716i 0.0832416 0.0480596i
\(705\) 4216.06 + 7302.43i 0.225228 + 0.390107i
\(706\) 4838.80 8381.05i 0.257947 0.446777i
\(707\) 651.320i 0.0346469i
\(708\) −8090.34 4670.96i −0.429454 0.247945i
\(709\) −6139.10 3544.41i −0.325189 0.187748i 0.328514 0.944499i \(-0.393452\pi\)
−0.653703 + 0.756751i \(0.726785\pi\)
\(710\) 16562.3i 0.875454i
\(711\) 843.083 1460.26i 0.0444699 0.0770241i
\(712\) −3241.39 5614.26i −0.170613 0.295510i
\(713\) 8075.17 4662.20i 0.424148 0.244882i
\(714\) −4946.56 −0.259272
\(715\) 70.3148 + 17137.0i 0.00367779 + 0.896344i
\(716\) −7609.52 −0.397180
\(717\) −24487.7 + 14138.0i −1.27547 + 0.736390i
\(718\) −2374.12 4112.10i −0.123400 0.213736i
\(719\) −7572.65 + 13116.2i −0.392785 + 0.680323i −0.992816 0.119654i \(-0.961822\pi\)
0.600031 + 0.799977i \(0.295155\pi\)
\(720\) 1767.50i 0.0914873i
\(721\) −5503.43 3177.41i −0.284270 0.164123i
\(722\) −17146.5 9899.56i −0.883834 0.510282i
\(723\) 16285.5i 0.837712i
\(724\) 4038.76 6995.33i 0.207319 0.359088i
\(725\) −4915.45 8513.80i −0.251800 0.436131i
\(726\) −5612.08 + 3240.14i −0.286892 + 0.165637i
\(727\) −3785.73 −0.193129 −0.0965645 0.995327i \(-0.530785\pi\)
−0.0965645 + 0.995327i \(0.530785\pi\)
\(728\) 1164.97 678.987i 0.0593089 0.0345672i
\(729\) 10233.0 0.519891
\(730\) −21374.3 + 12340.5i −1.08370 + 0.625673i
\(731\) 1645.25 + 2849.65i 0.0832443 + 0.144183i
\(732\) −2679.32 + 4640.72i −0.135288 + 0.234325i
\(733\) 1412.04i 0.0711528i 0.999367 + 0.0355764i \(0.0113267\pi\)
−0.999367 + 0.0355764i \(0.988673\pi\)
\(734\) −11228.2 6482.61i −0.564633 0.325991i
\(735\) 22189.0 + 12810.8i 1.11354 + 0.642905i
\(736\) 5594.39i 0.280179i
\(737\) 1956.58 3388.89i 0.0977904 0.169378i
\(738\) 2180.53 + 3776.79i 0.108762 + 0.188381i
\(739\) 761.097 439.420i 0.0378855 0.0218732i −0.480938 0.876755i \(-0.659704\pi\)
0.518823 + 0.854882i \(0.326370\pi\)
\(740\) −6608.49 −0.328288
\(741\) 17942.0 31373.1i 0.889496 1.55536i
\(742\) 1547.93 0.0765851
\(743\) 3375.21 1948.68i 0.166655 0.0962181i −0.414353 0.910116i \(-0.635992\pi\)
0.581007 + 0.813898i \(0.302659\pi\)
\(744\) 1270.71 + 2200.94i 0.0626164 + 0.108455i
\(745\) −2767.03 + 4792.64i −0.136076 + 0.235690i
\(746\) 626.128i 0.0307294i
\(747\) −5086.77 2936.85i −0.249150 0.143847i
\(748\) 11222.0 + 6479.01i 0.548551 + 0.316706i
\(749\) 1044.45i 0.0509524i
\(750\) 6221.60 10776.1i 0.302908 0.524652i
\(751\) −10476.9 18146.5i −0.509064 0.881724i −0.999945 0.0104978i \(-0.996658\pi\)
0.490881 0.871227i \(-0.336675\pi\)
\(752\) −1505.17 + 869.009i −0.0729891 + 0.0421403i
\(753\) −2506.28 −0.121293
\(754\) −10346.9 17752.7i −0.499751 0.857449i
\(755\) −39686.6 −1.91304
\(756\) 1374.37 793.491i 0.0661180 0.0381732i
\(757\) 10219.6 + 17700.8i 0.490669 + 0.849863i 0.999942 0.0107414i \(-0.00341914\pi\)
−0.509273 + 0.860605i \(0.670086\pi\)
\(758\) −2417.29 + 4186.87i −0.115831 + 0.200625i
\(759\) 29211.9i 1.39700i
\(760\) 11688.9 + 6748.58i 0.557895 + 0.322101i
\(761\) 16771.2 + 9682.87i 0.798892 + 0.461240i 0.843083 0.537783i \(-0.180738\pi\)
−0.0441918 + 0.999023i \(0.514071\pi\)
\(762\) 6749.03i 0.320855i
\(763\) −1624.75 + 2814.15i −0.0770904 + 0.133524i
\(764\) 3106.54 + 5380.69i 0.147108 + 0.254799i
\(765\) 11047.4 6378.22i 0.522117 0.301444i
\(766\) −2381.76 −0.112345
\(767\) 9254.73 + 15878.8i 0.435683 + 0.747525i
\(768\) 1524.79 0.0716419
\(769\) 32141.9 18557.1i 1.50724 0.870203i 0.507272 0.861786i \(-0.330654\pi\)
0.999965 0.00841718i \(-0.00267930\pi\)
\(770\) 1314.73 + 2277.18i 0.0615320 + 0.106577i
\(771\) 10388.0 17992.6i 0.485235 0.840451i
\(772\) 2403.36i 0.112045i
\(773\) −8387.78 4842.69i −0.390281 0.225329i 0.292001 0.956418i \(-0.405679\pi\)
−0.682282 + 0.731089i \(0.739012\pi\)
\(774\) 418.348 + 241.533i 0.0194279 + 0.0112167i
\(775\) 2392.15i 0.110875i
\(776\) 4601.55 7970.12i 0.212869 0.368699i
\(777\) 1357.57 + 2351.38i 0.0626803 + 0.108565i
\(778\) 4049.51 2337.99i 0.186609 0.107739i
\(779\) −33302.3 −1.53168
\(780\) −7225.15 + 12633.8i −0.331669 + 0.579950i
\(781\) −17825.7 −0.816713
\(782\) 34966.6 20188.0i 1.59898 0.923171i
\(783\) −12091.8 20943.6i −0.551884 0.955892i
\(784\) −2640.55 + 4573.57i −0.120288 + 0.208344i
\(785\) 17589.2i 0.799727i
\(786\) 20619.8 + 11904.9i 0.935732 + 0.540245i
\(787\) −17642.7 10186.0i −0.799103 0.461362i 0.0440543 0.999029i \(-0.485973\pi\)
−0.843157 + 0.537667i \(0.819306\pi\)
\(788\) 7046.34i 0.318548i
\(789\) 9914.98 17173.2i 0.447380 0.774884i
\(790\) −2592.56 4490.44i −0.116758 0.202231i
\(791\) 2780.10 1605.09i 0.124967 0.0721499i
\(792\) 1902.32 0.0853487
\(793\) 9108.30 5308.63i 0.407876 0.237724i
\(794\) 27753.8 1.24049
\(795\) −14469.0 + 8353.69i −0.645488 + 0.372673i
\(796\) −6834.64 11838.0i −0.304331 0.527117i
\(797\) −12703.7 + 22003.5i −0.564603 + 0.977921i 0.432484 + 0.901642i \(0.357637\pi\)
−0.997087 + 0.0762789i \(0.975696\pi\)
\(798\) 5545.39i 0.245996i
\(799\) −10863.1 6271.83i −0.480988 0.277699i
\(800\) −1242.94 717.611i −0.0549307 0.0317142i
\(801\) 6868.75i 0.302990i
\(802\) −9064.93 + 15700.9i −0.399119 + 0.691295i
\(803\) −13281.8 23004.8i −0.583692 1.01098i
\(804\) 2878.05 1661.64i 0.126245 0.0728876i
\(805\) 8193.15 0.358721
\(806\) −20.5150 4999.88i −0.000896540 0.218503i
\(807\) 34531.4 1.50627
\(808\) −1254.87 + 724.502i −0.0546365 + 0.0315444i
\(809\) 3240.16 + 5612.12i 0.140813 + 0.243896i 0.927803 0.373070i \(-0.121695\pi\)
−0.786990 + 0.616966i \(0.788362\pi\)
\(810\) −11547.1 + 20000.2i −0.500894 + 0.867574i
\(811\) 30651.9i 1.32717i 0.748102 + 0.663584i \(0.230966\pi\)
−0.748102 + 0.663584i \(0.769034\pi\)
\(812\) −2730.42 1576.41i −0.118003 0.0681293i
\(813\) −1165.56 672.939i −0.0502806 0.0290295i
\(814\) 7112.59i 0.306261i
\(815\) −7056.56 + 12222.3i −0.303289 + 0.525312i
\(816\) 5502.36 + 9530.37i 0.236055 + 0.408860i
\(817\) −3194.63 + 1844.42i −0.136800 + 0.0789817i
\(818\) −28444.0 −1.21580
\(819\) 1428.67 5.86198i 0.0609545 0.000250103i
\(820\) 13410.7 0.571122
\(821\) 29694.2 17144.0i 1.26228 0.728780i 0.288768 0.957399i \(-0.406754\pi\)
0.973516 + 0.228619i \(0.0734210\pi\)
\(822\) 5896.73 + 10213.4i 0.250210 + 0.433376i
\(823\) −10447.4 + 18095.5i −0.442496 + 0.766426i −0.997874 0.0651720i \(-0.979240\pi\)
0.555378 + 0.831598i \(0.312574\pi\)
\(824\) 14137.7i 0.597706i
\(825\) −6490.20 3747.12i −0.273891 0.158131i
\(826\) 2442.21 + 1410.01i 0.102876 + 0.0593952i
\(827\) 8158.74i 0.343056i 0.985179 + 0.171528i \(0.0548704\pi\)
−0.985179 + 0.171528i \(0.945130\pi\)
\(828\) 2963.73 5133.33i 0.124392 0.215453i
\(829\) −5080.52 8799.72i −0.212851 0.368669i 0.739754 0.672877i \(-0.234942\pi\)
−0.952606 + 0.304208i \(0.901608\pi\)
\(830\) −15642.3 + 9031.08i −0.654159 + 0.377679i
\(831\) −36588.4 −1.52736
\(832\) −2604.05 1489.24i −0.108509 0.0620553i
\(833\) −38114.9 −1.58536
\(834\) −18541.0 + 10704.7i −0.769812 + 0.444451i
\(835\) −5571.93 9650.87i −0.230928 0.399979i
\(836\) −7263.36 + 12580.5i −0.300489 + 0.520461i
\(837\) 5884.58i 0.243012i
\(838\) −497.910 287.469i −0.0205251 0.0118502i
\(839\) 26886.9 + 15523.2i 1.10636 + 0.638759i 0.937885 0.346946i \(-0.112781\pi\)
0.168478 + 0.985705i \(0.446115\pi\)
\(840\) 2233.10i 0.0917252i
\(841\) −11827.9 + 20486.6i −0.484970 + 0.839993i
\(842\) 12089.3 + 20939.3i 0.494803 + 0.857024i
\(843\) 13575.5 7837.83i 0.554645 0.320224i
\(844\) 10514.9 0.428836
\(845\) 24678.4 14519.4i 1.00469 0.591104i
\(846\) −1841.49 −0.0748366
\(847\) 1694.10 978.091i 0.0687250 0.0396784i
\(848\) −1721.85 2982.33i −0.0697271 0.120771i
\(849\) −9733.98 + 16859.8i −0.393486 + 0.681537i
\(850\) 10358.3i 0.417985i
\(851\) −19193.0 11081.1i −0.773121 0.446362i
\(852\) −13110.4 7569.31i −0.527178 0.304367i
\(853\) 15549.5i 0.624155i 0.950057 + 0.312077i \(0.101025\pi\)
−0.950057 + 0.312077i \(0.898975\pi\)
\(854\) 808.798 1400.88i 0.0324081 0.0561324i
\(855\) 7150.36 + 12384.8i 0.286008 + 0.495381i
\(856\) 2012.30 1161.80i 0.0803495 0.0463898i
\(857\) 44590.9 1.77736 0.888678 0.458531i \(-0.151624\pi\)
0.888678 + 0.458531i \(0.151624\pi\)
\(858\) −13597.5 7776.28i −0.541037 0.309415i
\(859\) 41540.7 1.65000 0.825001 0.565131i \(-0.191174\pi\)
0.825001 + 0.565131i \(0.191174\pi\)
\(860\) 1286.46 742.736i 0.0510091 0.0294501i
\(861\) −2754.93 4771.67i −0.109045 0.188871i
\(862\) 153.028 265.052i 0.00604657 0.0104730i
\(863\) 6952.24i 0.274226i −0.990555 0.137113i \(-0.956218\pi\)
0.990555 0.137113i \(-0.0437823\pi\)
\(864\) −3057.58 1765.29i −0.120395 0.0695099i
\(865\) 41215.0 + 23795.5i 1.62006 + 0.935341i
\(866\) 19227.3i 0.754469i
\(867\) −25080.3 + 43440.4i −0.982437 + 1.70163i
\(868\) −383.586 664.391i −0.0149997 0.0259803i
\(869\) 4832.97 2790.32i 0.188662 0.108924i
\(870\) 34029.6 1.32610
\(871\) −6538.07 + 26.8264i −0.254345 + 0.00104360i
\(872\) 7229.24 0.280749
\(873\) 8444.62 4875.51i 0.327385 0.189016i
\(874\) 22631.9 + 39199.6i 0.875898 + 1.51710i
\(875\) −1878.10 + 3252.96i −0.0725614 + 0.125680i
\(876\) 22559.4i 0.870104i
\(877\) −20404.4 11780.5i −0.785643 0.453591i 0.0527837 0.998606i \(-0.483191\pi\)
−0.838426 + 0.545015i \(0.816524\pi\)
\(878\) −22802.9 13165.2i −0.876491 0.506042i
\(879\) 42371.6i 1.62589i
\(880\) 2924.91 5066.09i 0.112044 0.194066i
\(881\) 15950.6 + 27627.3i 0.609978 + 1.05651i 0.991243 + 0.132047i \(0.0421549\pi\)
−0.381266 + 0.924465i \(0.624512\pi\)
\(882\) −4845.86 + 2797.76i −0.184999 + 0.106809i
\(883\) 20282.6 0.773004 0.386502 0.922288i \(-0.373683\pi\)
0.386502 + 0.922288i \(0.373683\pi\)
\(884\) −88.8329 21650.2i −0.00337983 0.823726i
\(885\) −30437.5 −1.15610
\(886\) 26751.6 15445.0i 1.01438 0.585650i
\(887\) −4916.10 8514.94i −0.186095 0.322327i 0.757850 0.652429i \(-0.226250\pi\)
−0.943945 + 0.330103i \(0.892917\pi\)
\(888\) 3020.22 5231.17i 0.114135 0.197687i
\(889\) 2037.31i 0.0768607i
\(890\) −18292.2 10561.0i −0.688940 0.397759i
\(891\) −21525.8 12427.9i −0.809362 0.467285i
\(892\) 9724.97i 0.365040i
\(893\) 7031.09 12178.2i 0.263479 0.456358i
\(894\) −2529.18 4380.67i −0.0946179 0.163883i
\(895\) −21471.5 + 12396.5i −0.801912 + 0.462984i
\(896\) −460.283 −0.0171618
\(897\) −42168.1 + 24577.0i −1.56962 + 0.914829i
\(898\) 4228.82 0.157146
\(899\) −10124.5 + 5845.37i −0.375606 + 0.216856i
\(900\) −760.335 1316.94i −0.0281606 0.0487755i
\(901\) 12427.0 21524.1i 0.459492 0.795864i
\(902\) 14433.6i 0.532802i
\(903\) −528.549 305.158i −0.0194784 0.0112459i
\(904\) −6184.95 3570.88i −0.227554 0.131378i
\(905\) 26317.9i 0.966670i
\(906\) 18137.6 31415.2i 0.665101 1.15199i
\(907\) 8271.94 + 14327.4i 0.302828 + 0.524514i 0.976775 0.214265i \(-0.0687357\pi\)
−0.673947 + 0.738780i \(0.735402\pi\)
\(908\) −22648.4 + 13076.0i −0.827767 + 0.477912i
\(909\) −1535.27 −0.0560195
\(910\) 2181.03 3813.71i 0.0794511 0.138927i
\(911\) −24198.4 −0.880053 −0.440027 0.897985i \(-0.645031\pi\)
−0.440027 + 0.897985i \(0.645031\pi\)
\(912\) −10684.1 + 6168.47i −0.387923 + 0.223968i
\(913\) −9719.97 16835.5i −0.352337 0.610266i
\(914\) 8497.52 14718.1i 0.307520 0.532640i
\(915\) 17459.4i 0.630807i
\(916\) 7508.02 + 4334.76i 0.270821 + 0.156359i
\(917\) −6224.45 3593.69i −0.224154 0.129415i
\(918\) 25481.0i 0.916121i
\(919\) 15554.9 26941.8i 0.558332 0.967060i −0.439303 0.898339i \(-0.644775\pi\)
0.997636 0.0687214i \(-0.0218920\pi\)
\(920\) −9113.73 15785.4i −0.326599 0.565686i
\(921\) 25872.3 14937.4i 0.925649 0.534424i
\(922\) −15602.6 −0.557316
\(923\) 14997.3 + 25731.7i 0.534825 + 0.917628i
\(924\) −2403.44 −0.0855706
\(925\) −4923.90 + 2842.81i −0.175023 + 0.101050i
\(926\) −9734.48 16860.6i −0.345459 0.598352i
\(927\) −7489.69 + 12972.5i −0.265365 + 0.459626i
\(928\) 7014.12i 0.248114i
\(929\) −18504.8 10683.7i −0.653521 0.377311i 0.136283 0.990670i \(-0.456484\pi\)
−0.789804 + 0.613359i \(0.789818\pi\)
\(930\) 7171.03 + 4140.20i 0.252847 + 0.145981i
\(931\) 42729.1i 1.50418i
\(932\) −6081.10 + 10532.8i −0.213727 + 0.370185i
\(933\) −1678.75 2907.68i −0.0589065 0.102029i
\(934\) −16361.6 + 9446.38i −0.573199 + 0.330937i
\(935\) 42219.4 1.47671
\(936\) −1600.49 2746.04i −0.0558906 0.0958945i
\(937\) −955.004 −0.0332963 −0.0166481 0.999861i \(-0.505300\pi\)
−0.0166481 + 0.999861i \(0.505300\pi\)
\(938\) −868.788 + 501.595i −0.0302419 + 0.0174602i
\(939\) 4515.86 + 7821.70i 0.156943 + 0.271833i
\(940\) −2831.38 + 4904.09i −0.0982440 + 0.170164i
\(941\) 41533.1i 1.43883i 0.694580 + 0.719416i \(0.255590\pi\)
−0.694580 + 0.719416i \(0.744410\pi\)
\(942\) 13923.3 + 8038.62i 0.481577 + 0.278039i
\(943\) 38948.4 + 22486.9i 1.34500 + 0.776535i
\(944\) 6273.75i 0.216306i
\(945\) 2585.33 4477.92i 0.0889954 0.154145i
\(946\) 799.392 + 1384.59i 0.0274741 + 0.0475865i
\(947\) 27485.3 15868.7i 0.943139 0.544522i 0.0521963 0.998637i \(-0.483378\pi\)
0.890943 + 0.454115i \(0.150045\pi\)
\(948\) 4739.40 0.162372
\(949\) −22033.4 + 38527.2i −0.753672 + 1.31786i
\(950\) 11612.3 0.396581
\(951\) 12164.0 7022.91i 0.414770 0.239467i
\(952\) −1660.98 2876.90i −0.0565469 0.0979422i
\(953\) 16032.6 27769.2i 0.544959 0.943896i −0.453651 0.891180i \(-0.649879\pi\)
0.998610 0.0527168i \(-0.0167881\pi\)
\(954\) 3648.73i 0.123828i
\(955\) 17531.2 + 10121.6i 0.594028 + 0.342962i
\(956\) −16445.2 9494.62i −0.556354 0.321211i
\(957\) 36625.3i 1.23713i
\(958\) −3378.85 + 5852.34i −0.113952 + 0.197370i
\(959\) −1780.03 3083.10i −0.0599376 0.103815i
\(960\) 4302.43 2484.01i 0.144646 0.0835114i
\(961\) 26946.3 0.904511
\(962\) −10267.2 + 5984.06i −0.344103 + 0.200555i
\(963\) 2461.95 0.0823833
\(964\) −9471.61 + 5468.44i −0.316452 + 0.182704i
\(965\) −3915.29 6781.47i −0.130609 0.226221i
\(966\) −3744.43 + 6485.55i −0.124716 + 0.216014i
\(967\) 11821.6i 0.393131i −0.980491 0.196565i \(-0.937021\pi\)
0.980491 0.196565i \(-0.0629788\pi\)
\(968\) −3768.90 2175.98i −0.125142 0.0722506i
\(969\) −77109.5 44519.2i −2.55636 1.47592i
\(970\) 29985.3i 0.992545i
\(971\) 7792.48 13497.0i 0.257541 0.446075i −0.708041 0.706171i \(-0.750421\pi\)
0.965583 + 0.260096i \(0.0837543\pi\)
\(972\) −4596.66 7961.65i −0.151685 0.262726i
\(973\) 5596.92 3231.39i 0.184408 0.106468i
\(974\) 36011.0 1.18467
\(975\) 51.3763 + 12521.3i 0.00168755 + 0.411285i
\(976\) −3598.70 −0.118024
\(977\) −46550.1 + 26875.7i −1.52433 + 0.880072i −0.524744 + 0.851260i \(0.675839\pi\)
−0.999585 + 0.0288119i \(0.990828\pi\)
\(978\) −6449.98 11171.7i −0.210887 0.365267i
\(979\) 11366.6 19687.5i 0.371071 0.642713i
\(980\) 17206.7i 0.560866i
\(981\) 6633.44 + 3829.82i 0.215891 + 0.124645i
\(982\) 4687.65 + 2706.42i 0.152331 + 0.0879483i
\(983\) 30852.0i 1.00104i 0.865724 + 0.500521i \(0.166858\pi\)
−0.865724 + 0.500521i \(0.833142\pi\)
\(984\) −6128.94 + 10615.6i −0.198560 + 0.343917i
\(985\) 11479.1 + 19882.4i 0.371324 + 0.643152i
\(986\) −43840.3 + 25311.2i −1.41598 + 0.817519i
\(987\) 2326.58 0.0750312
\(988\) 24271.1 99.5869i 0.781546 0.00320676i
\(989\) 4981.65 0.160169
\(990\) 5367.71 3099.05i 0.172320 0.0994891i
\(991\) −22122.8 38317.8i −0.709136 1.22826i −0.965178 0.261594i \(-0.915752\pi\)
0.256042 0.966666i \(-0.417581\pi\)
\(992\) −853.372 + 1478.08i −0.0273131 + 0.0473077i
\(993\) 10126.8i 0.323631i
\(994\) 3957.61 + 2284.92i 0.126285 + 0.0729109i
\(995\) −38570.1 22268.4i −1.22890 0.709504i
\(996\) 16509.5i 0.525226i
\(997\) −27178.8 + 47075.1i −0.863352 + 1.49537i 0.00532306 + 0.999986i \(0.498306\pi\)
−0.868675 + 0.495383i \(0.835028\pi\)
\(998\) −8991.30 15573.4i −0.285185 0.493955i
\(999\) −12112.6 + 6993.20i −0.383609 + 0.221477i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 26.4.e.a.23.1 yes 8
3.2 odd 2 234.4.l.b.127.4 8
4.3 odd 2 208.4.w.d.49.3 8
13.2 odd 12 338.4.a.l.1.3 4
13.3 even 3 338.4.b.g.337.3 8
13.4 even 6 inner 26.4.e.a.17.1 8
13.5 odd 4 338.4.c.n.315.2 8
13.6 odd 12 338.4.c.n.191.2 8
13.7 odd 12 338.4.c.m.191.2 8
13.8 odd 4 338.4.c.m.315.2 8
13.9 even 3 338.4.e.e.147.3 8
13.10 even 6 338.4.b.g.337.7 8
13.11 odd 12 338.4.a.m.1.3 4
13.12 even 2 338.4.e.e.23.3 8
39.17 odd 6 234.4.l.b.199.3 8
52.43 odd 6 208.4.w.d.17.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.e.a.17.1 8 13.4 even 6 inner
26.4.e.a.23.1 yes 8 1.1 even 1 trivial
208.4.w.d.17.3 8 52.43 odd 6
208.4.w.d.49.3 8 4.3 odd 2
234.4.l.b.127.4 8 3.2 odd 2
234.4.l.b.199.3 8 39.17 odd 6
338.4.a.l.1.3 4 13.2 odd 12
338.4.a.m.1.3 4 13.11 odd 12
338.4.b.g.337.3 8 13.3 even 3
338.4.b.g.337.7 8 13.10 even 6
338.4.c.m.191.2 8 13.7 odd 12
338.4.c.m.315.2 8 13.8 odd 4
338.4.c.n.191.2 8 13.6 odd 12
338.4.c.n.315.2 8 13.5 odd 4
338.4.e.e.23.3 8 13.12 even 2
338.4.e.e.147.3 8 13.9 even 3