Newspace parameters
Level: | \( N \) | \(=\) | \( 231 = 3 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 231.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(1.84454428669\) |
Analytic rank: | \(0\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.229.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{3} - 4x - 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - 4x - 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - 3 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + 3 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.93543 | 1.00000 | 1.74590 | 4.18953 | −1.93543 | −1.00000 | 0.491797 | 1.00000 | −8.10856 | |||||||||||||||||||||||||||
1.2 | 1.46260 | 1.00000 | 0.139194 | 2.39821 | 1.46260 | −1.00000 | −2.72161 | 1.00000 | 3.50761 | ||||||||||||||||||||||||||||
1.3 | 2.47283 | 1.00000 | 4.11491 | −2.58774 | 2.47283 | −1.00000 | 5.22982 | 1.00000 | −6.39905 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
\(7\) | \(1\) |
\(11\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 231.2.a.e | ✓ | 3 |
3.b | odd | 2 | 1 | 693.2.a.l | 3 | ||
4.b | odd | 2 | 1 | 3696.2.a.bo | 3 | ||
5.b | even | 2 | 1 | 5775.2.a.bp | 3 | ||
7.b | odd | 2 | 1 | 1617.2.a.t | 3 | ||
11.b | odd | 2 | 1 | 2541.2.a.bg | 3 | ||
21.c | even | 2 | 1 | 4851.2.a.bi | 3 | ||
33.d | even | 2 | 1 | 7623.2.a.cd | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
231.2.a.e | ✓ | 3 | 1.a | even | 1 | 1 | trivial |
693.2.a.l | 3 | 3.b | odd | 2 | 1 | ||
1617.2.a.t | 3 | 7.b | odd | 2 | 1 | ||
2541.2.a.bg | 3 | 11.b | odd | 2 | 1 | ||
3696.2.a.bo | 3 | 4.b | odd | 2 | 1 | ||
4851.2.a.bi | 3 | 21.c | even | 2 | 1 | ||
5775.2.a.bp | 3 | 5.b | even | 2 | 1 | ||
7623.2.a.cd | 3 | 33.d | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} - 2T_{2}^{2} - 4T_{2} + 7 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(231))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} - 2 T^{2} - 4 T + 7 \)
$3$
\( (T - 1)^{3} \)
$5$
\( T^{3} - 4 T^{2} - 7 T + 26 \)
$7$
\( (T + 1)^{3} \)
$11$
\( (T + 1)^{3} \)
$13$
\( T^{3} + 4 T^{2} - 27 T - 94 \)
$17$
\( T^{3} - 8 T^{2} - 40 T + 328 \)
$19$
\( T^{3} + 8 T^{2} + 15 T + 4 \)
$23$
\( T^{3} - 10 T^{2} + 12 T + 64 \)
$29$
\( T^{3} + 4 T^{2} - 27 T - 94 \)
$31$
\( T^{3} + 2 T^{2} - 76 T - 256 \)
$37$
\( T^{3} - 43T + 106 \)
$41$
\( T^{3} - 14 T^{2} + 40 T + 32 \)
$43$
\( T^{3} + 14 T^{2} - 44 T - 848 \)
$47$
\( T^{3} - 61T + 32 \)
$53$
\( T^{3} - 16T + 8 \)
$59$
\( T^{3} - 57T - 52 \)
$61$
\( (T + 2)^{3} \)
$67$
\( T^{3} + 4 T^{2} - 85 T - 236 \)
$71$
\( T^{3} + 12 T^{2} - 16 T - 256 \)
$73$
\( T^{3} + 20 T^{2} + 101 T + 134 \)
$79$
\( T^{3} - 12 T^{2} - 16 T + 256 \)
$83$
\( T^{3} - 6 T^{2} - 132 T + 496 \)
$89$
\( T^{3} - 26 T^{2} + 140 T + 328 \)
$97$
\( T^{3} + 4 T^{2} - 120 T - 232 \)
show more
show less