Properties

Label 231.4.a.g.1.2
Level $231$
Weight $4$
Character 231.1
Self dual yes
Analytic conductor $13.629$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [231,4,Mod(1,231)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(231, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("231.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 231.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.561553 q^{2} +3.00000 q^{3} -7.68466 q^{4} +18.6847 q^{5} +1.68466 q^{6} +7.00000 q^{7} -8.80776 q^{8} +9.00000 q^{9} +10.4924 q^{10} -11.0000 q^{11} -23.0540 q^{12} +36.4384 q^{13} +3.93087 q^{14} +56.0540 q^{15} +56.5312 q^{16} +41.1231 q^{17} +5.05398 q^{18} -23.6998 q^{19} -143.585 q^{20} +21.0000 q^{21} -6.17708 q^{22} -140.047 q^{23} -26.4233 q^{24} +224.116 q^{25} +20.4621 q^{26} +27.0000 q^{27} -53.7926 q^{28} +278.455 q^{29} +31.4773 q^{30} +191.447 q^{31} +102.207 q^{32} -33.0000 q^{33} +23.0928 q^{34} +130.793 q^{35} -69.1619 q^{36} +196.115 q^{37} -13.3087 q^{38} +109.315 q^{39} -164.570 q^{40} -322.695 q^{41} +11.7926 q^{42} -3.67615 q^{43} +84.5312 q^{44} +168.162 q^{45} -78.6440 q^{46} -397.596 q^{47} +169.594 q^{48} +49.0000 q^{49} +125.853 q^{50} +123.369 q^{51} -280.017 q^{52} +597.508 q^{53} +15.1619 q^{54} -205.531 q^{55} -61.6543 q^{56} -71.0994 q^{57} +156.367 q^{58} +668.779 q^{59} -430.756 q^{60} -667.788 q^{61} +107.508 q^{62} +63.0000 q^{63} -394.855 q^{64} +680.840 q^{65} -18.5312 q^{66} -730.762 q^{67} -316.017 q^{68} -420.142 q^{69} +73.4470 q^{70} -31.2651 q^{71} -79.2699 q^{72} -434.408 q^{73} +110.129 q^{74} +672.349 q^{75} +182.125 q^{76} -77.0000 q^{77} +61.3863 q^{78} -782.004 q^{79} +1056.27 q^{80} +81.0000 q^{81} -181.210 q^{82} -426.705 q^{83} -161.378 q^{84} +768.371 q^{85} -2.06435 q^{86} +835.366 q^{87} +96.8854 q^{88} -899.693 q^{89} +94.4318 q^{90} +255.069 q^{91} +1076.22 q^{92} +574.341 q^{93} -223.271 q^{94} -442.823 q^{95} +306.622 q^{96} -942.716 q^{97} +27.5161 q^{98} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 6 q^{3} - 3 q^{4} + 25 q^{5} - 9 q^{6} + 14 q^{7} + 3 q^{8} + 18 q^{9} - 12 q^{10} - 22 q^{11} - 9 q^{12} + 77 q^{13} - 21 q^{14} + 75 q^{15} - 23 q^{16} + 74 q^{17} - 27 q^{18} - 101 q^{19}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.561553 0.198539 0.0992695 0.995061i \(-0.468349\pi\)
0.0992695 + 0.995061i \(0.468349\pi\)
\(3\) 3.00000 0.577350
\(4\) −7.68466 −0.960582
\(5\) 18.6847 1.67121 0.835603 0.549333i \(-0.185118\pi\)
0.835603 + 0.549333i \(0.185118\pi\)
\(6\) 1.68466 0.114626
\(7\) 7.00000 0.377964
\(8\) −8.80776 −0.389252
\(9\) 9.00000 0.333333
\(10\) 10.4924 0.331800
\(11\) −11.0000 −0.301511
\(12\) −23.0540 −0.554592
\(13\) 36.4384 0.777401 0.388700 0.921364i \(-0.372924\pi\)
0.388700 + 0.921364i \(0.372924\pi\)
\(14\) 3.93087 0.0750407
\(15\) 56.0540 0.964872
\(16\) 56.5312 0.883301
\(17\) 41.1231 0.586695 0.293348 0.956006i \(-0.405231\pi\)
0.293348 + 0.956006i \(0.405231\pi\)
\(18\) 5.05398 0.0661796
\(19\) −23.6998 −0.286164 −0.143082 0.989711i \(-0.545701\pi\)
−0.143082 + 0.989711i \(0.545701\pi\)
\(20\) −143.585 −1.60533
\(21\) 21.0000 0.218218
\(22\) −6.17708 −0.0598617
\(23\) −140.047 −1.26965 −0.634824 0.772657i \(-0.718927\pi\)
−0.634824 + 0.772657i \(0.718927\pi\)
\(24\) −26.4233 −0.224735
\(25\) 224.116 1.79293
\(26\) 20.4621 0.154344
\(27\) 27.0000 0.192450
\(28\) −53.7926 −0.363066
\(29\) 278.455 1.78303 0.891515 0.452991i \(-0.149643\pi\)
0.891515 + 0.452991i \(0.149643\pi\)
\(30\) 31.4773 0.191565
\(31\) 191.447 1.10919 0.554595 0.832120i \(-0.312873\pi\)
0.554595 + 0.832120i \(0.312873\pi\)
\(32\) 102.207 0.564621
\(33\) −33.0000 −0.174078
\(34\) 23.0928 0.116482
\(35\) 130.793 0.631657
\(36\) −69.1619 −0.320194
\(37\) 196.115 0.871379 0.435690 0.900097i \(-0.356504\pi\)
0.435690 + 0.900097i \(0.356504\pi\)
\(38\) −13.3087 −0.0568146
\(39\) 109.315 0.448832
\(40\) −164.570 −0.650520
\(41\) −322.695 −1.22918 −0.614591 0.788846i \(-0.710679\pi\)
−0.614591 + 0.788846i \(0.710679\pi\)
\(42\) 11.7926 0.0433247
\(43\) −3.67615 −0.0130374 −0.00651869 0.999979i \(-0.502075\pi\)
−0.00651869 + 0.999979i \(0.502075\pi\)
\(44\) 84.5312 0.289626
\(45\) 168.162 0.557069
\(46\) −78.6440 −0.252074
\(47\) −397.596 −1.23394 −0.616971 0.786986i \(-0.711640\pi\)
−0.616971 + 0.786986i \(0.711640\pi\)
\(48\) 169.594 0.509974
\(49\) 49.0000 0.142857
\(50\) 125.853 0.355967
\(51\) 123.369 0.338729
\(52\) −280.017 −0.746757
\(53\) 597.508 1.54857 0.774283 0.632840i \(-0.218111\pi\)
0.774283 + 0.632840i \(0.218111\pi\)
\(54\) 15.1619 0.0382088
\(55\) −205.531 −0.503888
\(56\) −61.6543 −0.147123
\(57\) −71.0994 −0.165217
\(58\) 156.367 0.354001
\(59\) 668.779 1.47572 0.737861 0.674952i \(-0.235836\pi\)
0.737861 + 0.674952i \(0.235836\pi\)
\(60\) −430.756 −0.926839
\(61\) −667.788 −1.40166 −0.700832 0.713327i \(-0.747188\pi\)
−0.700832 + 0.713327i \(0.747188\pi\)
\(62\) 107.508 0.220217
\(63\) 63.0000 0.125988
\(64\) −394.855 −0.771201
\(65\) 680.840 1.29920
\(66\) −18.5312 −0.0345612
\(67\) −730.762 −1.33249 −0.666245 0.745733i \(-0.732099\pi\)
−0.666245 + 0.745733i \(0.732099\pi\)
\(68\) −316.017 −0.563569
\(69\) −420.142 −0.733031
\(70\) 73.4470 0.125408
\(71\) −31.2651 −0.0522603 −0.0261302 0.999659i \(-0.508318\pi\)
−0.0261302 + 0.999659i \(0.508318\pi\)
\(72\) −79.2699 −0.129751
\(73\) −434.408 −0.696488 −0.348244 0.937404i \(-0.613222\pi\)
−0.348244 + 0.937404i \(0.613222\pi\)
\(74\) 110.129 0.173003
\(75\) 672.349 1.03515
\(76\) 182.125 0.274884
\(77\) −77.0000 −0.113961
\(78\) 61.3863 0.0891107
\(79\) −782.004 −1.11370 −0.556850 0.830613i \(-0.687990\pi\)
−0.556850 + 0.830613i \(0.687990\pi\)
\(80\) 1056.27 1.47618
\(81\) 81.0000 0.111111
\(82\) −181.210 −0.244041
\(83\) −426.705 −0.564300 −0.282150 0.959370i \(-0.591048\pi\)
−0.282150 + 0.959370i \(0.591048\pi\)
\(84\) −161.378 −0.209616
\(85\) 768.371 0.980489
\(86\) −2.06435 −0.00258843
\(87\) 835.366 1.02943
\(88\) 96.8854 0.117364
\(89\) −899.693 −1.07154 −0.535771 0.844363i \(-0.679979\pi\)
−0.535771 + 0.844363i \(0.679979\pi\)
\(90\) 94.4318 0.110600
\(91\) 255.069 0.293830
\(92\) 1076.22 1.21960
\(93\) 574.341 0.640391
\(94\) −223.271 −0.244986
\(95\) −442.823 −0.478239
\(96\) 306.622 0.325984
\(97\) −942.716 −0.986786 −0.493393 0.869806i \(-0.664244\pi\)
−0.493393 + 0.869806i \(0.664244\pi\)
\(98\) 27.5161 0.0283627
\(99\) −99.0000 −0.100504
\(100\) −1722.26 −1.72226
\(101\) 366.945 0.361509 0.180754 0.983528i \(-0.442146\pi\)
0.180754 + 0.983528i \(0.442146\pi\)
\(102\) 69.2784 0.0672508
\(103\) 1007.35 0.963658 0.481829 0.876265i \(-0.339973\pi\)
0.481829 + 0.876265i \(0.339973\pi\)
\(104\) −320.941 −0.302605
\(105\) 392.378 0.364687
\(106\) 335.532 0.307451
\(107\) −1690.80 −1.52763 −0.763814 0.645437i \(-0.776675\pi\)
−0.763814 + 0.645437i \(0.776675\pi\)
\(108\) −207.486 −0.184864
\(109\) −1808.57 −1.58926 −0.794631 0.607093i \(-0.792336\pi\)
−0.794631 + 0.607093i \(0.792336\pi\)
\(110\) −115.417 −0.100041
\(111\) 588.344 0.503091
\(112\) 395.719 0.333856
\(113\) 952.557 0.793000 0.396500 0.918035i \(-0.370225\pi\)
0.396500 + 0.918035i \(0.370225\pi\)
\(114\) −39.9261 −0.0328019
\(115\) −2616.74 −2.12184
\(116\) −2139.84 −1.71275
\(117\) 327.946 0.259134
\(118\) 375.555 0.292988
\(119\) 287.862 0.221750
\(120\) −493.710 −0.375578
\(121\) 121.000 0.0909091
\(122\) −374.998 −0.278285
\(123\) −968.085 −0.709669
\(124\) −1471.20 −1.06547
\(125\) 1851.96 1.32515
\(126\) 35.3778 0.0250136
\(127\) 252.951 0.176738 0.0883691 0.996088i \(-0.471834\pi\)
0.0883691 + 0.996088i \(0.471834\pi\)
\(128\) −1039.39 −0.717735
\(129\) −11.0284 −0.00752713
\(130\) 382.328 0.257941
\(131\) −1497.38 −0.998679 −0.499339 0.866406i \(-0.666424\pi\)
−0.499339 + 0.866406i \(0.666424\pi\)
\(132\) 253.594 0.167216
\(133\) −165.899 −0.108160
\(134\) −410.362 −0.264551
\(135\) 504.486 0.321624
\(136\) −362.203 −0.228372
\(137\) −1207.56 −0.753056 −0.376528 0.926405i \(-0.622882\pi\)
−0.376528 + 0.926405i \(0.622882\pi\)
\(138\) −235.932 −0.145535
\(139\) 212.519 0.129681 0.0648404 0.997896i \(-0.479346\pi\)
0.0648404 + 0.997896i \(0.479346\pi\)
\(140\) −1005.10 −0.606758
\(141\) −1192.79 −0.712417
\(142\) −17.5570 −0.0103757
\(143\) −400.823 −0.234395
\(144\) 508.781 0.294434
\(145\) 5202.85 2.97981
\(146\) −243.943 −0.138280
\(147\) 147.000 0.0824786
\(148\) −1507.07 −0.837032
\(149\) 879.656 0.483653 0.241826 0.970320i \(-0.422254\pi\)
0.241826 + 0.970320i \(0.422254\pi\)
\(150\) 377.560 0.205517
\(151\) −1215.18 −0.654899 −0.327450 0.944869i \(-0.606189\pi\)
−0.327450 + 0.944869i \(0.606189\pi\)
\(152\) 208.742 0.111390
\(153\) 370.108 0.195565
\(154\) −43.2396 −0.0226256
\(155\) 3577.12 1.85369
\(156\) −840.051 −0.431140
\(157\) 1226.57 0.623507 0.311754 0.950163i \(-0.399084\pi\)
0.311754 + 0.950163i \(0.399084\pi\)
\(158\) −439.136 −0.221113
\(159\) 1792.52 0.894065
\(160\) 1909.71 0.943599
\(161\) −980.331 −0.479882
\(162\) 45.4858 0.0220599
\(163\) −441.224 −0.212021 −0.106010 0.994365i \(-0.533808\pi\)
−0.106010 + 0.994365i \(0.533808\pi\)
\(164\) 2479.80 1.18073
\(165\) −616.594 −0.290920
\(166\) −239.617 −0.112036
\(167\) −1793.53 −0.831064 −0.415532 0.909579i \(-0.636405\pi\)
−0.415532 + 0.909579i \(0.636405\pi\)
\(168\) −184.963 −0.0849417
\(169\) −869.240 −0.395648
\(170\) 431.481 0.194665
\(171\) −213.298 −0.0953879
\(172\) 28.2499 0.0125235
\(173\) 3825.04 1.68099 0.840497 0.541816i \(-0.182263\pi\)
0.840497 + 0.541816i \(0.182263\pi\)
\(174\) 469.102 0.204383
\(175\) 1568.82 0.677664
\(176\) −621.844 −0.266325
\(177\) 2006.34 0.852009
\(178\) −505.225 −0.212743
\(179\) 1315.65 0.549365 0.274683 0.961535i \(-0.411427\pi\)
0.274683 + 0.961535i \(0.411427\pi\)
\(180\) −1292.27 −0.535111
\(181\) 674.682 0.277065 0.138532 0.990358i \(-0.455762\pi\)
0.138532 + 0.990358i \(0.455762\pi\)
\(182\) 143.235 0.0583366
\(183\) −2003.36 −0.809251
\(184\) 1233.50 0.494213
\(185\) 3664.33 1.45626
\(186\) 322.523 0.127143
\(187\) −452.354 −0.176895
\(188\) 3055.39 1.18530
\(189\) 189.000 0.0727393
\(190\) −248.668 −0.0949490
\(191\) 1915.69 0.725730 0.362865 0.931842i \(-0.381799\pi\)
0.362865 + 0.931842i \(0.381799\pi\)
\(192\) −1184.57 −0.445253
\(193\) −2394.71 −0.893134 −0.446567 0.894750i \(-0.647354\pi\)
−0.446567 + 0.894750i \(0.647354\pi\)
\(194\) −529.385 −0.195915
\(195\) 2042.52 0.750092
\(196\) −376.548 −0.137226
\(197\) 1356.81 0.490703 0.245351 0.969434i \(-0.421097\pi\)
0.245351 + 0.969434i \(0.421097\pi\)
\(198\) −55.5937 −0.0199539
\(199\) 2121.45 0.755707 0.377854 0.925865i \(-0.376662\pi\)
0.377854 + 0.925865i \(0.376662\pi\)
\(200\) −1973.96 −0.697902
\(201\) −2192.29 −0.769313
\(202\) 206.059 0.0717736
\(203\) 1949.19 0.673922
\(204\) −948.051 −0.325377
\(205\) −6029.45 −2.05422
\(206\) 565.678 0.191324
\(207\) −1260.43 −0.423216
\(208\) 2059.91 0.686678
\(209\) 260.698 0.0862816
\(210\) 220.341 0.0724046
\(211\) 4492.12 1.46564 0.732821 0.680421i \(-0.238203\pi\)
0.732821 + 0.680421i \(0.238203\pi\)
\(212\) −4591.64 −1.48752
\(213\) −93.7953 −0.0301725
\(214\) −949.476 −0.303294
\(215\) −68.6876 −0.0217882
\(216\) −237.810 −0.0749116
\(217\) 1340.13 0.419234
\(218\) −1015.61 −0.315530
\(219\) −1303.22 −0.402118
\(220\) 1579.44 0.484026
\(221\) 1498.46 0.456097
\(222\) 330.386 0.0998832
\(223\) 5142.35 1.54420 0.772101 0.635499i \(-0.219206\pi\)
0.772101 + 0.635499i \(0.219206\pi\)
\(224\) 715.452 0.213407
\(225\) 2017.05 0.597644
\(226\) 534.911 0.157441
\(227\) 2987.86 0.873618 0.436809 0.899554i \(-0.356109\pi\)
0.436809 + 0.899554i \(0.356109\pi\)
\(228\) 546.375 0.158704
\(229\) −5121.38 −1.47786 −0.738931 0.673781i \(-0.764669\pi\)
−0.738931 + 0.673781i \(0.764669\pi\)
\(230\) −1469.44 −0.421268
\(231\) −231.000 −0.0657952
\(232\) −2452.57 −0.694048
\(233\) 1103.58 0.310291 0.155146 0.987892i \(-0.450415\pi\)
0.155146 + 0.987892i \(0.450415\pi\)
\(234\) 184.159 0.0514481
\(235\) −7428.94 −2.06217
\(236\) −5139.34 −1.41755
\(237\) −2346.01 −0.642995
\(238\) 161.650 0.0440260
\(239\) −1798.18 −0.486671 −0.243336 0.969942i \(-0.578242\pi\)
−0.243336 + 0.969942i \(0.578242\pi\)
\(240\) 3168.80 0.852272
\(241\) −7342.09 −1.96243 −0.981215 0.192919i \(-0.938204\pi\)
−0.981215 + 0.192919i \(0.938204\pi\)
\(242\) 67.9479 0.0180490
\(243\) 243.000 0.0641500
\(244\) 5131.72 1.34641
\(245\) 915.548 0.238744
\(246\) −543.631 −0.140897
\(247\) −863.584 −0.222464
\(248\) −1686.22 −0.431754
\(249\) −1280.11 −0.325799
\(250\) 1039.97 0.263094
\(251\) 1799.05 0.452411 0.226206 0.974080i \(-0.427368\pi\)
0.226206 + 0.974080i \(0.427368\pi\)
\(252\) −484.133 −0.121022
\(253\) 1540.52 0.382813
\(254\) 142.045 0.0350894
\(255\) 2305.11 0.566086
\(256\) 2575.17 0.628703
\(257\) −5282.71 −1.28220 −0.641102 0.767455i \(-0.721523\pi\)
−0.641102 + 0.767455i \(0.721523\pi\)
\(258\) −6.19305 −0.00149443
\(259\) 1372.80 0.329350
\(260\) −5232.02 −1.24799
\(261\) 2506.10 0.594343
\(262\) −840.859 −0.198277
\(263\) 3275.55 0.767981 0.383990 0.923337i \(-0.374550\pi\)
0.383990 + 0.923337i \(0.374550\pi\)
\(264\) 290.656 0.0677601
\(265\) 11164.2 2.58797
\(266\) −93.1609 −0.0214739
\(267\) −2699.08 −0.618655
\(268\) 5615.66 1.27997
\(269\) 3682.35 0.834636 0.417318 0.908761i \(-0.362970\pi\)
0.417318 + 0.908761i \(0.362970\pi\)
\(270\) 283.295 0.0638548
\(271\) −7301.19 −1.63659 −0.818295 0.574799i \(-0.805080\pi\)
−0.818295 + 0.574799i \(0.805080\pi\)
\(272\) 2324.74 0.518228
\(273\) 765.207 0.169643
\(274\) −678.108 −0.149511
\(275\) −2465.28 −0.540589
\(276\) 3228.65 0.704137
\(277\) 9035.64 1.95993 0.979963 0.199182i \(-0.0638283\pi\)
0.979963 + 0.199182i \(0.0638283\pi\)
\(278\) 119.341 0.0257467
\(279\) 1723.02 0.369730
\(280\) −1151.99 −0.245874
\(281\) 1651.82 0.350674 0.175337 0.984509i \(-0.443899\pi\)
0.175337 + 0.984509i \(0.443899\pi\)
\(282\) −669.813 −0.141442
\(283\) 3091.62 0.649391 0.324695 0.945819i \(-0.394738\pi\)
0.324695 + 0.945819i \(0.394738\pi\)
\(284\) 240.262 0.0502004
\(285\) −1328.47 −0.276111
\(286\) −225.083 −0.0465365
\(287\) −2258.87 −0.464587
\(288\) 919.867 0.188207
\(289\) −3221.89 −0.655789
\(290\) 2921.67 0.591609
\(291\) −2828.15 −0.569721
\(292\) 3338.28 0.669034
\(293\) 2231.84 0.445001 0.222500 0.974933i \(-0.428578\pi\)
0.222500 + 0.974933i \(0.428578\pi\)
\(294\) 82.5483 0.0163752
\(295\) 12495.9 2.46624
\(296\) −1727.33 −0.339186
\(297\) −297.000 −0.0580259
\(298\) 493.973 0.0960239
\(299\) −5103.11 −0.987024
\(300\) −5166.78 −0.994346
\(301\) −25.7330 −0.00492767
\(302\) −682.387 −0.130023
\(303\) 1100.83 0.208717
\(304\) −1339.78 −0.252769
\(305\) −12477.4 −2.34247
\(306\) 207.835 0.0388273
\(307\) −9667.03 −1.79715 −0.898577 0.438816i \(-0.855398\pi\)
−0.898577 + 0.438816i \(0.855398\pi\)
\(308\) 591.719 0.109469
\(309\) 3022.04 0.556368
\(310\) 2008.74 0.368029
\(311\) −7170.97 −1.30749 −0.653743 0.756717i \(-0.726802\pi\)
−0.653743 + 0.756717i \(0.726802\pi\)
\(312\) −962.824 −0.174709
\(313\) 295.578 0.0533771 0.0266886 0.999644i \(-0.491504\pi\)
0.0266886 + 0.999644i \(0.491504\pi\)
\(314\) 688.782 0.123790
\(315\) 1177.13 0.210552
\(316\) 6009.43 1.06980
\(317\) 7189.81 1.27388 0.636940 0.770914i \(-0.280200\pi\)
0.636940 + 0.770914i \(0.280200\pi\)
\(318\) 1006.60 0.177507
\(319\) −3063.01 −0.537604
\(320\) −7377.73 −1.28884
\(321\) −5072.41 −0.881976
\(322\) −550.508 −0.0952752
\(323\) −974.610 −0.167891
\(324\) −622.457 −0.106731
\(325\) 8166.46 1.39383
\(326\) −247.771 −0.0420943
\(327\) −5425.71 −0.917561
\(328\) 2842.22 0.478462
\(329\) −2783.17 −0.466386
\(330\) −346.250 −0.0577589
\(331\) −2878.87 −0.478058 −0.239029 0.971012i \(-0.576829\pi\)
−0.239029 + 0.971012i \(0.576829\pi\)
\(332\) 3279.08 0.542057
\(333\) 1765.03 0.290460
\(334\) −1007.16 −0.164999
\(335\) −13654.0 −2.22687
\(336\) 1187.16 0.192752
\(337\) −11639.7 −1.88146 −0.940731 0.339153i \(-0.889860\pi\)
−0.940731 + 0.339153i \(0.889860\pi\)
\(338\) −488.124 −0.0785516
\(339\) 2857.67 0.457839
\(340\) −5904.67 −0.941840
\(341\) −2105.92 −0.334433
\(342\) −119.778 −0.0189382
\(343\) 343.000 0.0539949
\(344\) 32.3786 0.00507482
\(345\) −7850.21 −1.22505
\(346\) 2147.96 0.333743
\(347\) −4752.91 −0.735302 −0.367651 0.929964i \(-0.619838\pi\)
−0.367651 + 0.929964i \(0.619838\pi\)
\(348\) −6419.51 −0.988855
\(349\) −7420.08 −1.13807 −0.569037 0.822312i \(-0.692684\pi\)
−0.569037 + 0.822312i \(0.692684\pi\)
\(350\) 880.973 0.134543
\(351\) 983.838 0.149611
\(352\) −1124.28 −0.170240
\(353\) −517.851 −0.0780805 −0.0390403 0.999238i \(-0.512430\pi\)
−0.0390403 + 0.999238i \(0.512430\pi\)
\(354\) 1126.66 0.169157
\(355\) −584.178 −0.0873378
\(356\) 6913.83 1.02930
\(357\) 863.585 0.128027
\(358\) 738.808 0.109070
\(359\) −9874.35 −1.45167 −0.725833 0.687871i \(-0.758546\pi\)
−0.725833 + 0.687871i \(0.758546\pi\)
\(360\) −1481.13 −0.216840
\(361\) −6297.32 −0.918110
\(362\) 378.869 0.0550081
\(363\) 363.000 0.0524864
\(364\) −1960.12 −0.282248
\(365\) −8116.77 −1.16398
\(366\) −1124.99 −0.160668
\(367\) 2098.51 0.298477 0.149239 0.988801i \(-0.452318\pi\)
0.149239 + 0.988801i \(0.452318\pi\)
\(368\) −7917.05 −1.12148
\(369\) −2904.26 −0.409728
\(370\) 2057.72 0.289123
\(371\) 4182.55 0.585303
\(372\) −4413.61 −0.615148
\(373\) −19.4150 −0.00269510 −0.00134755 0.999999i \(-0.500429\pi\)
−0.00134755 + 0.999999i \(0.500429\pi\)
\(374\) −254.021 −0.0351206
\(375\) 5555.87 0.765077
\(376\) 3501.93 0.480314
\(377\) 10146.5 1.38613
\(378\) 106.133 0.0144416
\(379\) 12541.3 1.69974 0.849869 0.526994i \(-0.176681\pi\)
0.849869 + 0.526994i \(0.176681\pi\)
\(380\) 3402.94 0.459388
\(381\) 758.852 0.102040
\(382\) 1075.76 0.144086
\(383\) 9131.73 1.21830 0.609151 0.793054i \(-0.291510\pi\)
0.609151 + 0.793054i \(0.291510\pi\)
\(384\) −3118.17 −0.414384
\(385\) −1438.72 −0.190452
\(386\) −1344.76 −0.177322
\(387\) −33.0853 −0.00434579
\(388\) 7244.45 0.947890
\(389\) 9542.57 1.24377 0.621886 0.783108i \(-0.286367\pi\)
0.621886 + 0.783108i \(0.286367\pi\)
\(390\) 1146.98 0.148922
\(391\) −5759.18 −0.744896
\(392\) −431.580 −0.0556074
\(393\) −4492.15 −0.576587
\(394\) 761.919 0.0974236
\(395\) −14611.5 −1.86122
\(396\) 760.781 0.0965422
\(397\) 5322.85 0.672912 0.336456 0.941699i \(-0.390772\pi\)
0.336456 + 0.941699i \(0.390772\pi\)
\(398\) 1191.31 0.150037
\(399\) −497.696 −0.0624460
\(400\) 12669.6 1.58370
\(401\) 5875.92 0.731744 0.365872 0.930665i \(-0.380771\pi\)
0.365872 + 0.930665i \(0.380771\pi\)
\(402\) −1231.08 −0.152739
\(403\) 6976.03 0.862285
\(404\) −2819.85 −0.347259
\(405\) 1513.46 0.185690
\(406\) 1094.57 0.133800
\(407\) −2157.26 −0.262731
\(408\) −1086.61 −0.131851
\(409\) −6658.52 −0.804994 −0.402497 0.915421i \(-0.631858\pi\)
−0.402497 + 0.915421i \(0.631858\pi\)
\(410\) −3385.85 −0.407842
\(411\) −3622.68 −0.434777
\(412\) −7741.11 −0.925673
\(413\) 4681.46 0.557771
\(414\) −707.796 −0.0840248
\(415\) −7972.83 −0.943062
\(416\) 3724.28 0.438937
\(417\) 637.557 0.0748712
\(418\) 146.396 0.0171303
\(419\) 10913.7 1.27248 0.636238 0.771493i \(-0.280490\pi\)
0.636238 + 0.771493i \(0.280490\pi\)
\(420\) −3015.29 −0.350312
\(421\) 3936.75 0.455737 0.227868 0.973692i \(-0.426824\pi\)
0.227868 + 0.973692i \(0.426824\pi\)
\(422\) 2522.56 0.290987
\(423\) −3578.36 −0.411314
\(424\) −5262.71 −0.602782
\(425\) 9216.36 1.05190
\(426\) −52.6710 −0.00599042
\(427\) −4674.51 −0.529779
\(428\) 12993.2 1.46741
\(429\) −1202.47 −0.135328
\(430\) −38.5717 −0.00432580
\(431\) 13769.3 1.53885 0.769424 0.638738i \(-0.220543\pi\)
0.769424 + 0.638738i \(0.220543\pi\)
\(432\) 1526.34 0.169991
\(433\) 2858.51 0.317254 0.158627 0.987339i \(-0.449293\pi\)
0.158627 + 0.987339i \(0.449293\pi\)
\(434\) 752.553 0.0832343
\(435\) 15608.5 1.72040
\(436\) 13898.2 1.52662
\(437\) 3319.10 0.363327
\(438\) −731.829 −0.0798360
\(439\) 8408.98 0.914211 0.457106 0.889412i \(-0.348886\pi\)
0.457106 + 0.889412i \(0.348886\pi\)
\(440\) 1810.27 0.196139
\(441\) 441.000 0.0476190
\(442\) 841.466 0.0905530
\(443\) −3537.39 −0.379383 −0.189692 0.981844i \(-0.560749\pi\)
−0.189692 + 0.981844i \(0.560749\pi\)
\(444\) −4521.22 −0.483260
\(445\) −16810.5 −1.79077
\(446\) 2887.70 0.306584
\(447\) 2638.97 0.279237
\(448\) −2763.99 −0.291487
\(449\) 473.820 0.0498016 0.0249008 0.999690i \(-0.492073\pi\)
0.0249008 + 0.999690i \(0.492073\pi\)
\(450\) 1132.68 0.118656
\(451\) 3549.65 0.370613
\(452\) −7320.07 −0.761742
\(453\) −3645.53 −0.378106
\(454\) 1677.84 0.173447
\(455\) 4765.88 0.491050
\(456\) 626.227 0.0643109
\(457\) 535.534 0.0548167 0.0274083 0.999624i \(-0.491275\pi\)
0.0274083 + 0.999624i \(0.491275\pi\)
\(458\) −2875.93 −0.293413
\(459\) 1110.32 0.112910
\(460\) 20108.7 2.03820
\(461\) 1075.05 0.108612 0.0543058 0.998524i \(-0.482705\pi\)
0.0543058 + 0.998524i \(0.482705\pi\)
\(462\) −129.719 −0.0130629
\(463\) −11373.8 −1.14165 −0.570826 0.821071i \(-0.693377\pi\)
−0.570826 + 0.821071i \(0.693377\pi\)
\(464\) 15741.4 1.57495
\(465\) 10731.4 1.07023
\(466\) 619.718 0.0616049
\(467\) −15171.1 −1.50328 −0.751642 0.659572i \(-0.770738\pi\)
−0.751642 + 0.659572i \(0.770738\pi\)
\(468\) −2520.15 −0.248919
\(469\) −5115.34 −0.503634
\(470\) −4171.74 −0.409421
\(471\) 3679.70 0.359982
\(472\) −5890.45 −0.574428
\(473\) 40.4376 0.00393092
\(474\) −1317.41 −0.127660
\(475\) −5311.52 −0.513072
\(476\) −2212.12 −0.213009
\(477\) 5377.57 0.516189
\(478\) −1009.77 −0.0966231
\(479\) −3045.24 −0.290482 −0.145241 0.989396i \(-0.546396\pi\)
−0.145241 + 0.989396i \(0.546396\pi\)
\(480\) 5729.13 0.544787
\(481\) 7146.11 0.677411
\(482\) −4122.97 −0.389619
\(483\) −2940.99 −0.277060
\(484\) −929.844 −0.0873257
\(485\) −17614.3 −1.64912
\(486\) 136.457 0.0127363
\(487\) −16956.1 −1.57773 −0.788866 0.614565i \(-0.789331\pi\)
−0.788866 + 0.614565i \(0.789331\pi\)
\(488\) 5881.72 0.545600
\(489\) −1323.67 −0.122410
\(490\) 514.129 0.0473999
\(491\) −13667.0 −1.25618 −0.628088 0.778142i \(-0.716162\pi\)
−0.628088 + 0.778142i \(0.716162\pi\)
\(492\) 7439.40 0.681696
\(493\) 11451.0 1.04610
\(494\) −484.948 −0.0441677
\(495\) −1849.78 −0.167963
\(496\) 10822.7 0.979748
\(497\) −218.856 −0.0197526
\(498\) −718.851 −0.0646837
\(499\) −10939.4 −0.981394 −0.490697 0.871330i \(-0.663258\pi\)
−0.490697 + 0.871330i \(0.663258\pi\)
\(500\) −14231.7 −1.27292
\(501\) −5380.60 −0.479815
\(502\) 1010.26 0.0898213
\(503\) −6194.02 −0.549061 −0.274530 0.961578i \(-0.588522\pi\)
−0.274530 + 0.961578i \(0.588522\pi\)
\(504\) −554.889 −0.0490411
\(505\) 6856.24 0.604156
\(506\) 865.084 0.0760033
\(507\) −2607.72 −0.228428
\(508\) −1943.84 −0.169772
\(509\) 16742.7 1.45797 0.728987 0.684528i \(-0.239992\pi\)
0.728987 + 0.684528i \(0.239992\pi\)
\(510\) 1294.44 0.112390
\(511\) −3040.86 −0.263248
\(512\) 9761.22 0.842557
\(513\) −639.895 −0.0550722
\(514\) −2966.52 −0.254567
\(515\) 18821.9 1.61047
\(516\) 84.7498 0.00723043
\(517\) 4373.55 0.372048
\(518\) 770.901 0.0653889
\(519\) 11475.1 0.970523
\(520\) −5996.68 −0.505715
\(521\) 21184.3 1.78138 0.890691 0.454609i \(-0.150221\pi\)
0.890691 + 0.454609i \(0.150221\pi\)
\(522\) 1407.31 0.118000
\(523\) 7737.42 0.646910 0.323455 0.946244i \(-0.395156\pi\)
0.323455 + 0.946244i \(0.395156\pi\)
\(524\) 11506.9 0.959313
\(525\) 4706.45 0.391250
\(526\) 1839.39 0.152474
\(527\) 7872.89 0.650756
\(528\) −1865.53 −0.153763
\(529\) 7446.25 0.612004
\(530\) 6269.30 0.513813
\(531\) 6019.01 0.491908
\(532\) 1274.87 0.103896
\(533\) −11758.5 −0.955567
\(534\) −1515.68 −0.122827
\(535\) −31592.1 −2.55298
\(536\) 6436.38 0.518674
\(537\) 3946.95 0.317176
\(538\) 2067.84 0.165708
\(539\) −539.000 −0.0430730
\(540\) −3876.80 −0.308946
\(541\) −12732.7 −1.01187 −0.505937 0.862571i \(-0.668853\pi\)
−0.505937 + 0.862571i \(0.668853\pi\)
\(542\) −4100.00 −0.324927
\(543\) 2024.05 0.159963
\(544\) 4203.09 0.331261
\(545\) −33792.5 −2.65599
\(546\) 429.704 0.0336807
\(547\) 4429.06 0.346202 0.173101 0.984904i \(-0.444621\pi\)
0.173101 + 0.984904i \(0.444621\pi\)
\(548\) 9279.68 0.723372
\(549\) −6010.09 −0.467221
\(550\) −1384.39 −0.107328
\(551\) −6599.34 −0.510239
\(552\) 3700.51 0.285334
\(553\) −5474.03 −0.420939
\(554\) 5073.99 0.389121
\(555\) 10993.0 0.840769
\(556\) −1633.14 −0.124569
\(557\) 6080.68 0.462562 0.231281 0.972887i \(-0.425708\pi\)
0.231281 + 0.972887i \(0.425708\pi\)
\(558\) 967.568 0.0734058
\(559\) −133.953 −0.0101353
\(560\) 7393.87 0.557943
\(561\) −1357.06 −0.102131
\(562\) 927.584 0.0696223
\(563\) −12141.8 −0.908907 −0.454453 0.890771i \(-0.650165\pi\)
−0.454453 + 0.890771i \(0.650165\pi\)
\(564\) 9166.16 0.684335
\(565\) 17798.2 1.32527
\(566\) 1736.11 0.128929
\(567\) 567.000 0.0419961
\(568\) 275.376 0.0203424
\(569\) 22369.0 1.64808 0.824039 0.566533i \(-0.191716\pi\)
0.824039 + 0.566533i \(0.191716\pi\)
\(570\) −746.005 −0.0548188
\(571\) −14445.2 −1.05869 −0.529346 0.848406i \(-0.677563\pi\)
−0.529346 + 0.848406i \(0.677563\pi\)
\(572\) 3080.19 0.225156
\(573\) 5747.07 0.419000
\(574\) −1268.47 −0.0922387
\(575\) −31386.9 −2.27639
\(576\) −3553.70 −0.257067
\(577\) 1782.41 0.128601 0.0643004 0.997931i \(-0.479518\pi\)
0.0643004 + 0.997931i \(0.479518\pi\)
\(578\) −1809.26 −0.130200
\(579\) −7184.12 −0.515651
\(580\) −39982.1 −2.86235
\(581\) −2986.93 −0.213285
\(582\) −1588.15 −0.113112
\(583\) −6572.58 −0.466910
\(584\) 3826.16 0.271109
\(585\) 6127.56 0.433066
\(586\) 1253.29 0.0883499
\(587\) 23646.2 1.66266 0.831330 0.555779i \(-0.187580\pi\)
0.831330 + 0.555779i \(0.187580\pi\)
\(588\) −1129.64 −0.0792275
\(589\) −4537.26 −0.317410
\(590\) 7017.12 0.489644
\(591\) 4070.42 0.283307
\(592\) 11086.6 0.769690
\(593\) −2871.03 −0.198818 −0.0994089 0.995047i \(-0.531695\pi\)
−0.0994089 + 0.995047i \(0.531695\pi\)
\(594\) −166.781 −0.0115204
\(595\) 5378.60 0.370590
\(596\) −6759.86 −0.464588
\(597\) 6364.36 0.436308
\(598\) −2865.66 −0.195963
\(599\) 6685.11 0.456004 0.228002 0.973661i \(-0.426781\pi\)
0.228002 + 0.973661i \(0.426781\pi\)
\(600\) −5921.89 −0.402934
\(601\) 8875.42 0.602389 0.301195 0.953563i \(-0.402615\pi\)
0.301195 + 0.953563i \(0.402615\pi\)
\(602\) −14.4505 −0.000978333 0
\(603\) −6576.86 −0.444163
\(604\) 9338.23 0.629085
\(605\) 2260.84 0.151928
\(606\) 618.177 0.0414385
\(607\) 379.477 0.0253748 0.0126874 0.999920i \(-0.495961\pi\)
0.0126874 + 0.999920i \(0.495961\pi\)
\(608\) −2422.30 −0.161574
\(609\) 5847.56 0.389089
\(610\) −7006.71 −0.465071
\(611\) −14487.8 −0.959267
\(612\) −2844.15 −0.187856
\(613\) 17480.5 1.15177 0.575883 0.817532i \(-0.304658\pi\)
0.575883 + 0.817532i \(0.304658\pi\)
\(614\) −5428.55 −0.356805
\(615\) −18088.3 −1.18600
\(616\) 678.198 0.0443594
\(617\) −9901.31 −0.646048 −0.323024 0.946391i \(-0.604699\pi\)
−0.323024 + 0.946391i \(0.604699\pi\)
\(618\) 1697.03 0.110461
\(619\) −152.433 −0.00989788 −0.00494894 0.999988i \(-0.501575\pi\)
−0.00494894 + 0.999988i \(0.501575\pi\)
\(620\) −27489.0 −1.78062
\(621\) −3781.28 −0.244344
\(622\) −4026.88 −0.259587
\(623\) −6297.85 −0.405005
\(624\) 6179.73 0.396454
\(625\) 6588.63 0.421672
\(626\) 165.983 0.0105974
\(627\) 782.094 0.0498147
\(628\) −9425.74 −0.598930
\(629\) 8064.84 0.511234
\(630\) 661.023 0.0418028
\(631\) −23661.7 −1.49280 −0.746399 0.665499i \(-0.768219\pi\)
−0.746399 + 0.665499i \(0.768219\pi\)
\(632\) 6887.70 0.433510
\(633\) 13476.4 0.846189
\(634\) 4037.46 0.252915
\(635\) 4726.30 0.295366
\(636\) −13774.9 −0.858823
\(637\) 1785.48 0.111057
\(638\) −1720.04 −0.106735
\(639\) −281.386 −0.0174201
\(640\) −19420.7 −1.19948
\(641\) 25340.3 1.56144 0.780719 0.624882i \(-0.214853\pi\)
0.780719 + 0.624882i \(0.214853\pi\)
\(642\) −2848.43 −0.175107
\(643\) −1774.90 −0.108858 −0.0544288 0.998518i \(-0.517334\pi\)
−0.0544288 + 0.998518i \(0.517334\pi\)
\(644\) 7533.51 0.460966
\(645\) −206.063 −0.0125794
\(646\) −547.295 −0.0333329
\(647\) −23685.1 −1.43919 −0.719595 0.694394i \(-0.755672\pi\)
−0.719595 + 0.694394i \(0.755672\pi\)
\(648\) −713.429 −0.0432502
\(649\) −7356.57 −0.444947
\(650\) 4585.90 0.276729
\(651\) 4020.39 0.242045
\(652\) 3390.66 0.203663
\(653\) −1969.99 −0.118058 −0.0590288 0.998256i \(-0.518800\pi\)
−0.0590288 + 0.998256i \(0.518800\pi\)
\(654\) −3046.82 −0.182172
\(655\) −27978.1 −1.66900
\(656\) −18242.4 −1.08574
\(657\) −3909.67 −0.232163
\(658\) −1562.90 −0.0925958
\(659\) 15314.6 0.905270 0.452635 0.891696i \(-0.350484\pi\)
0.452635 + 0.891696i \(0.350484\pi\)
\(660\) 4738.31 0.279452
\(661\) 31443.3 1.85023 0.925115 0.379687i \(-0.123968\pi\)
0.925115 + 0.379687i \(0.123968\pi\)
\(662\) −1616.64 −0.0949130
\(663\) 4495.39 0.263328
\(664\) 3758.31 0.219655
\(665\) −3099.76 −0.180757
\(666\) 991.158 0.0576676
\(667\) −38996.9 −2.26382
\(668\) 13782.7 0.798305
\(669\) 15427.0 0.891546
\(670\) −7667.47 −0.442120
\(671\) 7345.67 0.422617
\(672\) 2146.36 0.123210
\(673\) −8079.34 −0.462757 −0.231379 0.972864i \(-0.574324\pi\)
−0.231379 + 0.972864i \(0.574324\pi\)
\(674\) −6536.29 −0.373543
\(675\) 6051.14 0.345050
\(676\) 6679.81 0.380053
\(677\) −15701.7 −0.891383 −0.445692 0.895187i \(-0.647042\pi\)
−0.445692 + 0.895187i \(0.647042\pi\)
\(678\) 1604.73 0.0908988
\(679\) −6599.01 −0.372970
\(680\) −6767.63 −0.381657
\(681\) 8963.58 0.504384
\(682\) −1182.58 −0.0663980
\(683\) 29752.9 1.66686 0.833430 0.552626i \(-0.186374\pi\)
0.833430 + 0.552626i \(0.186374\pi\)
\(684\) 1639.12 0.0916279
\(685\) −22562.8 −1.25851
\(686\) 192.613 0.0107201
\(687\) −15364.1 −0.853244
\(688\) −207.817 −0.0115159
\(689\) 21772.2 1.20386
\(690\) −4408.31 −0.243219
\(691\) 3082.57 0.169706 0.0848528 0.996393i \(-0.472958\pi\)
0.0848528 + 0.996393i \(0.472958\pi\)
\(692\) −29394.1 −1.61473
\(693\) −693.000 −0.0379869
\(694\) −2669.01 −0.145986
\(695\) 3970.84 0.216723
\(696\) −7357.71 −0.400709
\(697\) −13270.2 −0.721156
\(698\) −4166.77 −0.225952
\(699\) 3310.74 0.179147
\(700\) −12055.8 −0.650953
\(701\) 19301.0 1.03993 0.519963 0.854189i \(-0.325946\pi\)
0.519963 + 0.854189i \(0.325946\pi\)
\(702\) 552.477 0.0297036
\(703\) −4647.88 −0.249357
\(704\) 4343.41 0.232526
\(705\) −22286.8 −1.19060
\(706\) −290.801 −0.0155020
\(707\) 2568.61 0.136637
\(708\) −15418.0 −0.818425
\(709\) 28531.3 1.51130 0.755652 0.654973i \(-0.227320\pi\)
0.755652 + 0.654973i \(0.227320\pi\)
\(710\) −328.047 −0.0173400
\(711\) −7038.03 −0.371233
\(712\) 7924.29 0.417100
\(713\) −26811.6 −1.40828
\(714\) 484.949 0.0254184
\(715\) −7489.24 −0.391723
\(716\) −10110.3 −0.527711
\(717\) −5394.53 −0.280980
\(718\) −5544.97 −0.288212
\(719\) 3884.65 0.201492 0.100746 0.994912i \(-0.467877\pi\)
0.100746 + 0.994912i \(0.467877\pi\)
\(720\) 9506.40 0.492059
\(721\) 7051.43 0.364229
\(722\) −3536.28 −0.182281
\(723\) −22026.3 −1.13301
\(724\) −5184.70 −0.266143
\(725\) 62406.5 3.19685
\(726\) 203.844 0.0104206
\(727\) 23489.8 1.19833 0.599167 0.800624i \(-0.295499\pi\)
0.599167 + 0.800624i \(0.295499\pi\)
\(728\) −2246.59 −0.114374
\(729\) 729.000 0.0370370
\(730\) −4557.99 −0.231094
\(731\) −151.175 −0.00764897
\(732\) 15395.2 0.777352
\(733\) 30288.1 1.52622 0.763109 0.646270i \(-0.223672\pi\)
0.763109 + 0.646270i \(0.223672\pi\)
\(734\) 1178.42 0.0592593
\(735\) 2746.64 0.137839
\(736\) −14313.9 −0.716870
\(737\) 8038.39 0.401761
\(738\) −1630.89 −0.0813469
\(739\) 29765.0 1.48163 0.740815 0.671709i \(-0.234440\pi\)
0.740815 + 0.671709i \(0.234440\pi\)
\(740\) −28159.2 −1.39885
\(741\) −2590.75 −0.128440
\(742\) 2348.72 0.116205
\(743\) −1200.21 −0.0592617 −0.0296309 0.999561i \(-0.509433\pi\)
−0.0296309 + 0.999561i \(0.509433\pi\)
\(744\) −5058.66 −0.249273
\(745\) 16436.1 0.808284
\(746\) −10.9026 −0.000535082 0
\(747\) −3840.34 −0.188100
\(748\) 3476.19 0.169922
\(749\) −11835.6 −0.577389
\(750\) 3119.92 0.151898
\(751\) 441.096 0.0214325 0.0107163 0.999943i \(-0.496589\pi\)
0.0107163 + 0.999943i \(0.496589\pi\)
\(752\) −22476.6 −1.08994
\(753\) 5397.16 0.261200
\(754\) 5697.79 0.275200
\(755\) −22705.2 −1.09447
\(756\) −1452.40 −0.0698721
\(757\) −37080.3 −1.78032 −0.890162 0.455644i \(-0.849409\pi\)
−0.890162 + 0.455644i \(0.849409\pi\)
\(758\) 7042.58 0.337464
\(759\) 4621.56 0.221017
\(760\) 3900.28 0.186155
\(761\) −3056.78 −0.145609 −0.0728044 0.997346i \(-0.523195\pi\)
−0.0728044 + 0.997346i \(0.523195\pi\)
\(762\) 426.136 0.0202589
\(763\) −12660.0 −0.600685
\(764\) −14721.4 −0.697123
\(765\) 6915.34 0.326830
\(766\) 5127.95 0.241880
\(767\) 24369.3 1.14723
\(768\) 7725.50 0.362982
\(769\) 31834.7 1.49283 0.746417 0.665479i \(-0.231773\pi\)
0.746417 + 0.665479i \(0.231773\pi\)
\(770\) −807.917 −0.0378121
\(771\) −15848.1 −0.740281
\(772\) 18402.5 0.857929
\(773\) −2351.46 −0.109413 −0.0547064 0.998502i \(-0.517422\pi\)
−0.0547064 + 0.998502i \(0.517422\pi\)
\(774\) −18.5792 −0.000862809 0
\(775\) 42906.4 1.98870
\(776\) 8303.22 0.384108
\(777\) 4118.41 0.190151
\(778\) 5358.65 0.246937
\(779\) 7647.81 0.351748
\(780\) −15696.1 −0.720525
\(781\) 343.916 0.0157571
\(782\) −3234.08 −0.147891
\(783\) 7518.30 0.343144
\(784\) 2770.03 0.126186
\(785\) 22918.0 1.04201
\(786\) −2522.58 −0.114475
\(787\) −41575.3 −1.88310 −0.941550 0.336874i \(-0.890630\pi\)
−0.941550 + 0.336874i \(0.890630\pi\)
\(788\) −10426.6 −0.471361
\(789\) 9826.64 0.443394
\(790\) −8205.11 −0.369525
\(791\) 6667.90 0.299726
\(792\) 871.969 0.0391213
\(793\) −24333.2 −1.08965
\(794\) 2989.06 0.133599
\(795\) 33492.7 1.49417
\(796\) −16302.6 −0.725919
\(797\) −26199.7 −1.16442 −0.582208 0.813040i \(-0.697811\pi\)
−0.582208 + 0.813040i \(0.697811\pi\)
\(798\) −279.483 −0.0123980
\(799\) −16350.4 −0.723948
\(800\) 22906.4 1.01233
\(801\) −8097.24 −0.357181
\(802\) 3299.64 0.145280
\(803\) 4778.49 0.209999
\(804\) 16847.0 0.738989
\(805\) −18317.2 −0.801981
\(806\) 3917.41 0.171197
\(807\) 11047.1 0.481877
\(808\) −3231.96 −0.140718
\(809\) −2338.60 −0.101633 −0.0508164 0.998708i \(-0.516182\pi\)
−0.0508164 + 0.998708i \(0.516182\pi\)
\(810\) 849.886 0.0368666
\(811\) −3032.48 −0.131301 −0.0656504 0.997843i \(-0.520912\pi\)
−0.0656504 + 0.997843i \(0.520912\pi\)
\(812\) −14978.8 −0.647358
\(813\) −21903.6 −0.944886
\(814\) −1211.42 −0.0521623
\(815\) −8244.13 −0.354330
\(816\) 6974.22 0.299199
\(817\) 87.1240 0.00373082
\(818\) −3739.11 −0.159823
\(819\) 2295.62 0.0979433
\(820\) 46334.2 1.97325
\(821\) −28900.3 −1.22854 −0.614268 0.789098i \(-0.710549\pi\)
−0.614268 + 0.789098i \(0.710549\pi\)
\(822\) −2034.32 −0.0863202
\(823\) −19810.2 −0.839054 −0.419527 0.907743i \(-0.637804\pi\)
−0.419527 + 0.907743i \(0.637804\pi\)
\(824\) −8872.47 −0.375106
\(825\) −7395.84 −0.312109
\(826\) 2628.88 0.110739
\(827\) 12280.7 0.516374 0.258187 0.966095i \(-0.416875\pi\)
0.258187 + 0.966095i \(0.416875\pi\)
\(828\) 9685.94 0.406534
\(829\) −3499.72 −0.146623 −0.0733114 0.997309i \(-0.523357\pi\)
−0.0733114 + 0.997309i \(0.523357\pi\)
\(830\) −4477.16 −0.187235
\(831\) 27106.9 1.13156
\(832\) −14387.9 −0.599532
\(833\) 2015.03 0.0838136
\(834\) 358.022 0.0148649
\(835\) −33511.5 −1.38888
\(836\) −2003.37 −0.0828806
\(837\) 5169.07 0.213464
\(838\) 6128.60 0.252636
\(839\) −11751.6 −0.483562 −0.241781 0.970331i \(-0.577732\pi\)
−0.241781 + 0.970331i \(0.577732\pi\)
\(840\) −3455.97 −0.141955
\(841\) 53148.4 2.17920
\(842\) 2210.69 0.0904815
\(843\) 4955.46 0.202461
\(844\) −34520.4 −1.40787
\(845\) −16241.4 −0.661210
\(846\) −2009.44 −0.0816618
\(847\) 847.000 0.0343604
\(848\) 33777.8 1.36785
\(849\) 9274.86 0.374926
\(850\) 5175.48 0.208844
\(851\) −27465.3 −1.10634
\(852\) 720.785 0.0289832
\(853\) 1403.01 0.0563166 0.0281583 0.999603i \(-0.491036\pi\)
0.0281583 + 0.999603i \(0.491036\pi\)
\(854\) −2624.99 −0.105182
\(855\) −3985.41 −0.159413
\(856\) 14892.2 0.594632
\(857\) 15111.0 0.602311 0.301156 0.953575i \(-0.402628\pi\)
0.301156 + 0.953575i \(0.402628\pi\)
\(858\) −675.250 −0.0268679
\(859\) 18620.9 0.739623 0.369811 0.929107i \(-0.379422\pi\)
0.369811 + 0.929107i \(0.379422\pi\)
\(860\) 527.841 0.0209293
\(861\) −6776.60 −0.268230
\(862\) 7732.19 0.305521
\(863\) −33659.0 −1.32765 −0.663827 0.747886i \(-0.731069\pi\)
−0.663827 + 0.747886i \(0.731069\pi\)
\(864\) 2759.60 0.108661
\(865\) 71469.5 2.80929
\(866\) 1605.20 0.0629873
\(867\) −9665.67 −0.378620
\(868\) −10298.4 −0.402709
\(869\) 8602.04 0.335793
\(870\) 8765.02 0.341565
\(871\) −26627.8 −1.03588
\(872\) 15929.5 0.618623
\(873\) −8484.44 −0.328929
\(874\) 1863.85 0.0721345
\(875\) 12963.7 0.500861
\(876\) 10014.8 0.386267
\(877\) −2730.45 −0.105132 −0.0525659 0.998617i \(-0.516740\pi\)
−0.0525659 + 0.998617i \(0.516740\pi\)
\(878\) 4722.09 0.181507
\(879\) 6695.51 0.256921
\(880\) −11618.9 −0.445084
\(881\) −16625.5 −0.635787 −0.317894 0.948126i \(-0.602975\pi\)
−0.317894 + 0.948126i \(0.602975\pi\)
\(882\) 247.645 0.00945423
\(883\) 10063.4 0.383536 0.191768 0.981440i \(-0.438578\pi\)
0.191768 + 0.981440i \(0.438578\pi\)
\(884\) −11515.2 −0.438119
\(885\) 37487.7 1.42388
\(886\) −1986.43 −0.0753223
\(887\) 29939.9 1.13335 0.566676 0.823940i \(-0.308229\pi\)
0.566676 + 0.823940i \(0.308229\pi\)
\(888\) −5181.99 −0.195829
\(889\) 1770.66 0.0668008
\(890\) −9439.96 −0.355537
\(891\) −891.000 −0.0335013
\(892\) −39517.2 −1.48333
\(893\) 9422.94 0.353109
\(894\) 1481.92 0.0554394
\(895\) 24582.5 0.918103
\(896\) −7275.74 −0.271278
\(897\) −15309.3 −0.569859
\(898\) 266.075 0.00988756
\(899\) 53309.5 1.97772
\(900\) −15500.3 −0.574086
\(901\) 24571.4 0.908536
\(902\) 1993.31 0.0735810
\(903\) −77.1991 −0.00284499
\(904\) −8389.90 −0.308677
\(905\) 12606.2 0.463032
\(906\) −2047.16 −0.0750688
\(907\) 296.554 0.0108566 0.00542829 0.999985i \(-0.498272\pi\)
0.00542829 + 0.999985i \(0.498272\pi\)
\(908\) −22960.7 −0.839182
\(909\) 3302.50 0.120503
\(910\) 2676.29 0.0974926
\(911\) −3552.96 −0.129215 −0.0646074 0.997911i \(-0.520580\pi\)
−0.0646074 + 0.997911i \(0.520580\pi\)
\(912\) −4019.34 −0.145936
\(913\) 4693.75 0.170143
\(914\) 300.730 0.0108832
\(915\) −37432.2 −1.35243
\(916\) 39356.1 1.41961
\(917\) −10481.7 −0.377465
\(918\) 623.505 0.0224169
\(919\) −32047.3 −1.15032 −0.575159 0.818042i \(-0.695060\pi\)
−0.575159 + 0.818042i \(0.695060\pi\)
\(920\) 23047.6 0.825931
\(921\) −29001.1 −1.03759
\(922\) 603.696 0.0215636
\(923\) −1139.25 −0.0406272
\(924\) 1775.16 0.0632017
\(925\) 43952.5 1.56232
\(926\) −6386.98 −0.226662
\(927\) 9066.12 0.321219
\(928\) 28460.2 1.00674
\(929\) 5628.82 0.198790 0.0993949 0.995048i \(-0.468309\pi\)
0.0993949 + 0.995048i \(0.468309\pi\)
\(930\) 6026.23 0.212481
\(931\) −1161.29 −0.0408805
\(932\) −8480.63 −0.298060
\(933\) −21512.9 −0.754877
\(934\) −8519.36 −0.298460
\(935\) −8452.08 −0.295629
\(936\) −2888.47 −0.100868
\(937\) −41269.1 −1.43885 −0.719425 0.694570i \(-0.755595\pi\)
−0.719425 + 0.694570i \(0.755595\pi\)
\(938\) −2872.53 −0.0999909
\(939\) 886.733 0.0308173
\(940\) 57088.9 1.98089
\(941\) 2086.74 0.0722909 0.0361454 0.999347i \(-0.488492\pi\)
0.0361454 + 0.999347i \(0.488492\pi\)
\(942\) 2066.35 0.0714705
\(943\) 45192.6 1.56063
\(944\) 37806.9 1.30351
\(945\) 3531.40 0.121562
\(946\) 22.7079 0.000780440 0
\(947\) −21040.7 −0.721995 −0.360998 0.932567i \(-0.617564\pi\)
−0.360998 + 0.932567i \(0.617564\pi\)
\(948\) 18028.3 0.617650
\(949\) −15829.2 −0.541450
\(950\) −2982.70 −0.101865
\(951\) 21569.4 0.735475
\(952\) −2535.42 −0.0863166
\(953\) 25644.0 0.871658 0.435829 0.900030i \(-0.356455\pi\)
0.435829 + 0.900030i \(0.356455\pi\)
\(954\) 3019.79 0.102484
\(955\) 35794.0 1.21284
\(956\) 13818.4 0.467488
\(957\) −9189.03 −0.310386
\(958\) −1710.06 −0.0576719
\(959\) −8452.91 −0.284628
\(960\) −22133.2 −0.744110
\(961\) 6860.94 0.230302
\(962\) 4012.92 0.134492
\(963\) −15217.2 −0.509209
\(964\) 56421.4 1.88507
\(965\) −44744.3 −1.49261
\(966\) −1651.52 −0.0550071
\(967\) 28262.5 0.939878 0.469939 0.882699i \(-0.344276\pi\)
0.469939 + 0.882699i \(0.344276\pi\)
\(968\) −1065.74 −0.0353865
\(969\) −2923.83 −0.0969318
\(970\) −9891.37 −0.327415
\(971\) 19180.0 0.633899 0.316950 0.948442i \(-0.397341\pi\)
0.316950 + 0.948442i \(0.397341\pi\)
\(972\) −1867.37 −0.0616214
\(973\) 1487.63 0.0490147
\(974\) −9521.76 −0.313241
\(975\) 24499.4 0.804726
\(976\) −37750.9 −1.23809
\(977\) −35269.8 −1.15495 −0.577473 0.816410i \(-0.695961\pi\)
−0.577473 + 0.816410i \(0.695961\pi\)
\(978\) −743.312 −0.0243032
\(979\) 9896.62 0.323082
\(980\) −7035.68 −0.229333
\(981\) −16277.1 −0.529754
\(982\) −7674.73 −0.249400
\(983\) 40100.1 1.30111 0.650557 0.759458i \(-0.274536\pi\)
0.650557 + 0.759458i \(0.274536\pi\)
\(984\) 8526.67 0.276240
\(985\) 25351.5 0.820066
\(986\) 6430.32 0.207691
\(987\) −8349.51 −0.269268
\(988\) 6636.35 0.213695
\(989\) 514.835 0.0165529
\(990\) −1038.75 −0.0333471
\(991\) 3191.81 0.102312 0.0511560 0.998691i \(-0.483709\pi\)
0.0511560 + 0.998691i \(0.483709\pi\)
\(992\) 19567.3 0.626272
\(993\) −8636.61 −0.276007
\(994\) −122.899 −0.00392165
\(995\) 39638.6 1.26294
\(996\) 9837.24 0.312957
\(997\) 8275.27 0.262869 0.131435 0.991325i \(-0.458042\pi\)
0.131435 + 0.991325i \(0.458042\pi\)
\(998\) −6143.06 −0.194845
\(999\) 5295.09 0.167697
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.a.g.1.2 2
3.2 odd 2 693.4.a.j.1.1 2
7.6 odd 2 1617.4.a.h.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.g.1.2 2 1.1 even 1 trivial
693.4.a.j.1.1 2 3.2 odd 2
1617.4.a.h.1.2 2 7.6 odd 2