Properties

Label 2325.2.a.t.1.3
Level $2325$
Weight $2$
Character 2325.1
Self dual yes
Analytic conductor $18.565$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2325,2,Mod(1,2325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2325.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2325 = 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,2,0,0,4,6,3,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.5652184699\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 2325.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.21432 q^{2} -1.00000 q^{3} +2.90321 q^{4} -2.21432 q^{6} -0.903212 q^{7} +2.00000 q^{8} +1.00000 q^{9} -4.59210 q^{11} -2.90321 q^{12} +4.49532 q^{13} -2.00000 q^{14} -1.37778 q^{16} -6.73975 q^{17} +2.21432 q^{18} -3.62222 q^{19} +0.903212 q^{21} -10.1684 q^{22} -8.39853 q^{23} -2.00000 q^{24} +9.95407 q^{26} -1.00000 q^{27} -2.62222 q^{28} -1.68889 q^{29} -1.00000 q^{31} -7.05086 q^{32} +4.59210 q^{33} -14.9240 q^{34} +2.90321 q^{36} +8.68889 q^{37} -8.02074 q^{38} -4.49532 q^{39} +4.02074 q^{41} +2.00000 q^{42} +11.4795 q^{43} -13.3319 q^{44} -18.5970 q^{46} -1.18421 q^{47} +1.37778 q^{48} -6.18421 q^{49} +6.73975 q^{51} +13.0509 q^{52} +0.873100 q^{53} -2.21432 q^{54} -1.80642 q^{56} +3.62222 q^{57} -3.73975 q^{58} -11.2652 q^{59} +12.8573 q^{61} -2.21432 q^{62} -0.903212 q^{63} -12.8573 q^{64} +10.1684 q^{66} -10.0049 q^{67} -19.5669 q^{68} +8.39853 q^{69} -13.0509 q^{71} +2.00000 q^{72} +8.42864 q^{73} +19.2400 q^{74} -10.5161 q^{76} +4.14764 q^{77} -9.95407 q^{78} -1.11753 q^{79} +1.00000 q^{81} +8.90321 q^{82} -3.96989 q^{83} +2.62222 q^{84} +25.4193 q^{86} +1.68889 q^{87} -9.18421 q^{88} -9.50961 q^{89} -4.06022 q^{91} -24.3827 q^{92} +1.00000 q^{93} -2.62222 q^{94} +7.05086 q^{96} -17.1891 q^{97} -13.6938 q^{98} -4.59210 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 2 q^{4} + 4 q^{7} + 6 q^{8} + 3 q^{9} - 7 q^{11} - 2 q^{12} - 6 q^{14} - 4 q^{16} - 7 q^{17} - 11 q^{19} - 4 q^{21} - 4 q^{22} - 5 q^{23} - 6 q^{24} + 10 q^{26} - 3 q^{27} - 8 q^{28} - 5 q^{29}+ \cdots - 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.21432 1.56576 0.782880 0.622172i \(-0.213750\pi\)
0.782880 + 0.622172i \(0.213750\pi\)
\(3\) −1.00000 −0.577350
\(4\) 2.90321 1.45161
\(5\) 0 0
\(6\) −2.21432 −0.903992
\(7\) −0.903212 −0.341382 −0.170691 0.985325i \(-0.554600\pi\)
−0.170691 + 0.985325i \(0.554600\pi\)
\(8\) 2.00000 0.707107
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.59210 −1.38457 −0.692286 0.721623i \(-0.743396\pi\)
−0.692286 + 0.721623i \(0.743396\pi\)
\(12\) −2.90321 −0.838085
\(13\) 4.49532 1.24678 0.623388 0.781913i \(-0.285756\pi\)
0.623388 + 0.781913i \(0.285756\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) −1.37778 −0.344446
\(17\) −6.73975 −1.63463 −0.817314 0.576192i \(-0.804538\pi\)
−0.817314 + 0.576192i \(0.804538\pi\)
\(18\) 2.21432 0.521920
\(19\) −3.62222 −0.830993 −0.415497 0.909595i \(-0.636392\pi\)
−0.415497 + 0.909595i \(0.636392\pi\)
\(20\) 0 0
\(21\) 0.903212 0.197097
\(22\) −10.1684 −2.16791
\(23\) −8.39853 −1.75121 −0.875607 0.483024i \(-0.839538\pi\)
−0.875607 + 0.483024i \(0.839538\pi\)
\(24\) −2.00000 −0.408248
\(25\) 0 0
\(26\) 9.95407 1.95215
\(27\) −1.00000 −0.192450
\(28\) −2.62222 −0.495552
\(29\) −1.68889 −0.313619 −0.156810 0.987629i \(-0.550121\pi\)
−0.156810 + 0.987629i \(0.550121\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) −7.05086 −1.24643
\(33\) 4.59210 0.799383
\(34\) −14.9240 −2.55944
\(35\) 0 0
\(36\) 2.90321 0.483869
\(37\) 8.68889 1.42845 0.714223 0.699919i \(-0.246780\pi\)
0.714223 + 0.699919i \(0.246780\pi\)
\(38\) −8.02074 −1.30114
\(39\) −4.49532 −0.719827
\(40\) 0 0
\(41\) 4.02074 0.627935 0.313967 0.949434i \(-0.398342\pi\)
0.313967 + 0.949434i \(0.398342\pi\)
\(42\) 2.00000 0.308607
\(43\) 11.4795 1.75061 0.875303 0.483574i \(-0.160662\pi\)
0.875303 + 0.483574i \(0.160662\pi\)
\(44\) −13.3319 −2.00985
\(45\) 0 0
\(46\) −18.5970 −2.74198
\(47\) −1.18421 −0.172735 −0.0863673 0.996263i \(-0.527526\pi\)
−0.0863673 + 0.996263i \(0.527526\pi\)
\(48\) 1.37778 0.198866
\(49\) −6.18421 −0.883458
\(50\) 0 0
\(51\) 6.73975 0.943753
\(52\) 13.0509 1.80983
\(53\) 0.873100 0.119930 0.0599648 0.998200i \(-0.480901\pi\)
0.0599648 + 0.998200i \(0.480901\pi\)
\(54\) −2.21432 −0.301331
\(55\) 0 0
\(56\) −1.80642 −0.241394
\(57\) 3.62222 0.479774
\(58\) −3.73975 −0.491053
\(59\) −11.2652 −1.46660 −0.733300 0.679905i \(-0.762021\pi\)
−0.733300 + 0.679905i \(0.762021\pi\)
\(60\) 0 0
\(61\) 12.8573 1.64621 0.823103 0.567892i \(-0.192241\pi\)
0.823103 + 0.567892i \(0.192241\pi\)
\(62\) −2.21432 −0.281219
\(63\) −0.903212 −0.113794
\(64\) −12.8573 −1.60716
\(65\) 0 0
\(66\) 10.1684 1.25164
\(67\) −10.0049 −1.22230 −0.611148 0.791516i \(-0.709292\pi\)
−0.611148 + 0.791516i \(0.709292\pi\)
\(68\) −19.5669 −2.37284
\(69\) 8.39853 1.01106
\(70\) 0 0
\(71\) −13.0509 −1.54885 −0.774426 0.632665i \(-0.781961\pi\)
−0.774426 + 0.632665i \(0.781961\pi\)
\(72\) 2.00000 0.235702
\(73\) 8.42864 0.986498 0.493249 0.869888i \(-0.335809\pi\)
0.493249 + 0.869888i \(0.335809\pi\)
\(74\) 19.2400 2.23660
\(75\) 0 0
\(76\) −10.5161 −1.20627
\(77\) 4.14764 0.472668
\(78\) −9.95407 −1.12708
\(79\) −1.11753 −0.125732 −0.0628661 0.998022i \(-0.520024\pi\)
−0.0628661 + 0.998022i \(0.520024\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 8.90321 0.983195
\(83\) −3.96989 −0.435752 −0.217876 0.975976i \(-0.569913\pi\)
−0.217876 + 0.975976i \(0.569913\pi\)
\(84\) 2.62222 0.286107
\(85\) 0 0
\(86\) 25.4193 2.74103
\(87\) 1.68889 0.181068
\(88\) −9.18421 −0.979040
\(89\) −9.50961 −1.00802 −0.504008 0.863699i \(-0.668142\pi\)
−0.504008 + 0.863699i \(0.668142\pi\)
\(90\) 0 0
\(91\) −4.06022 −0.425627
\(92\) −24.3827 −2.54207
\(93\) 1.00000 0.103695
\(94\) −2.62222 −0.270461
\(95\) 0 0
\(96\) 7.05086 0.719625
\(97\) −17.1891 −1.74529 −0.872646 0.488354i \(-0.837598\pi\)
−0.872646 + 0.488354i \(0.837598\pi\)
\(98\) −13.6938 −1.38328
\(99\) −4.59210 −0.461524
\(100\) 0 0
\(101\) −8.00000 −0.796030 −0.398015 0.917379i \(-0.630301\pi\)
−0.398015 + 0.917379i \(0.630301\pi\)
\(102\) 14.9240 1.47769
\(103\) 0.673071 0.0663196 0.0331598 0.999450i \(-0.489443\pi\)
0.0331598 + 0.999450i \(0.489443\pi\)
\(104\) 8.99063 0.881604
\(105\) 0 0
\(106\) 1.93332 0.187781
\(107\) 9.13182 0.882807 0.441403 0.897309i \(-0.354481\pi\)
0.441403 + 0.897309i \(0.354481\pi\)
\(108\) −2.90321 −0.279362
\(109\) −13.0049 −1.24565 −0.622823 0.782363i \(-0.714014\pi\)
−0.622823 + 0.782363i \(0.714014\pi\)
\(110\) 0 0
\(111\) −8.68889 −0.824713
\(112\) 1.24443 0.117588
\(113\) 14.0415 1.32091 0.660456 0.750865i \(-0.270363\pi\)
0.660456 + 0.750865i \(0.270363\pi\)
\(114\) 8.02074 0.751211
\(115\) 0 0
\(116\) −4.90321 −0.455252
\(117\) 4.49532 0.415592
\(118\) −24.9447 −2.29635
\(119\) 6.08742 0.558033
\(120\) 0 0
\(121\) 10.0874 0.917038
\(122\) 28.4701 2.57756
\(123\) −4.02074 −0.362538
\(124\) −2.90321 −0.260716
\(125\) 0 0
\(126\) −2.00000 −0.178174
\(127\) 0.755569 0.0670459 0.0335229 0.999438i \(-0.489327\pi\)
0.0335229 + 0.999438i \(0.489327\pi\)
\(128\) −14.3684 −1.27000
\(129\) −11.4795 −1.01071
\(130\) 0 0
\(131\) 10.3160 0.901316 0.450658 0.892697i \(-0.351189\pi\)
0.450658 + 0.892697i \(0.351189\pi\)
\(132\) 13.3319 1.16039
\(133\) 3.27163 0.283686
\(134\) −22.1541 −1.91382
\(135\) 0 0
\(136\) −13.4795 −1.15586
\(137\) −10.1778 −0.869544 −0.434772 0.900540i \(-0.643171\pi\)
−0.434772 + 0.900540i \(0.643171\pi\)
\(138\) 18.5970 1.58308
\(139\) 9.35260 0.793277 0.396638 0.917975i \(-0.370177\pi\)
0.396638 + 0.917975i \(0.370177\pi\)
\(140\) 0 0
\(141\) 1.18421 0.0997283
\(142\) −28.8988 −2.42513
\(143\) −20.6430 −1.72625
\(144\) −1.37778 −0.114815
\(145\) 0 0
\(146\) 18.6637 1.54462
\(147\) 6.18421 0.510065
\(148\) 25.2257 2.07354
\(149\) 6.44938 0.528354 0.264177 0.964474i \(-0.414900\pi\)
0.264177 + 0.964474i \(0.414900\pi\)
\(150\) 0 0
\(151\) −23.9081 −1.94562 −0.972808 0.231612i \(-0.925600\pi\)
−0.972808 + 0.231612i \(0.925600\pi\)
\(152\) −7.24443 −0.587601
\(153\) −6.73975 −0.544876
\(154\) 9.18421 0.740085
\(155\) 0 0
\(156\) −13.0509 −1.04490
\(157\) −5.19358 −0.414493 −0.207246 0.978289i \(-0.566450\pi\)
−0.207246 + 0.978289i \(0.566450\pi\)
\(158\) −2.47457 −0.196866
\(159\) −0.873100 −0.0692414
\(160\) 0 0
\(161\) 7.58565 0.597833
\(162\) 2.21432 0.173973
\(163\) 20.2257 1.58420 0.792099 0.610392i \(-0.208988\pi\)
0.792099 + 0.610392i \(0.208988\pi\)
\(164\) 11.6731 0.911514
\(165\) 0 0
\(166\) −8.79060 −0.682283
\(167\) 19.0923 1.47741 0.738705 0.674029i \(-0.235438\pi\)
0.738705 + 0.674029i \(0.235438\pi\)
\(168\) 1.80642 0.139369
\(169\) 7.20787 0.554451
\(170\) 0 0
\(171\) −3.62222 −0.276998
\(172\) 33.3274 2.54119
\(173\) 5.20495 0.395725 0.197863 0.980230i \(-0.436600\pi\)
0.197863 + 0.980230i \(0.436600\pi\)
\(174\) 3.73975 0.283510
\(175\) 0 0
\(176\) 6.32693 0.476910
\(177\) 11.2652 0.846742
\(178\) −21.0573 −1.57831
\(179\) 19.2400 1.43806 0.719032 0.694977i \(-0.244585\pi\)
0.719032 + 0.694977i \(0.244585\pi\)
\(180\) 0 0
\(181\) 4.06668 0.302274 0.151137 0.988513i \(-0.451707\pi\)
0.151137 + 0.988513i \(0.451707\pi\)
\(182\) −8.99063 −0.666430
\(183\) −12.8573 −0.950437
\(184\) −16.7971 −1.23830
\(185\) 0 0
\(186\) 2.21432 0.162362
\(187\) 30.9496 2.26326
\(188\) −3.43801 −0.250742
\(189\) 0.903212 0.0656990
\(190\) 0 0
\(191\) 8.12245 0.587720 0.293860 0.955848i \(-0.405060\pi\)
0.293860 + 0.955848i \(0.405060\pi\)
\(192\) 12.8573 0.927894
\(193\) 9.01429 0.648863 0.324431 0.945909i \(-0.394827\pi\)
0.324431 + 0.945909i \(0.394827\pi\)
\(194\) −38.0622 −2.73271
\(195\) 0 0
\(196\) −17.9541 −1.28243
\(197\) 7.71456 0.549639 0.274820 0.961496i \(-0.411382\pi\)
0.274820 + 0.961496i \(0.411382\pi\)
\(198\) −10.1684 −0.722636
\(199\) 0.790602 0.0560443 0.0280222 0.999607i \(-0.491079\pi\)
0.0280222 + 0.999607i \(0.491079\pi\)
\(200\) 0 0
\(201\) 10.0049 0.705693
\(202\) −17.7146 −1.24639
\(203\) 1.52543 0.107064
\(204\) 19.5669 1.36996
\(205\) 0 0
\(206\) 1.49039 0.103841
\(207\) −8.39853 −0.583738
\(208\) −6.19358 −0.429447
\(209\) 16.6336 1.15057
\(210\) 0 0
\(211\) −15.9304 −1.09669 −0.548347 0.836251i \(-0.684743\pi\)
−0.548347 + 0.836251i \(0.684743\pi\)
\(212\) 2.53480 0.174090
\(213\) 13.0509 0.894230
\(214\) 20.2208 1.38226
\(215\) 0 0
\(216\) −2.00000 −0.136083
\(217\) 0.903212 0.0613140
\(218\) −28.7971 −1.95038
\(219\) −8.42864 −0.569555
\(220\) 0 0
\(221\) −30.2973 −2.03802
\(222\) −19.2400 −1.29130
\(223\) 5.86665 0.392860 0.196430 0.980518i \(-0.437065\pi\)
0.196430 + 0.980518i \(0.437065\pi\)
\(224\) 6.36842 0.425508
\(225\) 0 0
\(226\) 31.0923 2.06823
\(227\) −15.1526 −1.00571 −0.502856 0.864370i \(-0.667717\pi\)
−0.502856 + 0.864370i \(0.667717\pi\)
\(228\) 10.5161 0.696443
\(229\) 1.67952 0.110986 0.0554930 0.998459i \(-0.482327\pi\)
0.0554930 + 0.998459i \(0.482327\pi\)
\(230\) 0 0
\(231\) −4.14764 −0.272895
\(232\) −3.37778 −0.221762
\(233\) 13.2444 0.867672 0.433836 0.900992i \(-0.357160\pi\)
0.433836 + 0.900992i \(0.357160\pi\)
\(234\) 9.95407 0.650718
\(235\) 0 0
\(236\) −32.7052 −2.12893
\(237\) 1.11753 0.0725915
\(238\) 13.4795 0.873746
\(239\) −3.36196 −0.217467 −0.108734 0.994071i \(-0.534680\pi\)
−0.108734 + 0.994071i \(0.534680\pi\)
\(240\) 0 0
\(241\) 3.63804 0.234347 0.117173 0.993111i \(-0.462617\pi\)
0.117173 + 0.993111i \(0.462617\pi\)
\(242\) 22.3368 1.43586
\(243\) −1.00000 −0.0641500
\(244\) 37.3274 2.38964
\(245\) 0 0
\(246\) −8.90321 −0.567648
\(247\) −16.2830 −1.03606
\(248\) −2.00000 −0.127000
\(249\) 3.96989 0.251581
\(250\) 0 0
\(251\) −14.3526 −0.905928 −0.452964 0.891529i \(-0.649633\pi\)
−0.452964 + 0.891529i \(0.649633\pi\)
\(252\) −2.62222 −0.165184
\(253\) 38.5669 2.42468
\(254\) 1.67307 0.104978
\(255\) 0 0
\(256\) −6.10171 −0.381357
\(257\) 6.25581 0.390227 0.195113 0.980781i \(-0.437493\pi\)
0.195113 + 0.980781i \(0.437493\pi\)
\(258\) −25.4193 −1.58253
\(259\) −7.84791 −0.487645
\(260\) 0 0
\(261\) −1.68889 −0.104540
\(262\) 22.8430 1.41124
\(263\) 30.8385 1.90159 0.950793 0.309827i \(-0.100271\pi\)
0.950793 + 0.309827i \(0.100271\pi\)
\(264\) 9.18421 0.565249
\(265\) 0 0
\(266\) 7.24443 0.444185
\(267\) 9.50961 0.581978
\(268\) −29.0464 −1.77429
\(269\) −11.5526 −0.704376 −0.352188 0.935929i \(-0.614562\pi\)
−0.352188 + 0.935929i \(0.614562\pi\)
\(270\) 0 0
\(271\) −18.0667 −1.09747 −0.548736 0.835996i \(-0.684891\pi\)
−0.548736 + 0.835996i \(0.684891\pi\)
\(272\) 9.28592 0.563042
\(273\) 4.06022 0.245736
\(274\) −22.5368 −1.36150
\(275\) 0 0
\(276\) 24.3827 1.46767
\(277\) 14.7239 0.884675 0.442337 0.896849i \(-0.354149\pi\)
0.442337 + 0.896849i \(0.354149\pi\)
\(278\) 20.7096 1.24208
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 9.61285 0.573454 0.286727 0.958012i \(-0.407433\pi\)
0.286727 + 0.958012i \(0.407433\pi\)
\(282\) 2.62222 0.156151
\(283\) 3.88892 0.231172 0.115586 0.993297i \(-0.463125\pi\)
0.115586 + 0.993297i \(0.463125\pi\)
\(284\) −37.8894 −2.24832
\(285\) 0 0
\(286\) −45.7101 −2.70290
\(287\) −3.63158 −0.214366
\(288\) −7.05086 −0.415476
\(289\) 28.4242 1.67201
\(290\) 0 0
\(291\) 17.1891 1.00764
\(292\) 24.4701 1.43201
\(293\) −3.22369 −0.188330 −0.0941649 0.995557i \(-0.530018\pi\)
−0.0941649 + 0.995557i \(0.530018\pi\)
\(294\) 13.6938 0.798639
\(295\) 0 0
\(296\) 17.3778 1.01006
\(297\) 4.59210 0.266461
\(298\) 14.2810 0.827276
\(299\) −37.7540 −2.18337
\(300\) 0 0
\(301\) −10.3684 −0.597626
\(302\) −52.9403 −3.04637
\(303\) 8.00000 0.459588
\(304\) 4.99063 0.286232
\(305\) 0 0
\(306\) −14.9240 −0.853146
\(307\) −11.0049 −0.628084 −0.314042 0.949409i \(-0.601683\pi\)
−0.314042 + 0.949409i \(0.601683\pi\)
\(308\) 12.0415 0.686127
\(309\) −0.673071 −0.0382897
\(310\) 0 0
\(311\) 10.9699 0.622045 0.311023 0.950402i \(-0.399328\pi\)
0.311023 + 0.950402i \(0.399328\pi\)
\(312\) −8.99063 −0.508994
\(313\) −1.81288 −0.102470 −0.0512349 0.998687i \(-0.516316\pi\)
−0.0512349 + 0.998687i \(0.516316\pi\)
\(314\) −11.5002 −0.648996
\(315\) 0 0
\(316\) −3.24443 −0.182514
\(317\) −24.9699 −1.40245 −0.701224 0.712941i \(-0.747363\pi\)
−0.701224 + 0.712941i \(0.747363\pi\)
\(318\) −1.93332 −0.108415
\(319\) 7.75557 0.434228
\(320\) 0 0
\(321\) −9.13182 −0.509689
\(322\) 16.7971 0.936063
\(323\) 24.4128 1.35837
\(324\) 2.90321 0.161290
\(325\) 0 0
\(326\) 44.7862 2.48048
\(327\) 13.0049 0.719174
\(328\) 8.04149 0.444017
\(329\) 1.06959 0.0589685
\(330\) 0 0
\(331\) −29.1590 −1.60272 −0.801362 0.598179i \(-0.795891\pi\)
−0.801362 + 0.598179i \(0.795891\pi\)
\(332\) −11.5254 −0.632540
\(333\) 8.68889 0.476148
\(334\) 42.2766 2.31327
\(335\) 0 0
\(336\) −1.24443 −0.0678893
\(337\) −7.51759 −0.409509 −0.204755 0.978813i \(-0.565640\pi\)
−0.204755 + 0.978813i \(0.565640\pi\)
\(338\) 15.9605 0.868138
\(339\) −14.0415 −0.762629
\(340\) 0 0
\(341\) 4.59210 0.248676
\(342\) −8.02074 −0.433712
\(343\) 11.9081 0.642979
\(344\) 22.9590 1.23787
\(345\) 0 0
\(346\) 11.5254 0.619611
\(347\) 23.8938 1.28269 0.641344 0.767253i \(-0.278377\pi\)
0.641344 + 0.767253i \(0.278377\pi\)
\(348\) 4.90321 0.262840
\(349\) −0.377784 −0.0202223 −0.0101112 0.999949i \(-0.503219\pi\)
−0.0101112 + 0.999949i \(0.503219\pi\)
\(350\) 0 0
\(351\) −4.49532 −0.239942
\(352\) 32.3783 1.72577
\(353\) 0.0444016 0.00236326 0.00118163 0.999999i \(-0.499624\pi\)
0.00118163 + 0.999999i \(0.499624\pi\)
\(354\) 24.9447 1.32580
\(355\) 0 0
\(356\) −27.6084 −1.46324
\(357\) −6.08742 −0.322180
\(358\) 42.6035 2.25166
\(359\) −24.1146 −1.27272 −0.636360 0.771392i \(-0.719561\pi\)
−0.636360 + 0.771392i \(0.719561\pi\)
\(360\) 0 0
\(361\) −5.87955 −0.309450
\(362\) 9.00492 0.473288
\(363\) −10.0874 −0.529452
\(364\) −11.7877 −0.617843
\(365\) 0 0
\(366\) −28.4701 −1.48816
\(367\) −30.0098 −1.56650 −0.783251 0.621706i \(-0.786440\pi\)
−0.783251 + 0.621706i \(0.786440\pi\)
\(368\) 11.5714 0.603199
\(369\) 4.02074 0.209312
\(370\) 0 0
\(371\) −0.788595 −0.0409418
\(372\) 2.90321 0.150525
\(373\) −19.8113 −1.02579 −0.512896 0.858451i \(-0.671427\pi\)
−0.512896 + 0.858451i \(0.671427\pi\)
\(374\) 68.5324 3.54372
\(375\) 0 0
\(376\) −2.36842 −0.122142
\(377\) −7.59210 −0.391013
\(378\) 2.00000 0.102869
\(379\) −28.8113 −1.47994 −0.739970 0.672640i \(-0.765160\pi\)
−0.739970 + 0.672640i \(0.765160\pi\)
\(380\) 0 0
\(381\) −0.755569 −0.0387090
\(382\) 17.9857 0.920229
\(383\) −30.4543 −1.55614 −0.778071 0.628176i \(-0.783802\pi\)
−0.778071 + 0.628176i \(0.783802\pi\)
\(384\) 14.3684 0.733235
\(385\) 0 0
\(386\) 19.9605 1.01596
\(387\) 11.4795 0.583536
\(388\) −49.9037 −2.53348
\(389\) 14.8573 0.753294 0.376647 0.926357i \(-0.377077\pi\)
0.376647 + 0.926357i \(0.377077\pi\)
\(390\) 0 0
\(391\) 56.6040 2.86259
\(392\) −12.3684 −0.624699
\(393\) −10.3160 −0.520375
\(394\) 17.0825 0.860604
\(395\) 0 0
\(396\) −13.3319 −0.669951
\(397\) −8.09679 −0.406366 −0.203183 0.979141i \(-0.565129\pi\)
−0.203183 + 0.979141i \(0.565129\pi\)
\(398\) 1.75065 0.0877520
\(399\) −3.27163 −0.163786
\(400\) 0 0
\(401\) 10.9605 0.547342 0.273671 0.961823i \(-0.411762\pi\)
0.273671 + 0.961823i \(0.411762\pi\)
\(402\) 22.1541 1.10495
\(403\) −4.49532 −0.223928
\(404\) −23.2257 −1.15552
\(405\) 0 0
\(406\) 3.37778 0.167637
\(407\) −39.9003 −1.97778
\(408\) 13.4795 0.667334
\(409\) −37.7748 −1.86784 −0.933921 0.357479i \(-0.883637\pi\)
−0.933921 + 0.357479i \(0.883637\pi\)
\(410\) 0 0
\(411\) 10.1778 0.502032
\(412\) 1.95407 0.0962700
\(413\) 10.1748 0.500671
\(414\) −18.5970 −0.913994
\(415\) 0 0
\(416\) −31.6958 −1.55402
\(417\) −9.35260 −0.457999
\(418\) 36.8321 1.80152
\(419\) −8.42864 −0.411766 −0.205883 0.978577i \(-0.566007\pi\)
−0.205883 + 0.978577i \(0.566007\pi\)
\(420\) 0 0
\(421\) −29.5254 −1.43898 −0.719491 0.694502i \(-0.755625\pi\)
−0.719491 + 0.694502i \(0.755625\pi\)
\(422\) −35.2750 −1.71716
\(423\) −1.18421 −0.0575782
\(424\) 1.74620 0.0848030
\(425\) 0 0
\(426\) 28.8988 1.40015
\(427\) −11.6128 −0.561985
\(428\) 26.5116 1.28149
\(429\) 20.6430 0.996651
\(430\) 0 0
\(431\) 36.2766 1.74738 0.873690 0.486483i \(-0.161720\pi\)
0.873690 + 0.486483i \(0.161720\pi\)
\(432\) 1.37778 0.0662887
\(433\) −19.7560 −0.949415 −0.474707 0.880144i \(-0.657446\pi\)
−0.474707 + 0.880144i \(0.657446\pi\)
\(434\) 2.00000 0.0960031
\(435\) 0 0
\(436\) −37.7560 −1.80819
\(437\) 30.4213 1.45525
\(438\) −18.6637 −0.891786
\(439\) −12.8528 −0.613432 −0.306716 0.951801i \(-0.599230\pi\)
−0.306716 + 0.951801i \(0.599230\pi\)
\(440\) 0 0
\(441\) −6.18421 −0.294486
\(442\) −67.0879 −3.19105
\(443\) −1.62375 −0.0771465 −0.0385733 0.999256i \(-0.512281\pi\)
−0.0385733 + 0.999256i \(0.512281\pi\)
\(444\) −25.2257 −1.19716
\(445\) 0 0
\(446\) 12.9906 0.615124
\(447\) −6.44938 −0.305045
\(448\) 11.6128 0.548655
\(449\) −6.75404 −0.318743 −0.159371 0.987219i \(-0.550947\pi\)
−0.159371 + 0.987219i \(0.550947\pi\)
\(450\) 0 0
\(451\) −18.4637 −0.869420
\(452\) 40.7654 1.91744
\(453\) 23.9081 1.12330
\(454\) −33.5526 −1.57470
\(455\) 0 0
\(456\) 7.24443 0.339252
\(457\) 20.4351 0.955913 0.477957 0.878383i \(-0.341378\pi\)
0.477957 + 0.878383i \(0.341378\pi\)
\(458\) 3.71900 0.173778
\(459\) 6.73975 0.314584
\(460\) 0 0
\(461\) −8.20495 −0.382143 −0.191071 0.981576i \(-0.561196\pi\)
−0.191071 + 0.981576i \(0.561196\pi\)
\(462\) −9.18421 −0.427288
\(463\) −26.2766 −1.22117 −0.610587 0.791949i \(-0.709067\pi\)
−0.610587 + 0.791949i \(0.709067\pi\)
\(464\) 2.32693 0.108025
\(465\) 0 0
\(466\) 29.3274 1.35857
\(467\) 5.38763 0.249310 0.124655 0.992200i \(-0.460218\pi\)
0.124655 + 0.992200i \(0.460218\pi\)
\(468\) 13.0509 0.603276
\(469\) 9.03657 0.417270
\(470\) 0 0
\(471\) 5.19358 0.239307
\(472\) −22.5303 −1.03704
\(473\) −52.7150 −2.42384
\(474\) 2.47457 0.113661
\(475\) 0 0
\(476\) 17.6731 0.810044
\(477\) 0.873100 0.0399765
\(478\) −7.44446 −0.340502
\(479\) 1.61285 0.0736929 0.0368464 0.999321i \(-0.488269\pi\)
0.0368464 + 0.999321i \(0.488269\pi\)
\(480\) 0 0
\(481\) 39.0593 1.78095
\(482\) 8.05578 0.366931
\(483\) −7.58565 −0.345159
\(484\) 29.2859 1.33118
\(485\) 0 0
\(486\) −2.21432 −0.100444
\(487\) 24.6287 1.11603 0.558016 0.829830i \(-0.311563\pi\)
0.558016 + 0.829830i \(0.311563\pi\)
\(488\) 25.7146 1.16404
\(489\) −20.2257 −0.914638
\(490\) 0 0
\(491\) 43.0721 1.94382 0.971908 0.235362i \(-0.0756276\pi\)
0.971908 + 0.235362i \(0.0756276\pi\)
\(492\) −11.6731 −0.526263
\(493\) 11.3827 0.512651
\(494\) −36.0558 −1.62223
\(495\) 0 0
\(496\) 1.37778 0.0618643
\(497\) 11.7877 0.528750
\(498\) 8.79060 0.393916
\(499\) 27.7496 1.24224 0.621121 0.783715i \(-0.286677\pi\)
0.621121 + 0.783715i \(0.286677\pi\)
\(500\) 0 0
\(501\) −19.0923 −0.852983
\(502\) −31.7812 −1.41847
\(503\) −29.2543 −1.30438 −0.652192 0.758054i \(-0.726150\pi\)
−0.652192 + 0.758054i \(0.726150\pi\)
\(504\) −1.80642 −0.0804645
\(505\) 0 0
\(506\) 85.3995 3.79647
\(507\) −7.20787 −0.320113
\(508\) 2.19358 0.0973242
\(509\) −18.1778 −0.805715 −0.402857 0.915263i \(-0.631983\pi\)
−0.402857 + 0.915263i \(0.631983\pi\)
\(510\) 0 0
\(511\) −7.61285 −0.336773
\(512\) 15.2257 0.672887
\(513\) 3.62222 0.159925
\(514\) 13.8524 0.611001
\(515\) 0 0
\(516\) −33.3274 −1.46716
\(517\) 5.43801 0.239163
\(518\) −17.3778 −0.763536
\(519\) −5.20495 −0.228472
\(520\) 0 0
\(521\) −17.4084 −0.762675 −0.381337 0.924436i \(-0.624536\pi\)
−0.381337 + 0.924436i \(0.624536\pi\)
\(522\) −3.73975 −0.163684
\(523\) 24.8671 1.08736 0.543682 0.839291i \(-0.317030\pi\)
0.543682 + 0.839291i \(0.317030\pi\)
\(524\) 29.9496 1.30836
\(525\) 0 0
\(526\) 68.2864 2.97743
\(527\) 6.73975 0.293588
\(528\) −6.32693 −0.275344
\(529\) 47.5353 2.06675
\(530\) 0 0
\(531\) −11.2652 −0.488867
\(532\) 9.49823 0.411801
\(533\) 18.0745 0.782894
\(534\) 21.0573 0.911239
\(535\) 0 0
\(536\) −20.0098 −0.864294
\(537\) −19.2400 −0.830267
\(538\) −25.5812 −1.10288
\(539\) 28.3985 1.22321
\(540\) 0 0
\(541\) 15.9131 0.684156 0.342078 0.939672i \(-0.388869\pi\)
0.342078 + 0.939672i \(0.388869\pi\)
\(542\) −40.0054 −1.71838
\(543\) −4.06668 −0.174518
\(544\) 47.5210 2.03745
\(545\) 0 0
\(546\) 8.99063 0.384764
\(547\) 25.1704 1.07621 0.538104 0.842878i \(-0.319141\pi\)
0.538104 + 0.842878i \(0.319141\pi\)
\(548\) −29.5482 −1.26224
\(549\) 12.8573 0.548735
\(550\) 0 0
\(551\) 6.11753 0.260616
\(552\) 16.7971 0.714930
\(553\) 1.00937 0.0429227
\(554\) 32.6035 1.38519
\(555\) 0 0
\(556\) 27.1526 1.15153
\(557\) −44.4499 −1.88340 −0.941700 0.336452i \(-0.890773\pi\)
−0.941700 + 0.336452i \(0.890773\pi\)
\(558\) −2.21432 −0.0937396
\(559\) 51.6040 2.18261
\(560\) 0 0
\(561\) −30.9496 −1.30669
\(562\) 21.2859 0.897892
\(563\) 35.9605 1.51556 0.757778 0.652513i \(-0.226285\pi\)
0.757778 + 0.652513i \(0.226285\pi\)
\(564\) 3.43801 0.144766
\(565\) 0 0
\(566\) 8.61132 0.361961
\(567\) −0.903212 −0.0379313
\(568\) −26.1017 −1.09520
\(569\) 5.92840 0.248532 0.124266 0.992249i \(-0.460342\pi\)
0.124266 + 0.992249i \(0.460342\pi\)
\(570\) 0 0
\(571\) 8.97773 0.375706 0.187853 0.982197i \(-0.439847\pi\)
0.187853 + 0.982197i \(0.439847\pi\)
\(572\) −59.9309 −2.50584
\(573\) −8.12245 −0.339320
\(574\) −8.04149 −0.335645
\(575\) 0 0
\(576\) −12.8573 −0.535720
\(577\) −7.19850 −0.299677 −0.149839 0.988710i \(-0.547875\pi\)
−0.149839 + 0.988710i \(0.547875\pi\)
\(578\) 62.9403 2.61797
\(579\) −9.01429 −0.374621
\(580\) 0 0
\(581\) 3.58565 0.148758
\(582\) 38.0622 1.57773
\(583\) −4.00937 −0.166051
\(584\) 16.8573 0.697559
\(585\) 0 0
\(586\) −7.13828 −0.294879
\(587\) −41.3259 −1.70570 −0.852851 0.522155i \(-0.825128\pi\)
−0.852851 + 0.522155i \(0.825128\pi\)
\(588\) 17.9541 0.740413
\(589\) 3.62222 0.149251
\(590\) 0 0
\(591\) −7.71456 −0.317335
\(592\) −11.9714 −0.492022
\(593\) −8.44938 −0.346975 −0.173487 0.984836i \(-0.555504\pi\)
−0.173487 + 0.984836i \(0.555504\pi\)
\(594\) 10.1684 0.417214
\(595\) 0 0
\(596\) 18.7239 0.766962
\(597\) −0.790602 −0.0323572
\(598\) −83.5995 −3.41864
\(599\) −4.83654 −0.197615 −0.0988077 0.995107i \(-0.531503\pi\)
−0.0988077 + 0.995107i \(0.531503\pi\)
\(600\) 0 0
\(601\) 26.5368 1.08246 0.541229 0.840875i \(-0.317959\pi\)
0.541229 + 0.840875i \(0.317959\pi\)
\(602\) −22.9590 −0.935739
\(603\) −10.0049 −0.407432
\(604\) −69.4104 −2.82427
\(605\) 0 0
\(606\) 17.7146 0.719605
\(607\) −31.0272 −1.25936 −0.629678 0.776857i \(-0.716813\pi\)
−0.629678 + 0.776857i \(0.716813\pi\)
\(608\) 25.5397 1.03577
\(609\) −1.52543 −0.0618134
\(610\) 0 0
\(611\) −5.32339 −0.215361
\(612\) −19.5669 −0.790946
\(613\) 23.0509 0.931015 0.465508 0.885044i \(-0.345872\pi\)
0.465508 + 0.885044i \(0.345872\pi\)
\(614\) −24.3684 −0.983429
\(615\) 0 0
\(616\) 8.29529 0.334227
\(617\) −2.50961 −0.101033 −0.0505165 0.998723i \(-0.516087\pi\)
−0.0505165 + 0.998723i \(0.516087\pi\)
\(618\) −1.49039 −0.0599524
\(619\) −37.6543 −1.51346 −0.756728 0.653730i \(-0.773203\pi\)
−0.756728 + 0.653730i \(0.773203\pi\)
\(620\) 0 0
\(621\) 8.39853 0.337021
\(622\) 24.2908 0.973974
\(623\) 8.58919 0.344119
\(624\) 6.19358 0.247941
\(625\) 0 0
\(626\) −4.01429 −0.160443
\(627\) −16.6336 −0.664282
\(628\) −15.0781 −0.601680
\(629\) −58.5609 −2.33498
\(630\) 0 0
\(631\) 38.2701 1.52351 0.761754 0.647866i \(-0.224338\pi\)
0.761754 + 0.647866i \(0.224338\pi\)
\(632\) −2.23506 −0.0889060
\(633\) 15.9304 0.633177
\(634\) −55.2913 −2.19590
\(635\) 0 0
\(636\) −2.53480 −0.100511
\(637\) −27.8000 −1.10147
\(638\) 17.1733 0.679898
\(639\) −13.0509 −0.516284
\(640\) 0 0
\(641\) −17.7304 −0.700308 −0.350154 0.936692i \(-0.613871\pi\)
−0.350154 + 0.936692i \(0.613871\pi\)
\(642\) −20.2208 −0.798050
\(643\) −33.0355 −1.30279 −0.651397 0.758737i \(-0.725817\pi\)
−0.651397 + 0.758737i \(0.725817\pi\)
\(644\) 22.0228 0.867818
\(645\) 0 0
\(646\) 54.0578 2.12688
\(647\) 7.58274 0.298108 0.149054 0.988829i \(-0.452377\pi\)
0.149054 + 0.988829i \(0.452377\pi\)
\(648\) 2.00000 0.0785674
\(649\) 51.7309 2.03061
\(650\) 0 0
\(651\) −0.903212 −0.0353997
\(652\) 58.7195 2.29963
\(653\) −25.8687 −1.01232 −0.506159 0.862440i \(-0.668935\pi\)
−0.506159 + 0.862440i \(0.668935\pi\)
\(654\) 28.7971 1.12605
\(655\) 0 0
\(656\) −5.53972 −0.216290
\(657\) 8.42864 0.328833
\(658\) 2.36842 0.0923305
\(659\) 12.8287 0.499735 0.249868 0.968280i \(-0.419613\pi\)
0.249868 + 0.968280i \(0.419613\pi\)
\(660\) 0 0
\(661\) −9.04593 −0.351846 −0.175923 0.984404i \(-0.556291\pi\)
−0.175923 + 0.984404i \(0.556291\pi\)
\(662\) −64.5674 −2.50948
\(663\) 30.2973 1.17665
\(664\) −7.93978 −0.308123
\(665\) 0 0
\(666\) 19.2400 0.745534
\(667\) 14.1842 0.549215
\(668\) 55.4291 2.14462
\(669\) −5.86665 −0.226818
\(670\) 0 0
\(671\) −59.0420 −2.27929
\(672\) −6.36842 −0.245667
\(673\) 7.56491 0.291606 0.145803 0.989314i \(-0.453423\pi\)
0.145803 + 0.989314i \(0.453423\pi\)
\(674\) −16.6464 −0.641193
\(675\) 0 0
\(676\) 20.9260 0.804845
\(677\) 0.699791 0.0268952 0.0134476 0.999910i \(-0.495719\pi\)
0.0134476 + 0.999910i \(0.495719\pi\)
\(678\) −31.0923 −1.19409
\(679\) 15.5254 0.595811
\(680\) 0 0
\(681\) 15.1526 0.580648
\(682\) 10.1684 0.389368
\(683\) −3.29481 −0.126072 −0.0630362 0.998011i \(-0.520078\pi\)
−0.0630362 + 0.998011i \(0.520078\pi\)
\(684\) −10.5161 −0.402092
\(685\) 0 0
\(686\) 26.3684 1.00675
\(687\) −1.67952 −0.0640778
\(688\) −15.8163 −0.602990
\(689\) 3.92486 0.149525
\(690\) 0 0
\(691\) 10.3876 0.395164 0.197582 0.980286i \(-0.436691\pi\)
0.197582 + 0.980286i \(0.436691\pi\)
\(692\) 15.1111 0.574437
\(693\) 4.14764 0.157556
\(694\) 52.9086 2.00838
\(695\) 0 0
\(696\) 3.37778 0.128035
\(697\) −27.0988 −1.02644
\(698\) −0.836535 −0.0316633
\(699\) −13.2444 −0.500950
\(700\) 0 0
\(701\) −28.3892 −1.07224 −0.536122 0.844141i \(-0.680111\pi\)
−0.536122 + 0.844141i \(0.680111\pi\)
\(702\) −9.95407 −0.375692
\(703\) −31.4730 −1.18703
\(704\) 59.0420 2.22523
\(705\) 0 0
\(706\) 0.0983194 0.00370030
\(707\) 7.22570 0.271750
\(708\) 32.7052 1.22914
\(709\) 7.43155 0.279098 0.139549 0.990215i \(-0.455435\pi\)
0.139549 + 0.990215i \(0.455435\pi\)
\(710\) 0 0
\(711\) −1.11753 −0.0419107
\(712\) −19.0192 −0.712775
\(713\) 8.39853 0.314527
\(714\) −13.4795 −0.504457
\(715\) 0 0
\(716\) 55.8578 2.08750
\(717\) 3.36196 0.125555
\(718\) −53.3975 −1.99278
\(719\) 21.3363 0.795710 0.397855 0.917448i \(-0.369755\pi\)
0.397855 + 0.917448i \(0.369755\pi\)
\(720\) 0 0
\(721\) −0.607926 −0.0226403
\(722\) −13.0192 −0.484525
\(723\) −3.63804 −0.135300
\(724\) 11.8064 0.438782
\(725\) 0 0
\(726\) −22.3368 −0.828995
\(727\) −18.4844 −0.685549 −0.342775 0.939418i \(-0.611367\pi\)
−0.342775 + 0.939418i \(0.611367\pi\)
\(728\) −8.12045 −0.300964
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −77.3689 −2.86159
\(732\) −37.3274 −1.37966
\(733\) 34.6731 1.28068 0.640340 0.768092i \(-0.278794\pi\)
0.640340 + 0.768092i \(0.278794\pi\)
\(734\) −66.4514 −2.45277
\(735\) 0 0
\(736\) 59.2168 2.18276
\(737\) 45.9436 1.69236
\(738\) 8.90321 0.327732
\(739\) −27.1590 −0.999061 −0.499530 0.866296i \(-0.666494\pi\)
−0.499530 + 0.866296i \(0.666494\pi\)
\(740\) 0 0
\(741\) 16.2830 0.598171
\(742\) −1.74620 −0.0641050
\(743\) −25.6430 −0.940749 −0.470374 0.882467i \(-0.655881\pi\)
−0.470374 + 0.882467i \(0.655881\pi\)
\(744\) 2.00000 0.0733236
\(745\) 0 0
\(746\) −43.8687 −1.60615
\(747\) −3.96989 −0.145251
\(748\) 89.8533 3.28536
\(749\) −8.24797 −0.301374
\(750\) 0 0
\(751\) 0.925487 0.0337715 0.0168857 0.999857i \(-0.494625\pi\)
0.0168857 + 0.999857i \(0.494625\pi\)
\(752\) 1.63158 0.0594977
\(753\) 14.3526 0.523038
\(754\) −16.8113 −0.612233
\(755\) 0 0
\(756\) 2.62222 0.0953691
\(757\) −26.4351 −0.960800 −0.480400 0.877050i \(-0.659508\pi\)
−0.480400 + 0.877050i \(0.659508\pi\)
\(758\) −63.7975 −2.31723
\(759\) −38.5669 −1.39989
\(760\) 0 0
\(761\) −17.5768 −0.637157 −0.318579 0.947896i \(-0.603205\pi\)
−0.318579 + 0.947896i \(0.603205\pi\)
\(762\) −1.67307 −0.0606090
\(763\) 11.7462 0.425241
\(764\) 23.5812 0.853138
\(765\) 0 0
\(766\) −67.4356 −2.43655
\(767\) −50.6405 −1.82852
\(768\) 6.10171 0.220177
\(769\) −2.14717 −0.0774288 −0.0387144 0.999250i \(-0.512326\pi\)
−0.0387144 + 0.999250i \(0.512326\pi\)
\(770\) 0 0
\(771\) −6.25581 −0.225297
\(772\) 26.1704 0.941893
\(773\) −51.6055 −1.85612 −0.928060 0.372430i \(-0.878525\pi\)
−0.928060 + 0.372430i \(0.878525\pi\)
\(774\) 25.4193 0.913677
\(775\) 0 0
\(776\) −34.3783 −1.23411
\(777\) 7.84791 0.281542
\(778\) 32.8988 1.17948
\(779\) −14.5640 −0.521809
\(780\) 0 0
\(781\) 59.9309 2.14450
\(782\) 125.339 4.48212
\(783\) 1.68889 0.0603561
\(784\) 8.52051 0.304304
\(785\) 0 0
\(786\) −22.8430 −0.814782
\(787\) 13.0509 0.465213 0.232606 0.972571i \(-0.425275\pi\)
0.232606 + 0.972571i \(0.425275\pi\)
\(788\) 22.3970 0.797860
\(789\) −30.8385 −1.09788
\(790\) 0 0
\(791\) −12.6824 −0.450936
\(792\) −9.18421 −0.326347
\(793\) 57.7975 2.05245
\(794\) −17.9289 −0.636272
\(795\) 0 0
\(796\) 2.29529 0.0813543
\(797\) −46.5892 −1.65027 −0.825137 0.564933i \(-0.808902\pi\)
−0.825137 + 0.564933i \(0.808902\pi\)
\(798\) −7.24443 −0.256450
\(799\) 7.98126 0.282357
\(800\) 0 0
\(801\) −9.50961 −0.336005
\(802\) 24.2701 0.857007
\(803\) −38.7052 −1.36588
\(804\) 29.0464 1.02439
\(805\) 0 0
\(806\) −9.95407 −0.350617
\(807\) 11.5526 0.406672
\(808\) −16.0000 −0.562878
\(809\) 30.1907 1.06145 0.530724 0.847545i \(-0.321920\pi\)
0.530724 + 0.847545i \(0.321920\pi\)
\(810\) 0 0
\(811\) −0.0173528 −0.000609338 0 −0.000304669 1.00000i \(-0.500097\pi\)
−0.000304669 1.00000i \(0.500097\pi\)
\(812\) 4.42864 0.155415
\(813\) 18.0667 0.633626
\(814\) −88.3520 −3.09674
\(815\) 0 0
\(816\) −9.28592 −0.325072
\(817\) −41.5812 −1.45474
\(818\) −83.6454 −2.92459
\(819\) −4.06022 −0.141876
\(820\) 0 0
\(821\) −37.2371 −1.29958 −0.649791 0.760113i \(-0.725144\pi\)
−0.649791 + 0.760113i \(0.725144\pi\)
\(822\) 22.5368 0.786061
\(823\) −18.0228 −0.628234 −0.314117 0.949384i \(-0.601708\pi\)
−0.314117 + 0.949384i \(0.601708\pi\)
\(824\) 1.34614 0.0468951
\(825\) 0 0
\(826\) 22.5303 0.783931
\(827\) −3.45383 −0.120101 −0.0600507 0.998195i \(-0.519126\pi\)
−0.0600507 + 0.998195i \(0.519126\pi\)
\(828\) −24.3827 −0.847358
\(829\) −30.0163 −1.04251 −0.521255 0.853401i \(-0.674536\pi\)
−0.521255 + 0.853401i \(0.674536\pi\)
\(830\) 0 0
\(831\) −14.7239 −0.510767
\(832\) −57.7975 −2.00377
\(833\) 41.6800 1.44413
\(834\) −20.7096 −0.717116
\(835\) 0 0
\(836\) 48.2908 1.67017
\(837\) 1.00000 0.0345651
\(838\) −18.6637 −0.644727
\(839\) 2.10171 0.0725591 0.0362795 0.999342i \(-0.488449\pi\)
0.0362795 + 0.999342i \(0.488449\pi\)
\(840\) 0 0
\(841\) −26.1476 −0.901643
\(842\) −65.3787 −2.25310
\(843\) −9.61285 −0.331084
\(844\) −46.2494 −1.59197
\(845\) 0 0
\(846\) −2.62222 −0.0901536
\(847\) −9.11108 −0.313060
\(848\) −1.20294 −0.0413093
\(849\) −3.88892 −0.133467
\(850\) 0 0
\(851\) −72.9739 −2.50151
\(852\) 37.8894 1.29807
\(853\) −26.9032 −0.921148 −0.460574 0.887621i \(-0.652356\pi\)
−0.460574 + 0.887621i \(0.652356\pi\)
\(854\) −25.7146 −0.879934
\(855\) 0 0
\(856\) 18.2636 0.624238
\(857\) 40.3763 1.37923 0.689613 0.724178i \(-0.257781\pi\)
0.689613 + 0.724178i \(0.257781\pi\)
\(858\) 45.7101 1.56052
\(859\) 2.53035 0.0863344 0.0431672 0.999068i \(-0.486255\pi\)
0.0431672 + 0.999068i \(0.486255\pi\)
\(860\) 0 0
\(861\) 3.63158 0.123764
\(862\) 80.3279 2.73598
\(863\) −0.828699 −0.0282092 −0.0141046 0.999901i \(-0.504490\pi\)
−0.0141046 + 0.999901i \(0.504490\pi\)
\(864\) 7.05086 0.239875
\(865\) 0 0
\(866\) −43.7462 −1.48656
\(867\) −28.4242 −0.965336
\(868\) 2.62222 0.0890038
\(869\) 5.13182 0.174085
\(870\) 0 0
\(871\) −44.9753 −1.52393
\(872\) −26.0098 −0.880804
\(873\) −17.1891 −0.581764
\(874\) 67.3624 2.27857
\(875\) 0 0
\(876\) −24.4701 −0.826769
\(877\) −8.44738 −0.285248 −0.142624 0.989777i \(-0.545554\pi\)
−0.142624 + 0.989777i \(0.545554\pi\)
\(878\) −28.4603 −0.960488
\(879\) 3.22369 0.108732
\(880\) 0 0
\(881\) 0.580728 0.0195652 0.00978262 0.999952i \(-0.496886\pi\)
0.00978262 + 0.999952i \(0.496886\pi\)
\(882\) −13.6938 −0.461095
\(883\) 40.4449 1.36108 0.680540 0.732711i \(-0.261745\pi\)
0.680540 + 0.732711i \(0.261745\pi\)
\(884\) −87.9595 −2.95840
\(885\) 0 0
\(886\) −3.59549 −0.120793
\(887\) −5.19204 −0.174332 −0.0871659 0.996194i \(-0.527781\pi\)
−0.0871659 + 0.996194i \(0.527781\pi\)
\(888\) −17.3778 −0.583160
\(889\) −0.682439 −0.0228883
\(890\) 0 0
\(891\) −4.59210 −0.153841
\(892\) 17.0321 0.570278
\(893\) 4.28946 0.143541
\(894\) −14.2810 −0.477628
\(895\) 0 0
\(896\) 12.9777 0.433555
\(897\) 37.7540 1.26057
\(898\) −14.9556 −0.499075
\(899\) 1.68889 0.0563277
\(900\) 0 0
\(901\) −5.88448 −0.196040
\(902\) −40.8845 −1.36130
\(903\) 10.3684 0.345039
\(904\) 28.0830 0.934026
\(905\) 0 0
\(906\) 52.9403 1.75882
\(907\) −31.6865 −1.05213 −0.526066 0.850444i \(-0.676333\pi\)
−0.526066 + 0.850444i \(0.676333\pi\)
\(908\) −43.9911 −1.45990
\(909\) −8.00000 −0.265343
\(910\) 0 0
\(911\) 24.8415 0.823034 0.411517 0.911402i \(-0.364999\pi\)
0.411517 + 0.911402i \(0.364999\pi\)
\(912\) −4.99063 −0.165256
\(913\) 18.2301 0.603330
\(914\) 45.2498 1.49673
\(915\) 0 0
\(916\) 4.87601 0.161108
\(917\) −9.31756 −0.307693
\(918\) 14.9240 0.492564
\(919\) −7.95359 −0.262365 −0.131182 0.991358i \(-0.541877\pi\)
−0.131182 + 0.991358i \(0.541877\pi\)
\(920\) 0 0
\(921\) 11.0049 0.362625
\(922\) −18.1684 −0.598344
\(923\) −58.6677 −1.93107
\(924\) −12.0415 −0.396136
\(925\) 0 0
\(926\) −58.1847 −1.91207
\(927\) 0.673071 0.0221065
\(928\) 11.9081 0.390904
\(929\) 12.5462 0.411627 0.205813 0.978591i \(-0.434016\pi\)
0.205813 + 0.978591i \(0.434016\pi\)
\(930\) 0 0
\(931\) 22.4005 0.734148
\(932\) 38.4514 1.25952
\(933\) −10.9699 −0.359138
\(934\) 11.9299 0.390359
\(935\) 0 0
\(936\) 8.99063 0.293868
\(937\) 1.87601 0.0612867 0.0306434 0.999530i \(-0.490244\pi\)
0.0306434 + 0.999530i \(0.490244\pi\)
\(938\) 20.0098 0.653345
\(939\) 1.81288 0.0591610
\(940\) 0 0
\(941\) 12.6207 0.411423 0.205711 0.978613i \(-0.434049\pi\)
0.205711 + 0.978613i \(0.434049\pi\)
\(942\) 11.5002 0.374698
\(943\) −33.7683 −1.09965
\(944\) 15.5210 0.505165
\(945\) 0 0
\(946\) −116.728 −3.79515
\(947\) 46.8785 1.52335 0.761673 0.647961i \(-0.224378\pi\)
0.761673 + 0.647961i \(0.224378\pi\)
\(948\) 3.24443 0.105374
\(949\) 37.8894 1.22994
\(950\) 0 0
\(951\) 24.9699 0.809704
\(952\) 12.1748 0.394589
\(953\) −55.5308 −1.79882 −0.899410 0.437106i \(-0.856003\pi\)
−0.899410 + 0.437106i \(0.856003\pi\)
\(954\) 1.93332 0.0625937
\(955\) 0 0
\(956\) −9.76049 −0.315677
\(957\) −7.75557 −0.250702
\(958\) 3.57136 0.115385
\(959\) 9.19267 0.296847
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 86.4898 2.78854
\(963\) 9.13182 0.294269
\(964\) 10.5620 0.340179
\(965\) 0 0
\(966\) −16.7971 −0.540436
\(967\) 58.1595 1.87028 0.935142 0.354274i \(-0.115272\pi\)
0.935142 + 0.354274i \(0.115272\pi\)
\(968\) 20.1748 0.648444
\(969\) −24.4128 −0.784253
\(970\) 0 0
\(971\) −50.0721 −1.60689 −0.803445 0.595379i \(-0.797002\pi\)
−0.803445 + 0.595379i \(0.797002\pi\)
\(972\) −2.90321 −0.0931206
\(973\) −8.44738 −0.270810
\(974\) 54.5357 1.74744
\(975\) 0 0
\(976\) −17.7146 −0.567029
\(977\) 5.70271 0.182446 0.0912229 0.995831i \(-0.470922\pi\)
0.0912229 + 0.995831i \(0.470922\pi\)
\(978\) −44.7862 −1.43210
\(979\) 43.6691 1.39567
\(980\) 0 0
\(981\) −13.0049 −0.415215
\(982\) 95.3753 3.04355
\(983\) 4.87310 0.155428 0.0777139 0.996976i \(-0.475238\pi\)
0.0777139 + 0.996976i \(0.475238\pi\)
\(984\) −8.04149 −0.256353
\(985\) 0 0
\(986\) 25.2050 0.802689
\(987\) −1.06959 −0.0340455
\(988\) −47.2730 −1.50395
\(989\) −96.4109 −3.06569
\(990\) 0 0
\(991\) −11.8415 −0.376156 −0.188078 0.982154i \(-0.560226\pi\)
−0.188078 + 0.982154i \(0.560226\pi\)
\(992\) 7.05086 0.223865
\(993\) 29.1590 0.925333
\(994\) 26.1017 0.827896
\(995\) 0 0
\(996\) 11.5254 0.365197
\(997\) −36.5067 −1.15618 −0.578089 0.815974i \(-0.696201\pi\)
−0.578089 + 0.815974i \(0.696201\pi\)
\(998\) 61.4465 1.94505
\(999\) −8.68889 −0.274904
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2325.2.a.t.1.3 3
3.2 odd 2 6975.2.a.bd.1.1 3
5.2 odd 4 2325.2.c.m.1024.6 6
5.3 odd 4 2325.2.c.m.1024.1 6
5.4 even 2 2325.2.a.u.1.1 yes 3
15.14 odd 2 6975.2.a.bc.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2325.2.a.t.1.3 3 1.1 even 1 trivial
2325.2.a.u.1.1 yes 3 5.4 even 2
2325.2.c.m.1024.1 6 5.3 odd 4
2325.2.c.m.1024.6 6 5.2 odd 4
6975.2.a.bc.1.3 3 15.14 odd 2
6975.2.a.bd.1.1 3 3.2 odd 2