Properties

Label 2312.2.b.j.577.1
Level $2312$
Weight $2$
Character 2312.577
Analytic conductor $18.461$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(577,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2048.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.1
Root \(-1.84776i\) of defining polynomial
Character \(\chi\) \(=\) 2312.577
Dual form 2312.2.b.j.577.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.84776i q^{3} -0.765367i q^{5} -4.46088i q^{7} -0.414214 q^{9} +1.84776i q^{11} -1.41421 q^{15} +6.24264 q^{19} -8.24264 q^{21} -4.90923i q^{23} +4.41421 q^{25} -4.77791i q^{27} -2.29610i q^{29} -5.54328i q^{31} +3.41421 q^{33} -3.41421 q^{35} +1.84776i q^{37} -9.68714i q^{41} +1.75736 q^{43} +0.317025i q^{45} -7.17157 q^{47} -12.8995 q^{49} -11.0711 q^{53} +1.41421 q^{55} -11.5349i q^{57} +11.8995 q^{59} +12.7486i q^{61} +1.84776i q^{63} +1.65685 q^{67} -9.07107 q^{69} +2.48181i q^{71} +14.0167i q^{73} -8.15640i q^{75} +8.24264 q^{77} +13.5684i q^{79} -10.0711 q^{81} +1.75736 q^{83} -4.24264 q^{87} -9.65685 q^{89} -10.2426 q^{93} -4.77791i q^{95} +2.03347i q^{97} -0.765367i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{9} + 8 q^{19} - 16 q^{21} + 12 q^{25} + 8 q^{33} - 8 q^{35} + 24 q^{43} - 40 q^{47} - 12 q^{49} - 16 q^{53} + 8 q^{59} - 16 q^{67} - 8 q^{69} + 16 q^{77} - 12 q^{81} + 24 q^{83} - 16 q^{89} - 24 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2312\mathbb{Z}\right)^\times\).

\(n\) \(1157\) \(1735\) \(1737\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.84776i − 1.06680i −0.845862 0.533402i \(-0.820913\pi\)
0.845862 0.533402i \(-0.179087\pi\)
\(4\) 0 0
\(5\) − 0.765367i − 0.342282i −0.985247 0.171141i \(-0.945255\pi\)
0.985247 0.171141i \(-0.0547454\pi\)
\(6\) 0 0
\(7\) − 4.46088i − 1.68606i −0.537870 0.843028i \(-0.680771\pi\)
0.537870 0.843028i \(-0.319229\pi\)
\(8\) 0 0
\(9\) −0.414214 −0.138071
\(10\) 0 0
\(11\) 1.84776i 0.557120i 0.960419 + 0.278560i \(0.0898572\pi\)
−0.960419 + 0.278560i \(0.910143\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −1.41421 −0.365148
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 6.24264 1.43216 0.716080 0.698018i \(-0.245935\pi\)
0.716080 + 0.698018i \(0.245935\pi\)
\(20\) 0 0
\(21\) −8.24264 −1.79869
\(22\) 0 0
\(23\) − 4.90923i − 1.02364i −0.859091 0.511822i \(-0.828971\pi\)
0.859091 0.511822i \(-0.171029\pi\)
\(24\) 0 0
\(25\) 4.41421 0.882843
\(26\) 0 0
\(27\) − 4.77791i − 0.919509i
\(28\) 0 0
\(29\) − 2.29610i − 0.426375i −0.977011 0.213188i \(-0.931615\pi\)
0.977011 0.213188i \(-0.0683845\pi\)
\(30\) 0 0
\(31\) − 5.54328i − 0.995602i −0.867291 0.497801i \(-0.834141\pi\)
0.867291 0.497801i \(-0.165859\pi\)
\(32\) 0 0
\(33\) 3.41421 0.594338
\(34\) 0 0
\(35\) −3.41421 −0.577107
\(36\) 0 0
\(37\) 1.84776i 0.303770i 0.988398 + 0.151885i \(0.0485343\pi\)
−0.988398 + 0.151885i \(0.951466\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 9.68714i − 1.51288i −0.654065 0.756438i \(-0.726938\pi\)
0.654065 0.756438i \(-0.273062\pi\)
\(42\) 0 0
\(43\) 1.75736 0.267995 0.133997 0.990982i \(-0.457219\pi\)
0.133997 + 0.990982i \(0.457219\pi\)
\(44\) 0 0
\(45\) 0.317025i 0.0472593i
\(46\) 0 0
\(47\) −7.17157 −1.04608 −0.523041 0.852308i \(-0.675202\pi\)
−0.523041 + 0.852308i \(0.675202\pi\)
\(48\) 0 0
\(49\) −12.8995 −1.84278
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.0711 −1.52073 −0.760364 0.649497i \(-0.774979\pi\)
−0.760364 + 0.649497i \(0.774979\pi\)
\(54\) 0 0
\(55\) 1.41421 0.190693
\(56\) 0 0
\(57\) − 11.5349i − 1.52783i
\(58\) 0 0
\(59\) 11.8995 1.54918 0.774591 0.632462i \(-0.217956\pi\)
0.774591 + 0.632462i \(0.217956\pi\)
\(60\) 0 0
\(61\) 12.7486i 1.63229i 0.577846 + 0.816146i \(0.303893\pi\)
−0.577846 + 0.816146i \(0.696107\pi\)
\(62\) 0 0
\(63\) 1.84776i 0.232796i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.65685 0.202417 0.101208 0.994865i \(-0.467729\pi\)
0.101208 + 0.994865i \(0.467729\pi\)
\(68\) 0 0
\(69\) −9.07107 −1.09203
\(70\) 0 0
\(71\) 2.48181i 0.294537i 0.989097 + 0.147268i \(0.0470481\pi\)
−0.989097 + 0.147268i \(0.952952\pi\)
\(72\) 0 0
\(73\) 14.0167i 1.64053i 0.571983 + 0.820266i \(0.306174\pi\)
−0.571983 + 0.820266i \(0.693826\pi\)
\(74\) 0 0
\(75\) − 8.15640i − 0.941820i
\(76\) 0 0
\(77\) 8.24264 0.939336
\(78\) 0 0
\(79\) 13.5684i 1.52656i 0.646068 + 0.763280i \(0.276412\pi\)
−0.646068 + 0.763280i \(0.723588\pi\)
\(80\) 0 0
\(81\) −10.0711 −1.11901
\(82\) 0 0
\(83\) 1.75736 0.192895 0.0964476 0.995338i \(-0.469252\pi\)
0.0964476 + 0.995338i \(0.469252\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −4.24264 −0.454859
\(88\) 0 0
\(89\) −9.65685 −1.02362 −0.511812 0.859097i \(-0.671026\pi\)
−0.511812 + 0.859097i \(0.671026\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −10.2426 −1.06211
\(94\) 0 0
\(95\) − 4.77791i − 0.490203i
\(96\) 0 0
\(97\) 2.03347i 0.206467i 0.994657 + 0.103234i \(0.0329190\pi\)
−0.994657 + 0.103234i \(0.967081\pi\)
\(98\) 0 0
\(99\) − 0.765367i − 0.0769223i
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) −13.6569 −1.34565 −0.672825 0.739802i \(-0.734919\pi\)
−0.672825 + 0.739802i \(0.734919\pi\)
\(104\) 0 0
\(105\) 6.30864i 0.615661i
\(106\) 0 0
\(107\) 1.66205i 0.160676i 0.996768 + 0.0803382i \(0.0256000\pi\)
−0.996768 + 0.0803382i \(0.974400\pi\)
\(108\) 0 0
\(109\) 12.4860i 1.19594i 0.801519 + 0.597970i \(0.204026\pi\)
−0.801519 + 0.597970i \(0.795974\pi\)
\(110\) 0 0
\(111\) 3.41421 0.324063
\(112\) 0 0
\(113\) − 1.21371i − 0.114176i −0.998369 0.0570880i \(-0.981818\pi\)
0.998369 0.0570880i \(-0.0181816\pi\)
\(114\) 0 0
\(115\) −3.75736 −0.350376
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.58579 0.689617
\(122\) 0 0
\(123\) −17.8995 −1.61394
\(124\) 0 0
\(125\) − 7.20533i − 0.644464i
\(126\) 0 0
\(127\) 10.2426 0.908887 0.454444 0.890775i \(-0.349838\pi\)
0.454444 + 0.890775i \(0.349838\pi\)
\(128\) 0 0
\(129\) − 3.24718i − 0.285898i
\(130\) 0 0
\(131\) − 1.66205i − 0.145214i −0.997361 0.0726070i \(-0.976868\pi\)
0.997361 0.0726070i \(-0.0231319\pi\)
\(132\) 0 0
\(133\) − 27.8477i − 2.41470i
\(134\) 0 0
\(135\) −3.65685 −0.314732
\(136\) 0 0
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) 0 0
\(139\) − 19.6913i − 1.67019i −0.550103 0.835097i \(-0.685411\pi\)
0.550103 0.835097i \(-0.314589\pi\)
\(140\) 0 0
\(141\) 13.2513i 1.11596i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −1.75736 −0.145941
\(146\) 0 0
\(147\) 23.8352i 1.96589i
\(148\) 0 0
\(149\) 17.6569 1.44651 0.723253 0.690583i \(-0.242646\pi\)
0.723253 + 0.690583i \(0.242646\pi\)
\(150\) 0 0
\(151\) 0.100505 0.00817899 0.00408949 0.999992i \(-0.498698\pi\)
0.00408949 + 0.999992i \(0.498698\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.24264 −0.340777
\(156\) 0 0
\(157\) −7.31371 −0.583697 −0.291849 0.956464i \(-0.594270\pi\)
−0.291849 + 0.956464i \(0.594270\pi\)
\(158\) 0 0
\(159\) 20.4567i 1.62232i
\(160\) 0 0
\(161\) −21.8995 −1.72592
\(162\) 0 0
\(163\) 14.9134i 1.16811i 0.811715 + 0.584053i \(0.198534\pi\)
−0.811715 + 0.584053i \(0.801466\pi\)
\(164\) 0 0
\(165\) − 2.61313i − 0.203432i
\(166\) 0 0
\(167\) 1.84776i 0.142984i 0.997441 + 0.0714919i \(0.0227760\pi\)
−0.997441 + 0.0714919i \(0.977224\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −2.58579 −0.197740
\(172\) 0 0
\(173\) − 24.6549i − 1.87448i −0.348687 0.937239i \(-0.613372\pi\)
0.348687 0.937239i \(-0.386628\pi\)
\(174\) 0 0
\(175\) − 19.6913i − 1.48852i
\(176\) 0 0
\(177\) − 21.9874i − 1.65267i
\(178\) 0 0
\(179\) 9.75736 0.729299 0.364650 0.931145i \(-0.381189\pi\)
0.364650 + 0.931145i \(0.381189\pi\)
\(180\) 0 0
\(181\) − 1.21371i − 0.0902142i −0.998982 0.0451071i \(-0.985637\pi\)
0.998982 0.0451071i \(-0.0143629\pi\)
\(182\) 0 0
\(183\) 23.5563 1.74134
\(184\) 0 0
\(185\) 1.41421 0.103975
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −21.3137 −1.55034
\(190\) 0 0
\(191\) −3.17157 −0.229487 −0.114743 0.993395i \(-0.536605\pi\)
−0.114743 + 0.993395i \(0.536605\pi\)
\(192\) 0 0
\(193\) − 1.84776i − 0.133005i −0.997786 0.0665023i \(-0.978816\pi\)
0.997786 0.0665023i \(-0.0211840\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.56420i 0.253939i 0.991907 + 0.126969i \(0.0405250\pi\)
−0.991907 + 0.126969i \(0.959475\pi\)
\(198\) 0 0
\(199\) 13.6453i 0.967289i 0.875265 + 0.483644i \(0.160687\pi\)
−0.875265 + 0.483644i \(0.839313\pi\)
\(200\) 0 0
\(201\) − 3.06147i − 0.215939i
\(202\) 0 0
\(203\) −10.2426 −0.718892
\(204\) 0 0
\(205\) −7.41421 −0.517831
\(206\) 0 0
\(207\) 2.03347i 0.141336i
\(208\) 0 0
\(209\) 11.5349i 0.797885i
\(210\) 0 0
\(211\) 15.1760i 1.04476i 0.852713 + 0.522380i \(0.174956\pi\)
−0.852713 + 0.522380i \(0.825044\pi\)
\(212\) 0 0
\(213\) 4.58579 0.314213
\(214\) 0 0
\(215\) − 1.34502i − 0.0917299i
\(216\) 0 0
\(217\) −24.7279 −1.67864
\(218\) 0 0
\(219\) 25.8995 1.75013
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 13.5563 0.907800 0.453900 0.891053i \(-0.350032\pi\)
0.453900 + 0.891053i \(0.350032\pi\)
\(224\) 0 0
\(225\) −1.82843 −0.121895
\(226\) 0 0
\(227\) − 12.3003i − 0.816397i −0.912893 0.408199i \(-0.866157\pi\)
0.912893 0.408199i \(-0.133843\pi\)
\(228\) 0 0
\(229\) −9.89949 −0.654177 −0.327089 0.944994i \(-0.606068\pi\)
−0.327089 + 0.944994i \(0.606068\pi\)
\(230\) 0 0
\(231\) − 15.2304i − 1.00209i
\(232\) 0 0
\(233\) − 17.0782i − 1.11883i −0.828888 0.559414i \(-0.811026\pi\)
0.828888 0.559414i \(-0.188974\pi\)
\(234\) 0 0
\(235\) 5.48888i 0.358055i
\(236\) 0 0
\(237\) 25.0711 1.62854
\(238\) 0 0
\(239\) −11.3137 −0.731823 −0.365911 0.930650i \(-0.619243\pi\)
−0.365911 + 0.930650i \(0.619243\pi\)
\(240\) 0 0
\(241\) 7.97069i 0.513438i 0.966486 + 0.256719i \(0.0826414\pi\)
−0.966486 + 0.256719i \(0.917359\pi\)
\(242\) 0 0
\(243\) 4.27518i 0.274253i
\(244\) 0 0
\(245\) 9.87285i 0.630753i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) − 3.24718i − 0.205781i
\(250\) 0 0
\(251\) 4.82843 0.304768 0.152384 0.988321i \(-0.451305\pi\)
0.152384 + 0.988321i \(0.451305\pi\)
\(252\) 0 0
\(253\) 9.07107 0.570293
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.242641 0.0151355 0.00756776 0.999971i \(-0.497591\pi\)
0.00756776 + 0.999971i \(0.497591\pi\)
\(258\) 0 0
\(259\) 8.24264 0.512173
\(260\) 0 0
\(261\) 0.951076i 0.0588701i
\(262\) 0 0
\(263\) 15.8995 0.980405 0.490202 0.871609i \(-0.336923\pi\)
0.490202 + 0.871609i \(0.336923\pi\)
\(264\) 0 0
\(265\) 8.47343i 0.520519i
\(266\) 0 0
\(267\) 17.8435i 1.09201i
\(268\) 0 0
\(269\) − 7.97069i − 0.485982i −0.970029 0.242991i \(-0.921871\pi\)
0.970029 0.242991i \(-0.0781285\pi\)
\(270\) 0 0
\(271\) −11.3137 −0.687259 −0.343629 0.939105i \(-0.611656\pi\)
−0.343629 + 0.939105i \(0.611656\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.15640i 0.491850i
\(276\) 0 0
\(277\) − 3.82683i − 0.229932i −0.993369 0.114966i \(-0.963324\pi\)
0.993369 0.114966i \(-0.0366759\pi\)
\(278\) 0 0
\(279\) 2.29610i 0.137464i
\(280\) 0 0
\(281\) −28.7279 −1.71376 −0.856882 0.515512i \(-0.827602\pi\)
−0.856882 + 0.515512i \(0.827602\pi\)
\(282\) 0 0
\(283\) − 21.5935i − 1.28360i −0.766873 0.641799i \(-0.778188\pi\)
0.766873 0.641799i \(-0.221812\pi\)
\(284\) 0 0
\(285\) −8.82843 −0.522951
\(286\) 0 0
\(287\) −43.2132 −2.55079
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 3.75736 0.220260
\(292\) 0 0
\(293\) 15.3137 0.894636 0.447318 0.894375i \(-0.352379\pi\)
0.447318 + 0.894375i \(0.352379\pi\)
\(294\) 0 0
\(295\) − 9.10748i − 0.530258i
\(296\) 0 0
\(297\) 8.82843 0.512277
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 7.83938i − 0.451854i
\(302\) 0 0
\(303\) 18.4776i 1.06151i
\(304\) 0 0
\(305\) 9.75736 0.558705
\(306\) 0 0
\(307\) 18.6274 1.06312 0.531561 0.847020i \(-0.321605\pi\)
0.531561 + 0.847020i \(0.321605\pi\)
\(308\) 0 0
\(309\) 25.2346i 1.43554i
\(310\) 0 0
\(311\) 5.99162i 0.339754i 0.985465 + 0.169877i \(0.0543370\pi\)
−0.985465 + 0.169877i \(0.945663\pi\)
\(312\) 0 0
\(313\) 15.5474i 0.878793i 0.898293 + 0.439397i \(0.144808\pi\)
−0.898293 + 0.439397i \(0.855192\pi\)
\(314\) 0 0
\(315\) 1.41421 0.0796819
\(316\) 0 0
\(317\) − 17.2639i − 0.969636i −0.874615 0.484818i \(-0.838886\pi\)
0.874615 0.484818i \(-0.161114\pi\)
\(318\) 0 0
\(319\) 4.24264 0.237542
\(320\) 0 0
\(321\) 3.07107 0.171410
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 23.0711 1.27583
\(328\) 0 0
\(329\) 31.9916i 1.76375i
\(330\) 0 0
\(331\) 22.2426 1.22257 0.611283 0.791412i \(-0.290654\pi\)
0.611283 + 0.791412i \(0.290654\pi\)
\(332\) 0 0
\(333\) − 0.765367i − 0.0419418i
\(334\) 0 0
\(335\) − 1.26810i − 0.0692838i
\(336\) 0 0
\(337\) 4.27518i 0.232884i 0.993198 + 0.116442i \(0.0371489\pi\)
−0.993198 + 0.116442i \(0.962851\pi\)
\(338\) 0 0
\(339\) −2.24264 −0.121804
\(340\) 0 0
\(341\) 10.2426 0.554670
\(342\) 0 0
\(343\) 26.3170i 1.42098i
\(344\) 0 0
\(345\) 6.94269i 0.373782i
\(346\) 0 0
\(347\) − 19.2430i − 1.03302i −0.856282 0.516508i \(-0.827232\pi\)
0.856282 0.516508i \(-0.172768\pi\)
\(348\) 0 0
\(349\) −2.10051 −0.112437 −0.0562187 0.998418i \(-0.517904\pi\)
−0.0562187 + 0.998418i \(0.517904\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.97056 −0.477455 −0.238727 0.971087i \(-0.576730\pi\)
−0.238727 + 0.971087i \(0.576730\pi\)
\(354\) 0 0
\(355\) 1.89949 0.100815
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.7574 −0.726086 −0.363043 0.931772i \(-0.618262\pi\)
−0.363043 + 0.931772i \(0.618262\pi\)
\(360\) 0 0
\(361\) 19.9706 1.05108
\(362\) 0 0
\(363\) − 14.0167i − 0.735686i
\(364\) 0 0
\(365\) 10.7279 0.561525
\(366\) 0 0
\(367\) − 20.7737i − 1.08438i −0.840257 0.542189i \(-0.817596\pi\)
0.840257 0.542189i \(-0.182404\pi\)
\(368\) 0 0
\(369\) 4.01254i 0.208885i
\(370\) 0 0
\(371\) 49.3868i 2.56403i
\(372\) 0 0
\(373\) 31.9411 1.65385 0.826924 0.562313i \(-0.190088\pi\)
0.826924 + 0.562313i \(0.190088\pi\)
\(374\) 0 0
\(375\) −13.3137 −0.687517
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 10.5838i − 0.543654i −0.962346 0.271827i \(-0.912372\pi\)
0.962346 0.271827i \(-0.0876279\pi\)
\(380\) 0 0
\(381\) − 18.9259i − 0.969605i
\(382\) 0 0
\(383\) 14.7279 0.752562 0.376281 0.926506i \(-0.377203\pi\)
0.376281 + 0.926506i \(0.377203\pi\)
\(384\) 0 0
\(385\) − 6.30864i − 0.321518i
\(386\) 0 0
\(387\) −0.727922 −0.0370024
\(388\) 0 0
\(389\) −3.27208 −0.165901 −0.0829505 0.996554i \(-0.526434\pi\)
−0.0829505 + 0.996554i \(0.526434\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −3.07107 −0.154915
\(394\) 0 0
\(395\) 10.3848 0.522515
\(396\) 0 0
\(397\) − 7.44543i − 0.373675i −0.982391 0.186838i \(-0.940176\pi\)
0.982391 0.186838i \(-0.0598238\pi\)
\(398\) 0 0
\(399\) −51.4558 −2.57601
\(400\) 0 0
\(401\) − 2.55873i − 0.127777i −0.997957 0.0638885i \(-0.979650\pi\)
0.997957 0.0638885i \(-0.0203502\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 7.70806i 0.383017i
\(406\) 0 0
\(407\) −3.41421 −0.169236
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) − 25.8686i − 1.27601i
\(412\) 0 0
\(413\) − 53.0823i − 2.61201i
\(414\) 0 0
\(415\) − 1.34502i − 0.0660247i
\(416\) 0 0
\(417\) −36.3848 −1.78177
\(418\) 0 0
\(419\) 4.90923i 0.239831i 0.992784 + 0.119916i \(0.0382624\pi\)
−0.992784 + 0.119916i \(0.961738\pi\)
\(420\) 0 0
\(421\) −11.3137 −0.551396 −0.275698 0.961244i \(-0.588909\pi\)
−0.275698 + 0.961244i \(0.588909\pi\)
\(422\) 0 0
\(423\) 2.97056 0.144434
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 56.8701 2.75213
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.54328i 0.267010i 0.991048 + 0.133505i \(0.0426233\pi\)
−0.991048 + 0.133505i \(0.957377\pi\)
\(432\) 0 0
\(433\) −2.58579 −0.124265 −0.0621325 0.998068i \(-0.519790\pi\)
−0.0621325 + 0.998068i \(0.519790\pi\)
\(434\) 0 0
\(435\) 3.24718i 0.155690i
\(436\) 0 0
\(437\) − 30.6465i − 1.46602i
\(438\) 0 0
\(439\) − 19.0572i − 0.909553i −0.890606 0.454776i \(-0.849719\pi\)
0.890606 0.454776i \(-0.150281\pi\)
\(440\) 0 0
\(441\) 5.34315 0.254436
\(442\) 0 0
\(443\) 16.2843 0.773689 0.386845 0.922145i \(-0.373565\pi\)
0.386845 + 0.922145i \(0.373565\pi\)
\(444\) 0 0
\(445\) 7.39104i 0.350369i
\(446\) 0 0
\(447\) − 32.6256i − 1.54314i
\(448\) 0 0
\(449\) 24.7318i 1.16717i 0.812053 + 0.583584i \(0.198350\pi\)
−0.812053 + 0.583584i \(0.801650\pi\)
\(450\) 0 0
\(451\) 17.8995 0.842854
\(452\) 0 0
\(453\) − 0.185709i − 0.00872538i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.0711 0.892107 0.446053 0.895006i \(-0.352829\pi\)
0.446053 + 0.895006i \(0.352829\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 27.5563 1.28343 0.641714 0.766944i \(-0.278224\pi\)
0.641714 + 0.766944i \(0.278224\pi\)
\(462\) 0 0
\(463\) −4.14214 −0.192501 −0.0962507 0.995357i \(-0.530685\pi\)
−0.0962507 + 0.995357i \(0.530685\pi\)
\(464\) 0 0
\(465\) 7.83938i 0.363542i
\(466\) 0 0
\(467\) 17.5563 0.812411 0.406205 0.913782i \(-0.366852\pi\)
0.406205 + 0.913782i \(0.366852\pi\)
\(468\) 0 0
\(469\) − 7.39104i − 0.341286i
\(470\) 0 0
\(471\) 13.5140i 0.622691i
\(472\) 0 0
\(473\) 3.24718i 0.149305i
\(474\) 0 0
\(475\) 27.5563 1.26437
\(476\) 0 0
\(477\) 4.58579 0.209969
\(478\) 0 0
\(479\) 8.07948i 0.369161i 0.982817 + 0.184580i \(0.0590926\pi\)
−0.982817 + 0.184580i \(0.940907\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 40.4650i 1.84122i
\(484\) 0 0
\(485\) 1.55635 0.0706702
\(486\) 0 0
\(487\) − 42.4985i − 1.92579i −0.269878 0.962894i \(-0.586983\pi\)
0.269878 0.962894i \(-0.413017\pi\)
\(488\) 0 0
\(489\) 27.5563 1.24614
\(490\) 0 0
\(491\) 16.3848 0.739435 0.369717 0.929144i \(-0.379455\pi\)
0.369717 + 0.929144i \(0.379455\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.585786 −0.0263291
\(496\) 0 0
\(497\) 11.0711 0.496605
\(498\) 0 0
\(499\) 22.1187i 0.990170i 0.868845 + 0.495085i \(0.164863\pi\)
−0.868845 + 0.495085i \(0.835137\pi\)
\(500\) 0 0
\(501\) 3.41421 0.152536
\(502\) 0 0
\(503\) 4.46088i 0.198901i 0.995043 + 0.0994505i \(0.0317085\pi\)
−0.995043 + 0.0994505i \(0.968292\pi\)
\(504\) 0 0
\(505\) 7.65367i 0.340584i
\(506\) 0 0
\(507\) 24.0209i 1.06680i
\(508\) 0 0
\(509\) −18.2843 −0.810436 −0.405218 0.914220i \(-0.632804\pi\)
−0.405218 + 0.914220i \(0.632804\pi\)
\(510\) 0 0
\(511\) 62.5269 2.76603
\(512\) 0 0
\(513\) − 29.8268i − 1.31688i
\(514\) 0 0
\(515\) 10.4525i 0.460592i
\(516\) 0 0
\(517\) − 13.2513i − 0.582793i
\(518\) 0 0
\(519\) −45.5563 −1.99970
\(520\) 0 0
\(521\) 9.76406i 0.427771i 0.976859 + 0.213886i \(0.0686120\pi\)
−0.976859 + 0.213886i \(0.931388\pi\)
\(522\) 0 0
\(523\) 24.1421 1.05566 0.527831 0.849349i \(-0.323005\pi\)
0.527831 + 0.849349i \(0.323005\pi\)
\(524\) 0 0
\(525\) −36.3848 −1.58796
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −1.10051 −0.0478480
\(530\) 0 0
\(531\) −4.92893 −0.213897
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.27208 0.0549967
\(536\) 0 0
\(537\) − 18.0292i − 0.778020i
\(538\) 0 0
\(539\) − 23.8352i − 1.02665i
\(540\) 0 0
\(541\) − 0.0543929i − 0.00233854i −0.999999 0.00116927i \(-0.999628\pi\)
0.999999 0.00116927i \(-0.000372190\pi\)
\(542\) 0 0
\(543\) −2.24264 −0.0962409
\(544\) 0 0
\(545\) 9.55635 0.409349
\(546\) 0 0
\(547\) 16.5210i 0.706389i 0.935550 + 0.353194i \(0.114905\pi\)
−0.935550 + 0.353194i \(0.885095\pi\)
\(548\) 0 0
\(549\) − 5.28064i − 0.225372i
\(550\) 0 0
\(551\) − 14.3337i − 0.610637i
\(552\) 0 0
\(553\) 60.5269 2.57387
\(554\) 0 0
\(555\) − 2.61313i − 0.110921i
\(556\) 0 0
\(557\) 16.0000 0.677942 0.338971 0.940797i \(-0.389921\pi\)
0.338971 + 0.940797i \(0.389921\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22.0416 −0.928944 −0.464472 0.885588i \(-0.653756\pi\)
−0.464472 + 0.885588i \(0.653756\pi\)
\(564\) 0 0
\(565\) −0.928932 −0.0390805
\(566\) 0 0
\(567\) 44.9259i 1.88671i
\(568\) 0 0
\(569\) −46.1838 −1.93612 −0.968062 0.250711i \(-0.919336\pi\)
−0.968062 + 0.250711i \(0.919336\pi\)
\(570\) 0 0
\(571\) − 0.393949i − 0.0164862i −0.999966 0.00824312i \(-0.997376\pi\)
0.999966 0.00824312i \(-0.00262390\pi\)
\(572\) 0 0
\(573\) 5.86030i 0.244818i
\(574\) 0 0
\(575\) − 21.6704i − 0.903717i
\(576\) 0 0
\(577\) −14.0000 −0.582828 −0.291414 0.956597i \(-0.594126\pi\)
−0.291414 + 0.956597i \(0.594126\pi\)
\(578\) 0 0
\(579\) −3.41421 −0.141890
\(580\) 0 0
\(581\) − 7.83938i − 0.325232i
\(582\) 0 0
\(583\) − 20.4567i − 0.847229i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −44.8701 −1.85199 −0.925993 0.377541i \(-0.876770\pi\)
−0.925993 + 0.377541i \(0.876770\pi\)
\(588\) 0 0
\(589\) − 34.6047i − 1.42586i
\(590\) 0 0
\(591\) 6.58579 0.270903
\(592\) 0 0
\(593\) 37.6985 1.54809 0.774046 0.633130i \(-0.218230\pi\)
0.774046 + 0.633130i \(0.218230\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 25.2132 1.03191
\(598\) 0 0
\(599\) 39.1716 1.60051 0.800254 0.599662i \(-0.204698\pi\)
0.800254 + 0.599662i \(0.204698\pi\)
\(600\) 0 0
\(601\) 10.3981i 0.424148i 0.977254 + 0.212074i \(0.0680218\pi\)
−0.977254 + 0.212074i \(0.931978\pi\)
\(602\) 0 0
\(603\) −0.686292 −0.0279480
\(604\) 0 0
\(605\) − 5.80591i − 0.236044i
\(606\) 0 0
\(607\) − 5.46635i − 0.221872i −0.993828 0.110936i \(-0.964615\pi\)
0.993828 0.110936i \(-0.0353849\pi\)
\(608\) 0 0
\(609\) 18.9259i 0.766917i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −6.68629 −0.270057 −0.135028 0.990842i \(-0.543113\pi\)
−0.135028 + 0.990842i \(0.543113\pi\)
\(614\) 0 0
\(615\) 13.6997i 0.552424i
\(616\) 0 0
\(617\) 18.8715i 0.759740i 0.925040 + 0.379870i \(0.124031\pi\)
−0.925040 + 0.379870i \(0.875969\pi\)
\(618\) 0 0
\(619\) 20.7737i 0.834965i 0.908685 + 0.417483i \(0.137088\pi\)
−0.908685 + 0.417483i \(0.862912\pi\)
\(620\) 0 0
\(621\) −23.4558 −0.941251
\(622\) 0 0
\(623\) 43.0781i 1.72589i
\(624\) 0 0
\(625\) 16.5563 0.662254
\(626\) 0 0
\(627\) 21.3137 0.851188
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −27.4142 −1.09134 −0.545671 0.837999i \(-0.683725\pi\)
−0.545671 + 0.837999i \(0.683725\pi\)
\(632\) 0 0
\(633\) 28.0416 1.11455
\(634\) 0 0
\(635\) − 7.83938i − 0.311096i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 1.02800i − 0.0406670i
\(640\) 0 0
\(641\) 39.5139i 1.56071i 0.625339 + 0.780353i \(0.284961\pi\)
−0.625339 + 0.780353i \(0.715039\pi\)
\(642\) 0 0
\(643\) 9.76406i 0.385057i 0.981291 + 0.192528i \(0.0616688\pi\)
−0.981291 + 0.192528i \(0.938331\pi\)
\(644\) 0 0
\(645\) −2.48528 −0.0978579
\(646\) 0 0
\(647\) −45.2548 −1.77915 −0.889576 0.456788i \(-0.849000\pi\)
−0.889576 + 0.456788i \(0.849000\pi\)
\(648\) 0 0
\(649\) 21.9874i 0.863081i
\(650\) 0 0
\(651\) 45.6912i 1.79078i
\(652\) 0 0
\(653\) 27.7933i 1.08764i 0.839203 + 0.543818i \(0.183022\pi\)
−0.839203 + 0.543818i \(0.816978\pi\)
\(654\) 0 0
\(655\) −1.27208 −0.0497042
\(656\) 0 0
\(657\) − 5.80591i − 0.226510i
\(658\) 0 0
\(659\) −50.7696 −1.97770 −0.988850 0.148912i \(-0.952423\pi\)
−0.988850 + 0.148912i \(0.952423\pi\)
\(660\) 0 0
\(661\) 29.4142 1.14408 0.572040 0.820226i \(-0.306152\pi\)
0.572040 + 0.820226i \(0.306152\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −21.3137 −0.826510
\(666\) 0 0
\(667\) −11.2721 −0.436457
\(668\) 0 0
\(669\) − 25.0489i − 0.968445i
\(670\) 0 0
\(671\) −23.5563 −0.909383
\(672\) 0 0
\(673\) 10.9552i 0.422293i 0.977454 + 0.211147i \(0.0677198\pi\)
−0.977454 + 0.211147i \(0.932280\pi\)
\(674\) 0 0
\(675\) − 21.0907i − 0.811782i
\(676\) 0 0
\(677\) 45.5599i 1.75101i 0.483209 + 0.875505i \(0.339471\pi\)
−0.483209 + 0.875505i \(0.660529\pi\)
\(678\) 0 0
\(679\) 9.07107 0.348116
\(680\) 0 0
\(681\) −22.7279 −0.870936
\(682\) 0 0
\(683\) − 40.0710i − 1.53328i −0.642080 0.766638i \(-0.721928\pi\)
0.642080 0.766638i \(-0.278072\pi\)
\(684\) 0 0
\(685\) − 10.7151i − 0.409404i
\(686\) 0 0
\(687\) 18.2919i 0.697879i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 36.3755i − 1.38379i −0.721998 0.691895i \(-0.756776\pi\)
0.721998 0.691895i \(-0.243224\pi\)
\(692\) 0 0
\(693\) −3.41421 −0.129695
\(694\) 0 0
\(695\) −15.0711 −0.571678
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −31.5563 −1.19357
\(700\) 0 0
\(701\) 51.3137 1.93809 0.969046 0.246880i \(-0.0794054\pi\)
0.969046 + 0.246880i \(0.0794054\pi\)
\(702\) 0 0
\(703\) 11.5349i 0.435047i
\(704\) 0 0
\(705\) 10.1421 0.381975
\(706\) 0 0
\(707\) 44.6088i 1.67769i
\(708\) 0 0
\(709\) 41.3073i 1.55133i 0.631146 + 0.775664i \(0.282585\pi\)
−0.631146 + 0.775664i \(0.717415\pi\)
\(710\) 0 0
\(711\) − 5.62020i − 0.210774i
\(712\) 0 0
\(713\) −27.2132 −1.01914
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 20.9050i 0.780712i
\(718\) 0 0
\(719\) − 21.0363i − 0.784522i −0.919854 0.392261i \(-0.871693\pi\)
0.919854 0.392261i \(-0.128307\pi\)
\(720\) 0 0
\(721\) 60.9217i 2.26884i
\(722\) 0 0
\(723\) 14.7279 0.547737
\(724\) 0 0
\(725\) − 10.1355i − 0.376422i
\(726\) 0 0
\(727\) −21.7990 −0.808480 −0.404240 0.914653i \(-0.632464\pi\)
−0.404240 + 0.914653i \(0.632464\pi\)
\(728\) 0 0
\(729\) −22.3137 −0.826434
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −0.727922 −0.0268864 −0.0134432 0.999910i \(-0.504279\pi\)
−0.0134432 + 0.999910i \(0.504279\pi\)
\(734\) 0 0
\(735\) 18.2426 0.672890
\(736\) 0 0
\(737\) 3.06147i 0.112771i
\(738\) 0 0
\(739\) −5.07107 −0.186542 −0.0932711 0.995641i \(-0.529732\pi\)
−0.0932711 + 0.995641i \(0.529732\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 0.393949i − 0.0144526i −0.999974 0.00722629i \(-0.997700\pi\)
0.999974 0.00722629i \(-0.00230022\pi\)
\(744\) 0 0
\(745\) − 13.5140i − 0.495114i
\(746\) 0 0
\(747\) −0.727922 −0.0266333
\(748\) 0 0
\(749\) 7.41421 0.270909
\(750\) 0 0
\(751\) 25.1802i 0.918838i 0.888220 + 0.459419i \(0.151942\pi\)
−0.888220 + 0.459419i \(0.848058\pi\)
\(752\) 0 0
\(753\) − 8.92177i − 0.325127i
\(754\) 0 0
\(755\) − 0.0769232i − 0.00279952i
\(756\) 0 0
\(757\) 33.8995 1.23210 0.616049 0.787708i \(-0.288732\pi\)
0.616049 + 0.787708i \(0.288732\pi\)
\(758\) 0 0
\(759\) − 16.7611i − 0.608391i
\(760\) 0 0
\(761\) 36.9706 1.34018 0.670091 0.742279i \(-0.266255\pi\)
0.670091 + 0.742279i \(0.266255\pi\)
\(762\) 0 0
\(763\) 55.6985 2.01642
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −35.5980 −1.28370 −0.641848 0.766832i \(-0.721832\pi\)
−0.641848 + 0.766832i \(0.721832\pi\)
\(770\) 0 0
\(771\) − 0.448342i − 0.0161466i
\(772\) 0 0
\(773\) 47.0711 1.69303 0.846514 0.532366i \(-0.178697\pi\)
0.846514 + 0.532366i \(0.178697\pi\)
\(774\) 0 0
\(775\) − 24.4692i − 0.878960i
\(776\) 0 0
\(777\) − 15.2304i − 0.546388i
\(778\) 0 0
\(779\) − 60.4733i − 2.16668i
\(780\) 0 0
\(781\) −4.58579 −0.164092
\(782\) 0 0
\(783\) −10.9706 −0.392056
\(784\) 0 0
\(785\) 5.59767i 0.199789i
\(786\) 0 0
\(787\) 42.9468i 1.53089i 0.643502 + 0.765444i \(0.277481\pi\)
−0.643502 + 0.765444i \(0.722519\pi\)
\(788\) 0 0
\(789\) − 29.3784i − 1.04590i
\(790\) 0 0
\(791\) −5.41421 −0.192507
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 15.6569 0.555291
\(796\) 0 0
\(797\) −10.5858 −0.374968 −0.187484 0.982268i \(-0.560033\pi\)
−0.187484 + 0.982268i \(0.560033\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 4.00000 0.141333
\(802\) 0 0
\(803\) −25.8995 −0.913973
\(804\) 0 0
\(805\) 16.7611i 0.590753i
\(806\) 0 0
\(807\) −14.7279 −0.518447
\(808\) 0 0
\(809\) − 2.03347i − 0.0714929i −0.999361 0.0357465i \(-0.988619\pi\)
0.999361 0.0357465i \(-0.0113809\pi\)
\(810\) 0 0
\(811\) 3.93562i 0.138198i 0.997610 + 0.0690992i \(0.0220125\pi\)
−0.997610 + 0.0690992i \(0.977988\pi\)
\(812\) 0 0
\(813\) 20.9050i 0.733171i
\(814\) 0 0
\(815\) 11.4142 0.399822
\(816\) 0 0
\(817\) 10.9706 0.383811
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 45.8995i 1.60190i 0.598729 + 0.800951i \(0.295673\pi\)
−0.598729 + 0.800951i \(0.704327\pi\)
\(822\) 0 0
\(823\) 17.7122i 0.617409i 0.951158 + 0.308705i \(0.0998955\pi\)
−0.951158 + 0.308705i \(0.900105\pi\)
\(824\) 0 0
\(825\) 15.0711 0.524707
\(826\) 0 0
\(827\) − 1.21371i − 0.0422048i −0.999777 0.0211024i \(-0.993282\pi\)
0.999777 0.0211024i \(-0.00671760\pi\)
\(828\) 0 0
\(829\) 13.9411 0.484195 0.242098 0.970252i \(-0.422165\pi\)
0.242098 + 0.970252i \(0.422165\pi\)
\(830\) 0 0
\(831\) −7.07107 −0.245293
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.41421 0.0489409
\(836\) 0 0
\(837\) −26.4853 −0.915465
\(838\) 0 0
\(839\) 0.688444i 0.0237677i 0.999929 + 0.0118839i \(0.00378284\pi\)
−0.999929 + 0.0118839i \(0.996217\pi\)
\(840\) 0 0
\(841\) 23.7279 0.818204
\(842\) 0 0
\(843\) 53.0823i 1.82825i
\(844\) 0 0
\(845\) 9.94977i 0.342282i
\(846\) 0 0
\(847\) − 33.8393i − 1.16273i
\(848\) 0 0
\(849\) −39.8995 −1.36935
\(850\) 0 0
\(851\) 9.07107 0.310952
\(852\) 0 0
\(853\) − 17.2639i − 0.591104i −0.955327 0.295552i \(-0.904496\pi\)
0.955327 0.295552i \(-0.0955036\pi\)
\(854\) 0 0
\(855\) 1.97908i 0.0676829i
\(856\) 0 0
\(857\) − 14.0167i − 0.478802i −0.970921 0.239401i \(-0.923049\pi\)
0.970921 0.239401i \(-0.0769510\pi\)
\(858\) 0 0
\(859\) 6.04163 0.206138 0.103069 0.994674i \(-0.467134\pi\)
0.103069 + 0.994674i \(0.467134\pi\)
\(860\) 0 0
\(861\) 79.8476i 2.72120i
\(862\) 0 0
\(863\) 44.1421 1.50262 0.751308 0.659952i \(-0.229423\pi\)
0.751308 + 0.659952i \(0.229423\pi\)
\(864\) 0 0
\(865\) −18.8701 −0.641601
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −25.0711 −0.850478
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) − 0.842290i − 0.0285072i
\(874\) 0 0
\(875\) −32.1421 −1.08660
\(876\) 0 0
\(877\) − 22.9385i − 0.774577i −0.921959 0.387289i \(-0.873412\pi\)
0.921959 0.387289i \(-0.126588\pi\)
\(878\) 0 0
\(879\) − 28.2960i − 0.954402i
\(880\) 0 0
\(881\) 25.1802i 0.848342i 0.905582 + 0.424171i \(0.139434\pi\)
−0.905582 + 0.424171i \(0.860566\pi\)
\(882\) 0 0
\(883\) 49.2548 1.65756 0.828779 0.559577i \(-0.189036\pi\)
0.828779 + 0.559577i \(0.189036\pi\)
\(884\) 0 0
\(885\) −16.8284 −0.565681
\(886\) 0 0
\(887\) − 25.8142i − 0.866757i −0.901212 0.433379i \(-0.857321\pi\)
0.901212 0.433379i \(-0.142679\pi\)
\(888\) 0 0
\(889\) − 45.6912i − 1.53244i
\(890\) 0 0
\(891\) − 18.6089i − 0.623422i
\(892\) 0 0
\(893\) −44.7696 −1.49816
\(894\) 0 0
\(895\) − 7.46796i − 0.249626i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −12.7279 −0.424500
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −14.4853 −0.482040
\(904\) 0 0
\(905\) −0.928932 −0.0308788
\(906\) 0 0
\(907\) − 35.7415i − 1.18678i −0.804917 0.593388i \(-0.797790\pi\)
0.804917 0.593388i \(-0.202210\pi\)
\(908\) 0 0
\(909\) 4.14214 0.137386
\(910\) 0 0
\(911\) − 44.2149i − 1.46491i −0.680818 0.732453i \(-0.738376\pi\)
0.680818 0.732453i \(-0.261624\pi\)
\(912\) 0 0
\(913\) 3.24718i 0.107466i
\(914\) 0 0
\(915\) − 18.0292i − 0.596029i
\(916\) 0 0
\(917\) −7.41421 −0.244839
\(918\) 0 0
\(919\) −12.2843 −0.405221 −0.202610 0.979259i \(-0.564942\pi\)
−0.202610 + 0.979259i \(0.564942\pi\)
\(920\) 0 0
\(921\) − 34.4190i − 1.13414i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 8.15640i 0.268181i
\(926\) 0 0
\(927\) 5.65685 0.185795
\(928\) 0 0
\(929\) 25.2890i 0.829704i 0.909889 + 0.414852i \(0.136167\pi\)
−0.909889 + 0.414852i \(0.863833\pi\)
\(930\) 0 0
\(931\) −80.5269 −2.63916
\(932\) 0 0
\(933\) 11.0711 0.362450
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 31.5563 1.03090 0.515450 0.856919i \(-0.327625\pi\)
0.515450 + 0.856919i \(0.327625\pi\)
\(938\) 0 0
\(939\) 28.7279 0.937500
\(940\) 0 0
\(941\) 31.3031i 1.02045i 0.860040 + 0.510226i \(0.170438\pi\)
−0.860040 + 0.510226i \(0.829562\pi\)
\(942\) 0 0
\(943\) −47.5563 −1.54865
\(944\) 0 0
\(945\) 16.3128i 0.530656i
\(946\) 0 0
\(947\) − 16.9694i − 0.551431i −0.961239 0.275715i \(-0.911085\pi\)
0.961239 0.275715i \(-0.0889148\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −31.8995 −1.03441
\(952\) 0 0
\(953\) −50.0000 −1.61966 −0.809829 0.586665i \(-0.800440\pi\)
−0.809829 + 0.586665i \(0.800440\pi\)
\(954\) 0 0
\(955\) 2.42742i 0.0785494i
\(956\) 0 0
\(957\) − 7.83938i − 0.253411i
\(958\) 0 0
\(959\) − 62.4524i − 2.01669i
\(960\) 0 0
\(961\) 0.272078 0.00877671
\(962\) 0 0
\(963\) − 0.688444i − 0.0221848i
\(964\) 0 0
\(965\) −1.41421 −0.0455251
\(966\) 0 0
\(967\) −30.5269 −0.981679 −0.490840 0.871250i \(-0.663310\pi\)
−0.490840 + 0.871250i \(0.663310\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 29.2721 0.939386 0.469693 0.882830i \(-0.344365\pi\)
0.469693 + 0.882830i \(0.344365\pi\)
\(972\) 0 0
\(973\) −87.8406 −2.81604
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.38478 0.0762958 0.0381479 0.999272i \(-0.487854\pi\)
0.0381479 + 0.999272i \(0.487854\pi\)
\(978\) 0 0
\(979\) − 17.8435i − 0.570282i
\(980\) 0 0
\(981\) − 5.17186i − 0.165125i
\(982\) 0 0
\(983\) − 31.3031i − 0.998414i −0.866483 0.499207i \(-0.833625\pi\)
0.866483 0.499207i \(-0.166375\pi\)
\(984\) 0 0
\(985\) 2.72792 0.0869188
\(986\) 0 0
\(987\) 59.1127 1.88158
\(988\) 0 0
\(989\) − 8.62727i − 0.274331i
\(990\) 0 0
\(991\) − 8.04762i − 0.255641i −0.991797 0.127820i \(-0.959202\pi\)
0.991797 0.127820i \(-0.0407981\pi\)
\(992\) 0 0
\(993\) − 41.0990i − 1.30424i
\(994\) 0 0
\(995\) 10.4437 0.331086
\(996\) 0 0
\(997\) 41.8644i 1.32586i 0.748682 + 0.662930i \(0.230687\pi\)
−0.748682 + 0.662930i \(0.769313\pi\)
\(998\) 0 0
\(999\) 8.82843 0.279319
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.b.j.577.1 4
17.4 even 4 2312.2.a.s.1.1 4
17.7 odd 16 136.2.n.a.121.1 yes 4
17.12 odd 16 136.2.n.a.9.1 4
17.13 even 4 2312.2.a.s.1.4 4
17.16 even 2 inner 2312.2.b.j.577.4 4
51.29 even 16 1224.2.bq.a.145.1 4
51.41 even 16 1224.2.bq.a.937.1 4
68.7 even 16 272.2.v.e.257.1 4
68.47 odd 4 4624.2.a.bm.1.1 4
68.55 odd 4 4624.2.a.bm.1.4 4
68.63 even 16 272.2.v.e.145.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.n.a.9.1 4 17.12 odd 16
136.2.n.a.121.1 yes 4 17.7 odd 16
272.2.v.e.145.1 4 68.63 even 16
272.2.v.e.257.1 4 68.7 even 16
1224.2.bq.a.145.1 4 51.29 even 16
1224.2.bq.a.937.1 4 51.41 even 16
2312.2.a.s.1.1 4 17.4 even 4
2312.2.a.s.1.4 4 17.13 even 4
2312.2.b.j.577.1 4 1.1 even 1 trivial
2312.2.b.j.577.4 4 17.16 even 2 inner
4624.2.a.bm.1.1 4 68.47 odd 4
4624.2.a.bm.1.4 4 68.55 odd 4