Properties

Label 231.4.a.g
Level 231231
Weight 44
Character orbit 231.a
Self dual yes
Analytic conductor 13.62913.629
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [231,4,Mod(1,231)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(231, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("231.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 231=3711 231 = 3 \cdot 7 \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 231.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-3,6,-3,25] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 13.629441211313.6294412113
Analytic rank: 00
Dimension: 22
Coefficient field: Q(17)\Q(\sqrt{17})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x4 x^{2} - x - 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+17)\beta = \frac{1}{2}(1 + \sqrt{17}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1)q2+3q3+(3β3)q4+(3β+14)q5+(3β3)q6+7q7+(5β1)q8+9q9+(8β2)q1011q11+(9β9)q12+99q99+O(q100) q + ( - \beta - 1) q^{2} + 3 q^{3} + (3 \beta - 3) q^{4} + ( - 3 \beta + 14) q^{5} + ( - 3 \beta - 3) q^{6} + 7 q^{7} + (5 \beta - 1) q^{8} + 9 q^{9} + ( - 8 \beta - 2) q^{10} - 11 q^{11} + (9 \beta - 9) q^{12}+ \cdots - 99 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q2+6q33q4+25q59q6+14q7+3q8+18q912q1022q119q12+77q1321q14+75q1523q16+74q1727q18101q19+198q99+O(q100) 2 q - 3 q^{2} + 6 q^{3} - 3 q^{4} + 25 q^{5} - 9 q^{6} + 14 q^{7} + 3 q^{8} + 18 q^{9} - 12 q^{10} - 22 q^{11} - 9 q^{12} + 77 q^{13} - 21 q^{14} + 75 q^{15} - 23 q^{16} + 74 q^{17} - 27 q^{18} - 101 q^{19}+ \cdots - 198 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.56155
−1.56155
−3.56155 3.00000 4.68466 6.31534 −10.6847 7.00000 11.8078 9.00000 −22.4924
1.2 0.561553 3.00000 −7.68466 18.6847 1.68466 7.00000 −8.80776 9.00000 10.4924
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 1 -1
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 231.4.a.g 2
3.b odd 2 1 693.4.a.j 2
7.b odd 2 1 1617.4.a.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
231.4.a.g 2 1.a even 1 1 trivial
693.4.a.j 2 3.b odd 2 1
1617.4.a.h 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(231))S_{4}^{\mathrm{new}}(\Gamma_0(231)):

T22+3T22 T_{2}^{2} + 3T_{2} - 2 Copy content Toggle raw display
T5225T5+118 T_{5}^{2} - 25T_{5} + 118 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+3T2 T^{2} + 3T - 2 Copy content Toggle raw display
33 (T3)2 (T - 3)^{2} Copy content Toggle raw display
55 T225T+118 T^{2} - 25T + 118 Copy content Toggle raw display
77 (T7)2 (T - 7)^{2} Copy content Toggle raw display
1111 (T+11)2 (T + 11)^{2} Copy content Toggle raw display
1313 T277T+1478 T^{2} - 77T + 1478 Copy content Toggle raw display
1717 T274T+1352 T^{2} - 74T + 1352 Copy content Toggle raw display
1919 T2+101T+1832 T^{2} + 101T + 1832 Copy content Toggle raw display
2323 T258T27736 T^{2} - 58T - 27736 Copy content Toggle raw display
2929 T291T52198 T^{2} - 91T - 52198 Copy content Toggle raw display
3131 T2152T7552 T^{2} - 152T - 7552 Copy content Toggle raw display
3737 T2619T+82934 T^{2} - 619T + 82934 Copy content Toggle raw display
4141 T2138T148664 T^{2} - 138T - 148664 Copy content Toggle raw display
4343 T2+230T+832 T^{2} + 230T + 832 Copy content Toggle raw display
4747 T2149T217324 T^{2} - 149T - 217324 Copy content Toggle raw display
5353 T21228T+376724 T^{2} - 1228 T + 376724 Copy content Toggle raw display
5959 T2649T13228 T^{2} - 649T - 13228 Copy content Toggle raw display
6161 T2+412T170812 T^{2} + 412T - 170812 Copy content Toggle raw display
6767 T2+1243T+374324 T^{2} + 1243 T + 374324 Copy content Toggle raw display
7171 T2960T30992 T^{2} - 960T - 30992 Copy content Toggle raw display
7373 T2+741T+133186 T^{2} + 741T + 133186 Copy content Toggle raw display
7979 T2+492T226784 T^{2} + 492T - 226784 Copy content Toggle raw display
8383 T2+1744T+562096 T^{2} + 1744 T + 562096 Copy content Toggle raw display
8989 T2+1552T+586876 T^{2} + 1552 T + 586876 Copy content Toggle raw display
9797 T2440T1303508 T^{2} - 440 T - 1303508 Copy content Toggle raw display
show more
show less