Properties

Label 2312.2.a.v.1.3
Level $2312$
Weight $2$
Character 2312.1
Self dual yes
Analytic conductor $18.461$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,2,Mod(1,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,6,0,3,0,0,0,-6,0,-6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.4614129473\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.3418281.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} - 4x^{3} + 18x^{2} + 12x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.857616\) of defining polynomial
Character \(\chi\) \(=\) 2312.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.857616 q^{3} -0.406879 q^{5} -0.172637 q^{7} -2.26449 q^{9} +4.89805 q^{11} +0.998924 q^{13} +0.348946 q^{15} +1.97828 q^{19} +0.148056 q^{21} -2.31854 q^{23} -4.83445 q^{25} +4.51492 q^{27} -0.914234 q^{29} -4.87240 q^{31} -4.20065 q^{33} +0.0702421 q^{35} +8.21237 q^{37} -0.856693 q^{39} +8.26313 q^{41} -2.42752 q^{43} +0.921374 q^{45} -5.03377 q^{47} -6.97020 q^{49} +13.2813 q^{53} -1.99291 q^{55} -1.69661 q^{57} -9.59776 q^{59} +10.4503 q^{61} +0.390935 q^{63} -0.406441 q^{65} -7.29977 q^{67} +1.98842 q^{69} +4.45171 q^{71} +6.48377 q^{73} +4.14610 q^{75} -0.845584 q^{77} +15.5053 q^{79} +2.92142 q^{81} +13.3575 q^{83} +0.784061 q^{87} +15.3426 q^{89} -0.172451 q^{91} +4.17865 q^{93} -0.804921 q^{95} +7.06549 q^{97} -11.0916 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{5} + 3 q^{7} - 6 q^{11} - 6 q^{13} - 6 q^{15} + 6 q^{19} + 6 q^{21} + 9 q^{23} + 6 q^{25} + 12 q^{27} + 27 q^{29} + 9 q^{31} + 3 q^{33} + 21 q^{35} + 15 q^{37} - 12 q^{39} + 21 q^{41} + 24 q^{45}+ \cdots - 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.857616 −0.495145 −0.247572 0.968869i \(-0.579633\pi\)
−0.247572 + 0.968869i \(0.579633\pi\)
\(4\) 0 0
\(5\) −0.406879 −0.181962 −0.0909808 0.995853i \(-0.529000\pi\)
−0.0909808 + 0.995853i \(0.529000\pi\)
\(6\) 0 0
\(7\) −0.172637 −0.0652505 −0.0326253 0.999468i \(-0.510387\pi\)
−0.0326253 + 0.999468i \(0.510387\pi\)
\(8\) 0 0
\(9\) −2.26449 −0.754832
\(10\) 0 0
\(11\) 4.89805 1.47682 0.738410 0.674353i \(-0.235577\pi\)
0.738410 + 0.674353i \(0.235577\pi\)
\(12\) 0 0
\(13\) 0.998924 0.277052 0.138526 0.990359i \(-0.455764\pi\)
0.138526 + 0.990359i \(0.455764\pi\)
\(14\) 0 0
\(15\) 0.348946 0.0900974
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 1.97828 0.453849 0.226925 0.973912i \(-0.427133\pi\)
0.226925 + 0.973912i \(0.427133\pi\)
\(20\) 0 0
\(21\) 0.148056 0.0323085
\(22\) 0 0
\(23\) −2.31854 −0.483449 −0.241724 0.970345i \(-0.577713\pi\)
−0.241724 + 0.970345i \(0.577713\pi\)
\(24\) 0 0
\(25\) −4.83445 −0.966890
\(26\) 0 0
\(27\) 4.51492 0.868896
\(28\) 0 0
\(29\) −0.914234 −0.169769 −0.0848845 0.996391i \(-0.527052\pi\)
−0.0848845 + 0.996391i \(0.527052\pi\)
\(30\) 0 0
\(31\) −4.87240 −0.875108 −0.437554 0.899192i \(-0.644155\pi\)
−0.437554 + 0.899192i \(0.644155\pi\)
\(32\) 0 0
\(33\) −4.20065 −0.731239
\(34\) 0 0
\(35\) 0.0702421 0.0118731
\(36\) 0 0
\(37\) 8.21237 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(38\) 0 0
\(39\) −0.856693 −0.137181
\(40\) 0 0
\(41\) 8.26313 1.29048 0.645242 0.763978i \(-0.276757\pi\)
0.645242 + 0.763978i \(0.276757\pi\)
\(42\) 0 0
\(43\) −2.42752 −0.370193 −0.185097 0.982720i \(-0.559260\pi\)
−0.185097 + 0.982720i \(0.559260\pi\)
\(44\) 0 0
\(45\) 0.921374 0.137350
\(46\) 0 0
\(47\) −5.03377 −0.734251 −0.367126 0.930171i \(-0.619658\pi\)
−0.367126 + 0.930171i \(0.619658\pi\)
\(48\) 0 0
\(49\) −6.97020 −0.995742
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 13.2813 1.82432 0.912162 0.409830i \(-0.134412\pi\)
0.912162 + 0.409830i \(0.134412\pi\)
\(54\) 0 0
\(55\) −1.99291 −0.268724
\(56\) 0 0
\(57\) −1.69661 −0.224721
\(58\) 0 0
\(59\) −9.59776 −1.24952 −0.624761 0.780816i \(-0.714804\pi\)
−0.624761 + 0.780816i \(0.714804\pi\)
\(60\) 0 0
\(61\) 10.4503 1.33802 0.669010 0.743254i \(-0.266719\pi\)
0.669010 + 0.743254i \(0.266719\pi\)
\(62\) 0 0
\(63\) 0.390935 0.0492531
\(64\) 0 0
\(65\) −0.406441 −0.0504127
\(66\) 0 0
\(67\) −7.29977 −0.891809 −0.445904 0.895081i \(-0.647118\pi\)
−0.445904 + 0.895081i \(0.647118\pi\)
\(68\) 0 0
\(69\) 1.98842 0.239377
\(70\) 0 0
\(71\) 4.45171 0.528321 0.264161 0.964479i \(-0.414905\pi\)
0.264161 + 0.964479i \(0.414905\pi\)
\(72\) 0 0
\(73\) 6.48377 0.758868 0.379434 0.925219i \(-0.376119\pi\)
0.379434 + 0.925219i \(0.376119\pi\)
\(74\) 0 0
\(75\) 4.14610 0.478751
\(76\) 0 0
\(77\) −0.845584 −0.0963632
\(78\) 0 0
\(79\) 15.5053 1.74448 0.872239 0.489080i \(-0.162668\pi\)
0.872239 + 0.489080i \(0.162668\pi\)
\(80\) 0 0
\(81\) 2.92142 0.324602
\(82\) 0 0
\(83\) 13.3575 1.46617 0.733086 0.680136i \(-0.238079\pi\)
0.733086 + 0.680136i \(0.238079\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.784061 0.0840602
\(88\) 0 0
\(89\) 15.3426 1.62631 0.813156 0.582046i \(-0.197748\pi\)
0.813156 + 0.582046i \(0.197748\pi\)
\(90\) 0 0
\(91\) −0.172451 −0.0180778
\(92\) 0 0
\(93\) 4.17865 0.433305
\(94\) 0 0
\(95\) −0.804921 −0.0825832
\(96\) 0 0
\(97\) 7.06549 0.717392 0.358696 0.933454i \(-0.383221\pi\)
0.358696 + 0.933454i \(0.383221\pi\)
\(98\) 0 0
\(99\) −11.0916 −1.11475
\(100\) 0 0
\(101\) −11.1738 −1.11184 −0.555920 0.831236i \(-0.687634\pi\)
−0.555920 + 0.831236i \(0.687634\pi\)
\(102\) 0 0
\(103\) 16.9758 1.67268 0.836339 0.548212i \(-0.184691\pi\)
0.836339 + 0.548212i \(0.184691\pi\)
\(104\) 0 0
\(105\) −0.0602408 −0.00587890
\(106\) 0 0
\(107\) −11.5626 −1.11780 −0.558900 0.829235i \(-0.688777\pi\)
−0.558900 + 0.829235i \(0.688777\pi\)
\(108\) 0 0
\(109\) 7.73185 0.740577 0.370288 0.928917i \(-0.379259\pi\)
0.370288 + 0.928917i \(0.379259\pi\)
\(110\) 0 0
\(111\) −7.04306 −0.668498
\(112\) 0 0
\(113\) 9.70547 0.913013 0.456507 0.889720i \(-0.349100\pi\)
0.456507 + 0.889720i \(0.349100\pi\)
\(114\) 0 0
\(115\) 0.943364 0.0879692
\(116\) 0 0
\(117\) −2.26206 −0.209127
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 12.9909 1.18099
\(122\) 0 0
\(123\) −7.08659 −0.638976
\(124\) 0 0
\(125\) 4.00143 0.357899
\(126\) 0 0
\(127\) −8.04107 −0.713530 −0.356765 0.934194i \(-0.616120\pi\)
−0.356765 + 0.934194i \(0.616120\pi\)
\(128\) 0 0
\(129\) 2.08188 0.183299
\(130\) 0 0
\(131\) 0.951344 0.0831193 0.0415597 0.999136i \(-0.486767\pi\)
0.0415597 + 0.999136i \(0.486767\pi\)
\(132\) 0 0
\(133\) −0.341524 −0.0296139
\(134\) 0 0
\(135\) −1.83702 −0.158106
\(136\) 0 0
\(137\) 5.84194 0.499110 0.249555 0.968361i \(-0.419716\pi\)
0.249555 + 0.968361i \(0.419716\pi\)
\(138\) 0 0
\(139\) −13.2208 −1.12137 −0.560686 0.828028i \(-0.689463\pi\)
−0.560686 + 0.828028i \(0.689463\pi\)
\(140\) 0 0
\(141\) 4.31704 0.363561
\(142\) 0 0
\(143\) 4.89278 0.409155
\(144\) 0 0
\(145\) 0.371982 0.0308914
\(146\) 0 0
\(147\) 5.97775 0.493037
\(148\) 0 0
\(149\) −1.24250 −0.101789 −0.0508947 0.998704i \(-0.516207\pi\)
−0.0508947 + 0.998704i \(0.516207\pi\)
\(150\) 0 0
\(151\) 16.9951 1.38304 0.691521 0.722356i \(-0.256941\pi\)
0.691521 + 0.722356i \(0.256941\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.98247 0.159236
\(156\) 0 0
\(157\) 2.81037 0.224292 0.112146 0.993692i \(-0.464228\pi\)
0.112146 + 0.993692i \(0.464228\pi\)
\(158\) 0 0
\(159\) −11.3902 −0.903304
\(160\) 0 0
\(161\) 0.400265 0.0315453
\(162\) 0 0
\(163\) 12.3002 0.963424 0.481712 0.876329i \(-0.340015\pi\)
0.481712 + 0.876329i \(0.340015\pi\)
\(164\) 0 0
\(165\) 1.70915 0.133058
\(166\) 0 0
\(167\) −22.0092 −1.70312 −0.851561 0.524256i \(-0.824344\pi\)
−0.851561 + 0.524256i \(0.824344\pi\)
\(168\) 0 0
\(169\) −12.0022 −0.923242
\(170\) 0 0
\(171\) −4.47981 −0.342580
\(172\) 0 0
\(173\) 18.9695 1.44222 0.721110 0.692820i \(-0.243632\pi\)
0.721110 + 0.692820i \(0.243632\pi\)
\(174\) 0 0
\(175\) 0.834603 0.0630901
\(176\) 0 0
\(177\) 8.23120 0.618695
\(178\) 0 0
\(179\) 14.9918 1.12054 0.560269 0.828311i \(-0.310698\pi\)
0.560269 + 0.828311i \(0.310698\pi\)
\(180\) 0 0
\(181\) −16.1876 −1.20322 −0.601608 0.798792i \(-0.705473\pi\)
−0.601608 + 0.798792i \(0.705473\pi\)
\(182\) 0 0
\(183\) −8.96231 −0.662513
\(184\) 0 0
\(185\) −3.34144 −0.245667
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.779440 −0.0566959
\(190\) 0 0
\(191\) −10.8760 −0.786957 −0.393479 0.919334i \(-0.628728\pi\)
−0.393479 + 0.919334i \(0.628728\pi\)
\(192\) 0 0
\(193\) 12.3348 0.887877 0.443938 0.896057i \(-0.353581\pi\)
0.443938 + 0.896057i \(0.353581\pi\)
\(194\) 0 0
\(195\) 0.348570 0.0249616
\(196\) 0 0
\(197\) 2.05856 0.146666 0.0733331 0.997308i \(-0.476636\pi\)
0.0733331 + 0.997308i \(0.476636\pi\)
\(198\) 0 0
\(199\) 19.5758 1.38769 0.693846 0.720124i \(-0.255915\pi\)
0.693846 + 0.720124i \(0.255915\pi\)
\(200\) 0 0
\(201\) 6.26040 0.441575
\(202\) 0 0
\(203\) 0.157830 0.0110775
\(204\) 0 0
\(205\) −3.36209 −0.234818
\(206\) 0 0
\(207\) 5.25032 0.364923
\(208\) 0 0
\(209\) 9.68974 0.670254
\(210\) 0 0
\(211\) −7.19032 −0.495002 −0.247501 0.968888i \(-0.579609\pi\)
−0.247501 + 0.968888i \(0.579609\pi\)
\(212\) 0 0
\(213\) −3.81786 −0.261596
\(214\) 0 0
\(215\) 0.987705 0.0673609
\(216\) 0 0
\(217\) 0.841154 0.0571013
\(218\) 0 0
\(219\) −5.56058 −0.375749
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.728072 0.0487553 0.0243777 0.999703i \(-0.492240\pi\)
0.0243777 + 0.999703i \(0.492240\pi\)
\(224\) 0 0
\(225\) 10.9476 0.729839
\(226\) 0 0
\(227\) −2.29363 −0.152234 −0.0761169 0.997099i \(-0.524252\pi\)
−0.0761169 + 0.997099i \(0.524252\pi\)
\(228\) 0 0
\(229\) −15.0576 −0.995033 −0.497517 0.867454i \(-0.665755\pi\)
−0.497517 + 0.867454i \(0.665755\pi\)
\(230\) 0 0
\(231\) 0.725186 0.0477137
\(232\) 0 0
\(233\) −9.42684 −0.617573 −0.308786 0.951131i \(-0.599923\pi\)
−0.308786 + 0.951131i \(0.599923\pi\)
\(234\) 0 0
\(235\) 2.04813 0.133606
\(236\) 0 0
\(237\) −13.2976 −0.863769
\(238\) 0 0
\(239\) −5.86612 −0.379448 −0.189724 0.981837i \(-0.560759\pi\)
−0.189724 + 0.981837i \(0.560759\pi\)
\(240\) 0 0
\(241\) 10.1691 0.655051 0.327526 0.944842i \(-0.393785\pi\)
0.327526 + 0.944842i \(0.393785\pi\)
\(242\) 0 0
\(243\) −16.0502 −1.02962
\(244\) 0 0
\(245\) 2.83602 0.181187
\(246\) 0 0
\(247\) 1.97615 0.125740
\(248\) 0 0
\(249\) −11.4556 −0.725967
\(250\) 0 0
\(251\) 9.39157 0.592791 0.296395 0.955065i \(-0.404215\pi\)
0.296395 + 0.955065i \(0.404215\pi\)
\(252\) 0 0
\(253\) −11.3563 −0.713967
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.375779 0.0234405 0.0117202 0.999931i \(-0.496269\pi\)
0.0117202 + 0.999931i \(0.496269\pi\)
\(258\) 0 0
\(259\) −1.41776 −0.0880951
\(260\) 0 0
\(261\) 2.07028 0.128147
\(262\) 0 0
\(263\) 22.7314 1.40168 0.700839 0.713319i \(-0.252809\pi\)
0.700839 + 0.713319i \(0.252809\pi\)
\(264\) 0 0
\(265\) −5.40387 −0.331957
\(266\) 0 0
\(267\) −13.1581 −0.805260
\(268\) 0 0
\(269\) 1.26787 0.0773037 0.0386518 0.999253i \(-0.487694\pi\)
0.0386518 + 0.999253i \(0.487694\pi\)
\(270\) 0 0
\(271\) 31.2435 1.89790 0.948952 0.315419i \(-0.102145\pi\)
0.948952 + 0.315419i \(0.102145\pi\)
\(272\) 0 0
\(273\) 0.147897 0.00895111
\(274\) 0 0
\(275\) −23.6794 −1.42792
\(276\) 0 0
\(277\) 19.5383 1.17394 0.586972 0.809608i \(-0.300320\pi\)
0.586972 + 0.809608i \(0.300320\pi\)
\(278\) 0 0
\(279\) 11.0335 0.660559
\(280\) 0 0
\(281\) −17.9598 −1.07139 −0.535696 0.844411i \(-0.679951\pi\)
−0.535696 + 0.844411i \(0.679951\pi\)
\(282\) 0 0
\(283\) 7.58733 0.451020 0.225510 0.974241i \(-0.427595\pi\)
0.225510 + 0.974241i \(0.427595\pi\)
\(284\) 0 0
\(285\) 0.690314 0.0408906
\(286\) 0 0
\(287\) −1.42652 −0.0842047
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −6.05948 −0.355213
\(292\) 0 0
\(293\) 13.4275 0.784443 0.392221 0.919871i \(-0.371707\pi\)
0.392221 + 0.919871i \(0.371707\pi\)
\(294\) 0 0
\(295\) 3.90512 0.227365
\(296\) 0 0
\(297\) 22.1143 1.28320
\(298\) 0 0
\(299\) −2.31604 −0.133940
\(300\) 0 0
\(301\) 0.419079 0.0241553
\(302\) 0 0
\(303\) 9.58287 0.550521
\(304\) 0 0
\(305\) −4.25199 −0.243468
\(306\) 0 0
\(307\) 19.7360 1.12639 0.563195 0.826324i \(-0.309572\pi\)
0.563195 + 0.826324i \(0.309572\pi\)
\(308\) 0 0
\(309\) −14.5587 −0.828218
\(310\) 0 0
\(311\) −1.08628 −0.0615971 −0.0307985 0.999526i \(-0.509805\pi\)
−0.0307985 + 0.999526i \(0.509805\pi\)
\(312\) 0 0
\(313\) −31.6016 −1.78623 −0.893115 0.449828i \(-0.851485\pi\)
−0.893115 + 0.449828i \(0.851485\pi\)
\(314\) 0 0
\(315\) −0.159063 −0.00896218
\(316\) 0 0
\(317\) 1.55407 0.0872852 0.0436426 0.999047i \(-0.486104\pi\)
0.0436426 + 0.999047i \(0.486104\pi\)
\(318\) 0 0
\(319\) −4.47797 −0.250718
\(320\) 0 0
\(321\) 9.91629 0.553473
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −4.82925 −0.267878
\(326\) 0 0
\(327\) −6.63096 −0.366693
\(328\) 0 0
\(329\) 0.869013 0.0479103
\(330\) 0 0
\(331\) −18.8145 −1.03414 −0.517068 0.855944i \(-0.672977\pi\)
−0.517068 + 0.855944i \(0.672977\pi\)
\(332\) 0 0
\(333\) −18.5969 −1.01910
\(334\) 0 0
\(335\) 2.97012 0.162275
\(336\) 0 0
\(337\) 30.0821 1.63868 0.819338 0.573311i \(-0.194341\pi\)
0.819338 + 0.573311i \(0.194341\pi\)
\(338\) 0 0
\(339\) −8.32356 −0.452074
\(340\) 0 0
\(341\) −23.8653 −1.29238
\(342\) 0 0
\(343\) 2.41177 0.130223
\(344\) 0 0
\(345\) −0.809044 −0.0435575
\(346\) 0 0
\(347\) −22.3365 −1.19909 −0.599543 0.800342i \(-0.704651\pi\)
−0.599543 + 0.800342i \(0.704651\pi\)
\(348\) 0 0
\(349\) 24.6602 1.32003 0.660015 0.751252i \(-0.270550\pi\)
0.660015 + 0.751252i \(0.270550\pi\)
\(350\) 0 0
\(351\) 4.51006 0.240729
\(352\) 0 0
\(353\) 17.6349 0.938611 0.469305 0.883036i \(-0.344504\pi\)
0.469305 + 0.883036i \(0.344504\pi\)
\(354\) 0 0
\(355\) −1.81131 −0.0961342
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −32.9699 −1.74008 −0.870042 0.492977i \(-0.835909\pi\)
−0.870042 + 0.492977i \(0.835909\pi\)
\(360\) 0 0
\(361\) −15.0864 −0.794021
\(362\) 0 0
\(363\) −11.1412 −0.584763
\(364\) 0 0
\(365\) −2.63811 −0.138085
\(366\) 0 0
\(367\) −18.8844 −0.985756 −0.492878 0.870098i \(-0.664055\pi\)
−0.492878 + 0.870098i \(0.664055\pi\)
\(368\) 0 0
\(369\) −18.7118 −0.974098
\(370\) 0 0
\(371\) −2.29283 −0.119038
\(372\) 0 0
\(373\) 32.8087 1.69877 0.849385 0.527774i \(-0.176973\pi\)
0.849385 + 0.527774i \(0.176973\pi\)
\(374\) 0 0
\(375\) −3.43169 −0.177212
\(376\) 0 0
\(377\) −0.913249 −0.0470347
\(378\) 0 0
\(379\) −24.2542 −1.24585 −0.622927 0.782280i \(-0.714056\pi\)
−0.622927 + 0.782280i \(0.714056\pi\)
\(380\) 0 0
\(381\) 6.89615 0.353301
\(382\) 0 0
\(383\) −31.0607 −1.58713 −0.793564 0.608486i \(-0.791777\pi\)
−0.793564 + 0.608486i \(0.791777\pi\)
\(384\) 0 0
\(385\) 0.344050 0.0175344
\(386\) 0 0
\(387\) 5.49710 0.279433
\(388\) 0 0
\(389\) −19.2057 −0.973766 −0.486883 0.873467i \(-0.661866\pi\)
−0.486883 + 0.873467i \(0.661866\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −0.815888 −0.0411561
\(394\) 0 0
\(395\) −6.30876 −0.317428
\(396\) 0 0
\(397\) −7.82243 −0.392597 −0.196298 0.980544i \(-0.562892\pi\)
−0.196298 + 0.980544i \(0.562892\pi\)
\(398\) 0 0
\(399\) 0.292897 0.0146632
\(400\) 0 0
\(401\) 1.46302 0.0730595 0.0365298 0.999333i \(-0.488370\pi\)
0.0365298 + 0.999333i \(0.488370\pi\)
\(402\) 0 0
\(403\) −4.86715 −0.242450
\(404\) 0 0
\(405\) −1.18866 −0.0590651
\(406\) 0 0
\(407\) 40.2247 1.99386
\(408\) 0 0
\(409\) −5.87737 −0.290617 −0.145309 0.989386i \(-0.546418\pi\)
−0.145309 + 0.989386i \(0.546418\pi\)
\(410\) 0 0
\(411\) −5.01014 −0.247132
\(412\) 0 0
\(413\) 1.65693 0.0815320
\(414\) 0 0
\(415\) −5.43486 −0.266787
\(416\) 0 0
\(417\) 11.3384 0.555242
\(418\) 0 0
\(419\) −36.8229 −1.79892 −0.899458 0.437007i \(-0.856038\pi\)
−0.899458 + 0.437007i \(0.856038\pi\)
\(420\) 0 0
\(421\) −26.7509 −1.30376 −0.651879 0.758323i \(-0.726019\pi\)
−0.651879 + 0.758323i \(0.726019\pi\)
\(422\) 0 0
\(423\) 11.3989 0.554236
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.80410 −0.0873064
\(428\) 0 0
\(429\) −4.19613 −0.202591
\(430\) 0 0
\(431\) 8.57254 0.412925 0.206462 0.978455i \(-0.433805\pi\)
0.206462 + 0.978455i \(0.433805\pi\)
\(432\) 0 0
\(433\) 7.49865 0.360362 0.180181 0.983633i \(-0.442332\pi\)
0.180181 + 0.983633i \(0.442332\pi\)
\(434\) 0 0
\(435\) −0.319018 −0.0152957
\(436\) 0 0
\(437\) −4.58673 −0.219413
\(438\) 0 0
\(439\) 21.8451 1.04261 0.521305 0.853370i \(-0.325445\pi\)
0.521305 + 0.853370i \(0.325445\pi\)
\(440\) 0 0
\(441\) 15.7840 0.751618
\(442\) 0 0
\(443\) −21.9471 −1.04274 −0.521368 0.853332i \(-0.674578\pi\)
−0.521368 + 0.853332i \(0.674578\pi\)
\(444\) 0 0
\(445\) −6.24257 −0.295926
\(446\) 0 0
\(447\) 1.06559 0.0504005
\(448\) 0 0
\(449\) −10.9285 −0.515746 −0.257873 0.966179i \(-0.583022\pi\)
−0.257873 + 0.966179i \(0.583022\pi\)
\(450\) 0 0
\(451\) 40.4732 1.90581
\(452\) 0 0
\(453\) −14.5753 −0.684806
\(454\) 0 0
\(455\) 0.0701665 0.00328946
\(456\) 0 0
\(457\) −9.75317 −0.456234 −0.228117 0.973634i \(-0.573257\pi\)
−0.228117 + 0.973634i \(0.573257\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −17.7974 −0.828910 −0.414455 0.910070i \(-0.636028\pi\)
−0.414455 + 0.910070i \(0.636028\pi\)
\(462\) 0 0
\(463\) −24.9054 −1.15745 −0.578725 0.815523i \(-0.696450\pi\)
−0.578725 + 0.815523i \(0.696450\pi\)
\(464\) 0 0
\(465\) −1.70020 −0.0788450
\(466\) 0 0
\(467\) 8.22223 0.380479 0.190240 0.981738i \(-0.439074\pi\)
0.190240 + 0.981738i \(0.439074\pi\)
\(468\) 0 0
\(469\) 1.26021 0.0581910
\(470\) 0 0
\(471\) −2.41022 −0.111057
\(472\) 0 0
\(473\) −11.8901 −0.546708
\(474\) 0 0
\(475\) −9.56392 −0.438823
\(476\) 0 0
\(477\) −30.0754 −1.37706
\(478\) 0 0
\(479\) 5.02177 0.229450 0.114725 0.993397i \(-0.463401\pi\)
0.114725 + 0.993397i \(0.463401\pi\)
\(480\) 0 0
\(481\) 8.20353 0.374049
\(482\) 0 0
\(483\) −0.343274 −0.0156195
\(484\) 0 0
\(485\) −2.87480 −0.130538
\(486\) 0 0
\(487\) −19.7071 −0.893012 −0.446506 0.894781i \(-0.647332\pi\)
−0.446506 + 0.894781i \(0.647332\pi\)
\(488\) 0 0
\(489\) −10.5488 −0.477035
\(490\) 0 0
\(491\) −23.1304 −1.04386 −0.521930 0.852988i \(-0.674788\pi\)
−0.521930 + 0.852988i \(0.674788\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 4.51294 0.202842
\(496\) 0 0
\(497\) −0.768529 −0.0344732
\(498\) 0 0
\(499\) 0.923022 0.0413201 0.0206601 0.999787i \(-0.493423\pi\)
0.0206601 + 0.999787i \(0.493423\pi\)
\(500\) 0 0
\(501\) 18.8754 0.843292
\(502\) 0 0
\(503\) −33.5530 −1.49605 −0.748026 0.663669i \(-0.768998\pi\)
−0.748026 + 0.663669i \(0.768998\pi\)
\(504\) 0 0
\(505\) 4.54640 0.202312
\(506\) 0 0
\(507\) 10.2932 0.457139
\(508\) 0 0
\(509\) −2.34164 −0.103791 −0.0518957 0.998653i \(-0.516526\pi\)
−0.0518957 + 0.998653i \(0.516526\pi\)
\(510\) 0 0
\(511\) −1.11934 −0.0495165
\(512\) 0 0
\(513\) 8.93178 0.394348
\(514\) 0 0
\(515\) −6.90710 −0.304363
\(516\) 0 0
\(517\) −24.6557 −1.08436
\(518\) 0 0
\(519\) −16.2685 −0.714108
\(520\) 0 0
\(521\) −9.77606 −0.428297 −0.214148 0.976801i \(-0.568698\pi\)
−0.214148 + 0.976801i \(0.568698\pi\)
\(522\) 0 0
\(523\) 10.1328 0.443076 0.221538 0.975152i \(-0.428892\pi\)
0.221538 + 0.975152i \(0.428892\pi\)
\(524\) 0 0
\(525\) −0.715769 −0.0312387
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −17.6244 −0.766277
\(530\) 0 0
\(531\) 21.7341 0.943179
\(532\) 0 0
\(533\) 8.25423 0.357530
\(534\) 0 0
\(535\) 4.70458 0.203397
\(536\) 0 0
\(537\) −12.8572 −0.554828
\(538\) 0 0
\(539\) −34.1404 −1.47053
\(540\) 0 0
\(541\) 39.6652 1.70534 0.852670 0.522450i \(-0.174982\pi\)
0.852670 + 0.522450i \(0.174982\pi\)
\(542\) 0 0
\(543\) 13.8828 0.595766
\(544\) 0 0
\(545\) −3.14592 −0.134757
\(546\) 0 0
\(547\) −15.5780 −0.666068 −0.333034 0.942915i \(-0.608072\pi\)
−0.333034 + 0.942915i \(0.608072\pi\)
\(548\) 0 0
\(549\) −23.6646 −1.00998
\(550\) 0 0
\(551\) −1.80861 −0.0770495
\(552\) 0 0
\(553\) −2.67677 −0.113828
\(554\) 0 0
\(555\) 2.86567 0.121641
\(556\) 0 0
\(557\) 9.02229 0.382287 0.191143 0.981562i \(-0.438780\pi\)
0.191143 + 0.981562i \(0.438780\pi\)
\(558\) 0 0
\(559\) −2.42490 −0.102563
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −23.7152 −0.999479 −0.499739 0.866176i \(-0.666571\pi\)
−0.499739 + 0.866176i \(0.666571\pi\)
\(564\) 0 0
\(565\) −3.94895 −0.166133
\(566\) 0 0
\(567\) −0.504344 −0.0211805
\(568\) 0 0
\(569\) 2.33523 0.0978980 0.0489490 0.998801i \(-0.484413\pi\)
0.0489490 + 0.998801i \(0.484413\pi\)
\(570\) 0 0
\(571\) 8.13480 0.340431 0.170215 0.985407i \(-0.445554\pi\)
0.170215 + 0.985407i \(0.445554\pi\)
\(572\) 0 0
\(573\) 9.32740 0.389658
\(574\) 0 0
\(575\) 11.2089 0.467442
\(576\) 0 0
\(577\) 17.0172 0.708435 0.354218 0.935163i \(-0.384747\pi\)
0.354218 + 0.935163i \(0.384747\pi\)
\(578\) 0 0
\(579\) −10.5785 −0.439628
\(580\) 0 0
\(581\) −2.30599 −0.0956684
\(582\) 0 0
\(583\) 65.0524 2.69420
\(584\) 0 0
\(585\) 0.920383 0.0380531
\(586\) 0 0
\(587\) 21.1414 0.872600 0.436300 0.899801i \(-0.356289\pi\)
0.436300 + 0.899801i \(0.356289\pi\)
\(588\) 0 0
\(589\) −9.63899 −0.397168
\(590\) 0 0
\(591\) −1.76545 −0.0726210
\(592\) 0 0
\(593\) 10.8412 0.445193 0.222597 0.974911i \(-0.428547\pi\)
0.222597 + 0.974911i \(0.428547\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −16.7885 −0.687108
\(598\) 0 0
\(599\) 19.7689 0.807737 0.403868 0.914817i \(-0.367665\pi\)
0.403868 + 0.914817i \(0.367665\pi\)
\(600\) 0 0
\(601\) 21.6236 0.882044 0.441022 0.897496i \(-0.354616\pi\)
0.441022 + 0.897496i \(0.354616\pi\)
\(602\) 0 0
\(603\) 16.5303 0.673165
\(604\) 0 0
\(605\) −5.28574 −0.214896
\(606\) 0 0
\(607\) 33.2656 1.35021 0.675105 0.737722i \(-0.264098\pi\)
0.675105 + 0.737722i \(0.264098\pi\)
\(608\) 0 0
\(609\) −0.135358 −0.00548497
\(610\) 0 0
\(611\) −5.02835 −0.203425
\(612\) 0 0
\(613\) 46.9354 1.89570 0.947852 0.318712i \(-0.103250\pi\)
0.947852 + 0.318712i \(0.103250\pi\)
\(614\) 0 0
\(615\) 2.88338 0.116269
\(616\) 0 0
\(617\) −17.4750 −0.703519 −0.351759 0.936090i \(-0.614416\pi\)
−0.351759 + 0.936090i \(0.614416\pi\)
\(618\) 0 0
\(619\) −38.2847 −1.53879 −0.769397 0.638771i \(-0.779443\pi\)
−0.769397 + 0.638771i \(0.779443\pi\)
\(620\) 0 0
\(621\) −10.4680 −0.420067
\(622\) 0 0
\(623\) −2.64869 −0.106118
\(624\) 0 0
\(625\) 22.5442 0.901766
\(626\) 0 0
\(627\) −8.31008 −0.331873
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 15.7675 0.627692 0.313846 0.949474i \(-0.398382\pi\)
0.313846 + 0.949474i \(0.398382\pi\)
\(632\) 0 0
\(633\) 6.16653 0.245098
\(634\) 0 0
\(635\) 3.27174 0.129835
\(636\) 0 0
\(637\) −6.96269 −0.275872
\(638\) 0 0
\(639\) −10.0809 −0.398794
\(640\) 0 0
\(641\) 6.57685 0.259770 0.129885 0.991529i \(-0.458539\pi\)
0.129885 + 0.991529i \(0.458539\pi\)
\(642\) 0 0
\(643\) 23.6311 0.931918 0.465959 0.884806i \(-0.345709\pi\)
0.465959 + 0.884806i \(0.345709\pi\)
\(644\) 0 0
\(645\) −0.847072 −0.0333534
\(646\) 0 0
\(647\) −12.0348 −0.473139 −0.236569 0.971615i \(-0.576023\pi\)
−0.236569 + 0.971615i \(0.576023\pi\)
\(648\) 0 0
\(649\) −47.0104 −1.84532
\(650\) 0 0
\(651\) −0.721387 −0.0282734
\(652\) 0 0
\(653\) 11.9823 0.468902 0.234451 0.972128i \(-0.424671\pi\)
0.234451 + 0.972128i \(0.424671\pi\)
\(654\) 0 0
\(655\) −0.387081 −0.0151245
\(656\) 0 0
\(657\) −14.6825 −0.572817
\(658\) 0 0
\(659\) 30.4441 1.18593 0.592967 0.805227i \(-0.297957\pi\)
0.592967 + 0.805227i \(0.297957\pi\)
\(660\) 0 0
\(661\) 14.5940 0.567639 0.283819 0.958878i \(-0.408398\pi\)
0.283819 + 0.958878i \(0.408398\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.138959 0.00538860
\(666\) 0 0
\(667\) 2.11969 0.0820746
\(668\) 0 0
\(669\) −0.624406 −0.0241409
\(670\) 0 0
\(671\) 51.1860 1.97601
\(672\) 0 0
\(673\) −25.7516 −0.992653 −0.496326 0.868136i \(-0.665318\pi\)
−0.496326 + 0.868136i \(0.665318\pi\)
\(674\) 0 0
\(675\) −21.8271 −0.840127
\(676\) 0 0
\(677\) −31.5471 −1.21245 −0.606226 0.795292i \(-0.707317\pi\)
−0.606226 + 0.795292i \(0.707317\pi\)
\(678\) 0 0
\(679\) −1.21976 −0.0468102
\(680\) 0 0
\(681\) 1.96706 0.0753778
\(682\) 0 0
\(683\) −25.5427 −0.977365 −0.488683 0.872462i \(-0.662522\pi\)
−0.488683 + 0.872462i \(0.662522\pi\)
\(684\) 0 0
\(685\) −2.37696 −0.0908190
\(686\) 0 0
\(687\) 12.9136 0.492686
\(688\) 0 0
\(689\) 13.2670 0.505432
\(690\) 0 0
\(691\) −16.6920 −0.634995 −0.317497 0.948259i \(-0.602842\pi\)
−0.317497 + 0.948259i \(0.602842\pi\)
\(692\) 0 0
\(693\) 1.91482 0.0727380
\(694\) 0 0
\(695\) 5.37925 0.204047
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 8.08461 0.305788
\(700\) 0 0
\(701\) −25.3488 −0.957411 −0.478706 0.877975i \(-0.658894\pi\)
−0.478706 + 0.877975i \(0.658894\pi\)
\(702\) 0 0
\(703\) 16.2464 0.612745
\(704\) 0 0
\(705\) −1.75651 −0.0661541
\(706\) 0 0
\(707\) 1.92901 0.0725481
\(708\) 0 0
\(709\) −12.0083 −0.450983 −0.225491 0.974245i \(-0.572399\pi\)
−0.225491 + 0.974245i \(0.572399\pi\)
\(710\) 0 0
\(711\) −35.1116 −1.31679
\(712\) 0 0
\(713\) 11.2968 0.423070
\(714\) 0 0
\(715\) −1.99077 −0.0744505
\(716\) 0 0
\(717\) 5.03088 0.187882
\(718\) 0 0
\(719\) −1.66572 −0.0621209 −0.0310604 0.999518i \(-0.509888\pi\)
−0.0310604 + 0.999518i \(0.509888\pi\)
\(720\) 0 0
\(721\) −2.93065 −0.109143
\(722\) 0 0
\(723\) −8.72121 −0.324345
\(724\) 0 0
\(725\) 4.41982 0.164148
\(726\) 0 0
\(727\) −44.4416 −1.64825 −0.824123 0.566411i \(-0.808332\pi\)
−0.824123 + 0.566411i \(0.808332\pi\)
\(728\) 0 0
\(729\) 5.00065 0.185209
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −22.6176 −0.835398 −0.417699 0.908585i \(-0.637163\pi\)
−0.417699 + 0.908585i \(0.637163\pi\)
\(734\) 0 0
\(735\) −2.43222 −0.0897138
\(736\) 0 0
\(737\) −35.7547 −1.31704
\(738\) 0 0
\(739\) −32.5150 −1.19609 −0.598043 0.801464i \(-0.704055\pi\)
−0.598043 + 0.801464i \(0.704055\pi\)
\(740\) 0 0
\(741\) −1.69478 −0.0622594
\(742\) 0 0
\(743\) 19.2272 0.705379 0.352690 0.935740i \(-0.385267\pi\)
0.352690 + 0.935740i \(0.385267\pi\)
\(744\) 0 0
\(745\) 0.505546 0.0185218
\(746\) 0 0
\(747\) −30.2479 −1.10671
\(748\) 0 0
\(749\) 1.99613 0.0729371
\(750\) 0 0
\(751\) 50.3608 1.83769 0.918846 0.394617i \(-0.129123\pi\)
0.918846 + 0.394617i \(0.129123\pi\)
\(752\) 0 0
\(753\) −8.05437 −0.293517
\(754\) 0 0
\(755\) −6.91495 −0.251661
\(756\) 0 0
\(757\) 3.99667 0.145262 0.0726308 0.997359i \(-0.476861\pi\)
0.0726308 + 0.997359i \(0.476861\pi\)
\(758\) 0 0
\(759\) 9.73937 0.353517
\(760\) 0 0
\(761\) −31.2422 −1.13253 −0.566265 0.824223i \(-0.691612\pi\)
−0.566265 + 0.824223i \(0.691612\pi\)
\(762\) 0 0
\(763\) −1.33480 −0.0483230
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.58743 −0.346182
\(768\) 0 0
\(769\) −27.7956 −1.00233 −0.501167 0.865351i \(-0.667096\pi\)
−0.501167 + 0.865351i \(0.667096\pi\)
\(770\) 0 0
\(771\) −0.322274 −0.0116064
\(772\) 0 0
\(773\) 6.48801 0.233358 0.116679 0.993170i \(-0.462775\pi\)
0.116679 + 0.993170i \(0.462775\pi\)
\(774\) 0 0
\(775\) 23.5554 0.846134
\(776\) 0 0
\(777\) 1.21589 0.0436198
\(778\) 0 0
\(779\) 16.3468 0.585685
\(780\) 0 0
\(781\) 21.8047 0.780235
\(782\) 0 0
\(783\) −4.12769 −0.147511
\(784\) 0 0
\(785\) −1.14348 −0.0408126
\(786\) 0 0
\(787\) 11.0559 0.394099 0.197050 0.980394i \(-0.436864\pi\)
0.197050 + 0.980394i \(0.436864\pi\)
\(788\) 0 0
\(789\) −19.4948 −0.694034
\(790\) 0 0
\(791\) −1.67552 −0.0595746
\(792\) 0 0
\(793\) 10.4390 0.370700
\(794\) 0 0
\(795\) 4.63444 0.164367
\(796\) 0 0
\(797\) 40.5734 1.43718 0.718591 0.695432i \(-0.244787\pi\)
0.718591 + 0.695432i \(0.244787\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −34.7432 −1.22759
\(802\) 0 0
\(803\) 31.7579 1.12071
\(804\) 0 0
\(805\) −0.162859 −0.00574003
\(806\) 0 0
\(807\) −1.08735 −0.0382765
\(808\) 0 0
\(809\) 23.8426 0.838261 0.419131 0.907926i \(-0.362335\pi\)
0.419131 + 0.907926i \(0.362335\pi\)
\(810\) 0 0
\(811\) 20.3117 0.713239 0.356619 0.934250i \(-0.383929\pi\)
0.356619 + 0.934250i \(0.383929\pi\)
\(812\) 0 0
\(813\) −26.7949 −0.939738
\(814\) 0 0
\(815\) −5.00468 −0.175306
\(816\) 0 0
\(817\) −4.80232 −0.168012
\(818\) 0 0
\(819\) 0.390514 0.0136457
\(820\) 0 0
\(821\) −29.0649 −1.01437 −0.507186 0.861837i \(-0.669314\pi\)
−0.507186 + 0.861837i \(0.669314\pi\)
\(822\) 0 0
\(823\) 26.5052 0.923914 0.461957 0.886902i \(-0.347147\pi\)
0.461957 + 0.886902i \(0.347147\pi\)
\(824\) 0 0
\(825\) 20.3078 0.707028
\(826\) 0 0
\(827\) −32.9234 −1.14486 −0.572429 0.819954i \(-0.693999\pi\)
−0.572429 + 0.819954i \(0.693999\pi\)
\(828\) 0 0
\(829\) 39.3841 1.36787 0.683934 0.729544i \(-0.260268\pi\)
0.683934 + 0.729544i \(0.260268\pi\)
\(830\) 0 0
\(831\) −16.7564 −0.581272
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.95506 0.309903
\(836\) 0 0
\(837\) −21.9985 −0.760378
\(838\) 0 0
\(839\) 14.1181 0.487412 0.243706 0.969849i \(-0.421637\pi\)
0.243706 + 0.969849i \(0.421637\pi\)
\(840\) 0 0
\(841\) −28.1642 −0.971179
\(842\) 0 0
\(843\) 15.4026 0.530494
\(844\) 0 0
\(845\) 4.88342 0.167995
\(846\) 0 0
\(847\) −2.24271 −0.0770605
\(848\) 0 0
\(849\) −6.50702 −0.223320
\(850\) 0 0
\(851\) −19.0407 −0.652707
\(852\) 0 0
\(853\) −17.3848 −0.595244 −0.297622 0.954684i \(-0.596194\pi\)
−0.297622 + 0.954684i \(0.596194\pi\)
\(854\) 0 0
\(855\) 1.82274 0.0623364
\(856\) 0 0
\(857\) 52.0006 1.77631 0.888153 0.459548i \(-0.151989\pi\)
0.888153 + 0.459548i \(0.151989\pi\)
\(858\) 0 0
\(859\) 37.0405 1.26380 0.631902 0.775048i \(-0.282275\pi\)
0.631902 + 0.775048i \(0.282275\pi\)
\(860\) 0 0
\(861\) 1.22340 0.0416935
\(862\) 0 0
\(863\) −25.8555 −0.880131 −0.440066 0.897966i \(-0.645045\pi\)
−0.440066 + 0.897966i \(0.645045\pi\)
\(864\) 0 0
\(865\) −7.71826 −0.262429
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 75.9456 2.57628
\(870\) 0 0
\(871\) −7.29191 −0.247077
\(872\) 0 0
\(873\) −15.9998 −0.541510
\(874\) 0 0
\(875\) −0.690793 −0.0233531
\(876\) 0 0
\(877\) 29.9767 1.01224 0.506120 0.862463i \(-0.331079\pi\)
0.506120 + 0.862463i \(0.331079\pi\)
\(878\) 0 0
\(879\) −11.5156 −0.388413
\(880\) 0 0
\(881\) −34.8630 −1.17457 −0.587283 0.809382i \(-0.699802\pi\)
−0.587283 + 0.809382i \(0.699802\pi\)
\(882\) 0 0
\(883\) −26.7792 −0.901193 −0.450596 0.892728i \(-0.648789\pi\)
−0.450596 + 0.892728i \(0.648789\pi\)
\(884\) 0 0
\(885\) −3.34910 −0.112579
\(886\) 0 0
\(887\) 47.7971 1.60487 0.802435 0.596740i \(-0.203538\pi\)
0.802435 + 0.596740i \(0.203538\pi\)
\(888\) 0 0
\(889\) 1.38818 0.0465582
\(890\) 0 0
\(891\) 14.3093 0.479379
\(892\) 0 0
\(893\) −9.95823 −0.333239
\(894\) 0 0
\(895\) −6.09983 −0.203895
\(896\) 0 0
\(897\) 1.98628 0.0663198
\(898\) 0 0
\(899\) 4.45451 0.148566
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −0.359408 −0.0119604
\(904\) 0 0
\(905\) 6.58639 0.218939
\(906\) 0 0
\(907\) 36.8750 1.22441 0.612207 0.790698i \(-0.290282\pi\)
0.612207 + 0.790698i \(0.290282\pi\)
\(908\) 0 0
\(909\) 25.3031 0.839251
\(910\) 0 0
\(911\) −55.1461 −1.82707 −0.913536 0.406758i \(-0.866659\pi\)
−0.913536 + 0.406758i \(0.866659\pi\)
\(912\) 0 0
\(913\) 65.4256 2.16527
\(914\) 0 0
\(915\) 3.64657 0.120552
\(916\) 0 0
\(917\) −0.164237 −0.00542358
\(918\) 0 0
\(919\) 28.0520 0.925349 0.462674 0.886528i \(-0.346890\pi\)
0.462674 + 0.886528i \(0.346890\pi\)
\(920\) 0 0
\(921\) −16.9259 −0.557727
\(922\) 0 0
\(923\) 4.44692 0.146372
\(924\) 0 0
\(925\) −39.7023 −1.30540
\(926\) 0 0
\(927\) −38.4417 −1.26259
\(928\) 0 0
\(929\) 44.8919 1.47285 0.736427 0.676517i \(-0.236511\pi\)
0.736427 + 0.676517i \(0.236511\pi\)
\(930\) 0 0
\(931\) −13.7890 −0.451917
\(932\) 0 0
\(933\) 0.931608 0.0304995
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 20.2778 0.662446 0.331223 0.943552i \(-0.392539\pi\)
0.331223 + 0.943552i \(0.392539\pi\)
\(938\) 0 0
\(939\) 27.1021 0.884443
\(940\) 0 0
\(941\) −32.1913 −1.04941 −0.524703 0.851285i \(-0.675824\pi\)
−0.524703 + 0.851285i \(0.675824\pi\)
\(942\) 0 0
\(943\) −19.1584 −0.623883
\(944\) 0 0
\(945\) 0.317137 0.0103165
\(946\) 0 0
\(947\) −48.2974 −1.56946 −0.784728 0.619841i \(-0.787197\pi\)
−0.784728 + 0.619841i \(0.787197\pi\)
\(948\) 0 0
\(949\) 6.47679 0.210245
\(950\) 0 0
\(951\) −1.33279 −0.0432188
\(952\) 0 0
\(953\) 31.0668 1.00635 0.503176 0.864184i \(-0.332165\pi\)
0.503176 + 0.864184i \(0.332165\pi\)
\(954\) 0 0
\(955\) 4.42520 0.143196
\(956\) 0 0
\(957\) 3.84038 0.124142
\(958\) 0 0
\(959\) −1.00853 −0.0325672
\(960\) 0 0
\(961\) −7.25974 −0.234185
\(962\) 0 0
\(963\) 26.1835 0.843751
\(964\) 0 0
\(965\) −5.01876 −0.161559
\(966\) 0 0
\(967\) −29.5621 −0.950652 −0.475326 0.879810i \(-0.657670\pi\)
−0.475326 + 0.879810i \(0.657670\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.5298 0.594650 0.297325 0.954776i \(-0.403906\pi\)
0.297325 + 0.954776i \(0.403906\pi\)
\(972\) 0 0
\(973\) 2.28239 0.0731701
\(974\) 0 0
\(975\) 4.14164 0.132639
\(976\) 0 0
\(977\) −22.7303 −0.727208 −0.363604 0.931554i \(-0.618454\pi\)
−0.363604 + 0.931554i \(0.618454\pi\)
\(978\) 0 0
\(979\) 75.1489 2.40177
\(980\) 0 0
\(981\) −17.5087 −0.559011
\(982\) 0 0
\(983\) 45.4406 1.44933 0.724666 0.689100i \(-0.241994\pi\)
0.724666 + 0.689100i \(0.241994\pi\)
\(984\) 0 0
\(985\) −0.837584 −0.0266876
\(986\) 0 0
\(987\) −0.745280 −0.0237225
\(988\) 0 0
\(989\) 5.62830 0.178969
\(990\) 0 0
\(991\) 51.9896 1.65150 0.825752 0.564034i \(-0.190751\pi\)
0.825752 + 0.564034i \(0.190751\pi\)
\(992\) 0 0
\(993\) 16.1356 0.512047
\(994\) 0 0
\(995\) −7.96497 −0.252507
\(996\) 0 0
\(997\) 45.3841 1.43733 0.718664 0.695357i \(-0.244754\pi\)
0.718664 + 0.695357i \(0.244754\pi\)
\(998\) 0 0
\(999\) 37.0782 1.17310
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.2.a.v.1.3 yes 6
4.3 odd 2 4624.2.a.bs.1.4 6
17.4 even 4 2312.2.b.o.577.8 12
17.13 even 4 2312.2.b.o.577.5 12
17.16 even 2 2312.2.a.u.1.4 6
68.67 odd 2 4624.2.a.br.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2312.2.a.u.1.4 6 17.16 even 2
2312.2.a.v.1.3 yes 6 1.1 even 1 trivial
2312.2.b.o.577.5 12 17.13 even 4
2312.2.b.o.577.8 12 17.4 even 4
4624.2.a.br.1.3 6 68.67 odd 2
4624.2.a.bs.1.4 6 4.3 odd 2