Properties

Label 2299.2.a.y.1.11
Level $2299$
Weight $2$
Character 2299.1
Self dual yes
Analytic conductor $18.358$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,2,Mod(1,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,1,4,21,18,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} - 30 x^{18} + 28 x^{17} + 374 x^{16} - 321 x^{15} - 2521 x^{14} + 1965 x^{13} + \cdots + 80 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(0.240189\) of defining polynomial
Character \(\chi\) \(=\) 2299.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.240189 q^{2} +2.97370 q^{3} -1.94231 q^{4} +3.63017 q^{5} +0.714249 q^{6} -3.43180 q^{7} -0.946898 q^{8} +5.84289 q^{9} +0.871926 q^{10} -5.77585 q^{12} +4.97039 q^{13} -0.824280 q^{14} +10.7950 q^{15} +3.65718 q^{16} +1.72267 q^{17} +1.40340 q^{18} -1.00000 q^{19} -7.05092 q^{20} -10.2052 q^{21} +3.59285 q^{23} -2.81579 q^{24} +8.17816 q^{25} +1.19383 q^{26} +8.45391 q^{27} +6.66562 q^{28} -0.308840 q^{29} +2.59285 q^{30} -4.91113 q^{31} +2.77221 q^{32} +0.413765 q^{34} -12.4580 q^{35} -11.3487 q^{36} -4.59065 q^{37} -0.240189 q^{38} +14.7805 q^{39} -3.43740 q^{40} +5.77995 q^{41} -2.45116 q^{42} -8.61391 q^{43} +21.2107 q^{45} +0.862961 q^{46} +7.87037 q^{47} +10.8754 q^{48} +4.77727 q^{49} +1.96430 q^{50} +5.12270 q^{51} -9.65404 q^{52} -2.42159 q^{53} +2.03053 q^{54} +3.24957 q^{56} -2.97370 q^{57} -0.0741798 q^{58} -3.31161 q^{59} -20.9673 q^{60} -2.56732 q^{61} -1.17960 q^{62} -20.0517 q^{63} -6.64852 q^{64} +18.0434 q^{65} +3.26451 q^{67} -3.34595 q^{68} +10.6841 q^{69} -2.99228 q^{70} -3.71792 q^{71} -5.53262 q^{72} +10.7657 q^{73} -1.10262 q^{74} +24.3194 q^{75} +1.94231 q^{76} +3.55010 q^{78} +10.7108 q^{79} +13.2762 q^{80} +7.61072 q^{81} +1.38828 q^{82} +6.50944 q^{83} +19.8216 q^{84} +6.25358 q^{85} -2.06896 q^{86} -0.918398 q^{87} +3.00520 q^{89} +5.09457 q^{90} -17.0574 q^{91} -6.97842 q^{92} -14.6042 q^{93} +1.89037 q^{94} -3.63017 q^{95} +8.24372 q^{96} +4.97012 q^{97} +1.14745 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{2} + 4 q^{3} + 21 q^{4} + 18 q^{5} - 10 q^{6} - 2 q^{7} + 3 q^{8} + 32 q^{9} + 11 q^{10} + 10 q^{12} + q^{13} + 25 q^{14} + 28 q^{15} + 27 q^{16} + 2 q^{17} + 4 q^{18} - 20 q^{19} + 47 q^{20}+ \cdots + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.240189 0.169839 0.0849195 0.996388i \(-0.472937\pi\)
0.0849195 + 0.996388i \(0.472937\pi\)
\(3\) 2.97370 1.71687 0.858433 0.512925i \(-0.171438\pi\)
0.858433 + 0.512925i \(0.171438\pi\)
\(4\) −1.94231 −0.971155
\(5\) 3.63017 1.62346 0.811732 0.584031i \(-0.198525\pi\)
0.811732 + 0.584031i \(0.198525\pi\)
\(6\) 0.714249 0.291591
\(7\) −3.43180 −1.29710 −0.648550 0.761172i \(-0.724624\pi\)
−0.648550 + 0.761172i \(0.724624\pi\)
\(8\) −0.946898 −0.334779
\(9\) 5.84289 1.94763
\(10\) 0.871926 0.275727
\(11\) 0 0
\(12\) −5.77585 −1.66734
\(13\) 4.97039 1.37854 0.689269 0.724505i \(-0.257932\pi\)
0.689269 + 0.724505i \(0.257932\pi\)
\(14\) −0.824280 −0.220298
\(15\) 10.7950 2.78727
\(16\) 3.65718 0.914296
\(17\) 1.72267 0.417808 0.208904 0.977936i \(-0.433010\pi\)
0.208904 + 0.977936i \(0.433010\pi\)
\(18\) 1.40340 0.330784
\(19\) −1.00000 −0.229416
\(20\) −7.05092 −1.57663
\(21\) −10.2052 −2.22695
\(22\) 0 0
\(23\) 3.59285 0.749161 0.374580 0.927194i \(-0.377787\pi\)
0.374580 + 0.927194i \(0.377787\pi\)
\(24\) −2.81579 −0.574771
\(25\) 8.17816 1.63563
\(26\) 1.19383 0.234130
\(27\) 8.45391 1.62696
\(28\) 6.66562 1.25968
\(29\) −0.308840 −0.0573501 −0.0286751 0.999589i \(-0.509129\pi\)
−0.0286751 + 0.999589i \(0.509129\pi\)
\(30\) 2.59285 0.473387
\(31\) −4.91113 −0.882064 −0.441032 0.897491i \(-0.645388\pi\)
−0.441032 + 0.897491i \(0.645388\pi\)
\(32\) 2.77221 0.490062
\(33\) 0 0
\(34\) 0.413765 0.0709601
\(35\) −12.4580 −2.10579
\(36\) −11.3487 −1.89145
\(37\) −4.59065 −0.754698 −0.377349 0.926071i \(-0.623164\pi\)
−0.377349 + 0.926071i \(0.623164\pi\)
\(38\) −0.240189 −0.0389637
\(39\) 14.7805 2.36677
\(40\) −3.43740 −0.543501
\(41\) 5.77995 0.902677 0.451338 0.892353i \(-0.350947\pi\)
0.451338 + 0.892353i \(0.350947\pi\)
\(42\) −2.45116 −0.378222
\(43\) −8.61391 −1.31361 −0.656805 0.754061i \(-0.728092\pi\)
−0.656805 + 0.754061i \(0.728092\pi\)
\(44\) 0 0
\(45\) 21.2107 3.16191
\(46\) 0.862961 0.127237
\(47\) 7.87037 1.14801 0.574005 0.818851i \(-0.305389\pi\)
0.574005 + 0.818851i \(0.305389\pi\)
\(48\) 10.8754 1.56972
\(49\) 4.77727 0.682467
\(50\) 1.96430 0.277794
\(51\) 5.12270 0.717321
\(52\) −9.65404 −1.33877
\(53\) −2.42159 −0.332631 −0.166315 0.986073i \(-0.553187\pi\)
−0.166315 + 0.986073i \(0.553187\pi\)
\(54\) 2.03053 0.276321
\(55\) 0 0
\(56\) 3.24957 0.434242
\(57\) −2.97370 −0.393876
\(58\) −0.0741798 −0.00974029
\(59\) −3.31161 −0.431135 −0.215568 0.976489i \(-0.569160\pi\)
−0.215568 + 0.976489i \(0.569160\pi\)
\(60\) −20.9673 −2.70687
\(61\) −2.56732 −0.328712 −0.164356 0.986401i \(-0.552555\pi\)
−0.164356 + 0.986401i \(0.552555\pi\)
\(62\) −1.17960 −0.149809
\(63\) −20.0517 −2.52627
\(64\) −6.64852 −0.831065
\(65\) 18.0434 2.23801
\(66\) 0 0
\(67\) 3.26451 0.398823 0.199411 0.979916i \(-0.436097\pi\)
0.199411 + 0.979916i \(0.436097\pi\)
\(68\) −3.34595 −0.405756
\(69\) 10.6841 1.28621
\(70\) −2.99228 −0.357646
\(71\) −3.71792 −0.441236 −0.220618 0.975360i \(-0.570807\pi\)
−0.220618 + 0.975360i \(0.570807\pi\)
\(72\) −5.53262 −0.652026
\(73\) 10.7657 1.26003 0.630014 0.776584i \(-0.283049\pi\)
0.630014 + 0.776584i \(0.283049\pi\)
\(74\) −1.10262 −0.128177
\(75\) 24.3194 2.80816
\(76\) 1.94231 0.222798
\(77\) 0 0
\(78\) 3.55010 0.401969
\(79\) 10.7108 1.20506 0.602529 0.798097i \(-0.294160\pi\)
0.602529 + 0.798097i \(0.294160\pi\)
\(80\) 13.2762 1.48433
\(81\) 7.61072 0.845635
\(82\) 1.38828 0.153310
\(83\) 6.50944 0.714504 0.357252 0.934008i \(-0.383714\pi\)
0.357252 + 0.934008i \(0.383714\pi\)
\(84\) 19.8216 2.16271
\(85\) 6.25358 0.678296
\(86\) −2.06896 −0.223102
\(87\) −0.918398 −0.0984626
\(88\) 0 0
\(89\) 3.00520 0.318550 0.159275 0.987234i \(-0.449084\pi\)
0.159275 + 0.987234i \(0.449084\pi\)
\(90\) 5.09457 0.537015
\(91\) −17.0574 −1.78810
\(92\) −6.97842 −0.727551
\(93\) −14.6042 −1.51439
\(94\) 1.89037 0.194977
\(95\) −3.63017 −0.372448
\(96\) 8.24372 0.841371
\(97\) 4.97012 0.504639 0.252320 0.967644i \(-0.418807\pi\)
0.252320 + 0.967644i \(0.418807\pi\)
\(98\) 1.14745 0.115910
\(99\) 0 0
\(100\) −15.8845 −1.58845
\(101\) −0.271898 −0.0270549 −0.0135274 0.999909i \(-0.504306\pi\)
−0.0135274 + 0.999909i \(0.504306\pi\)
\(102\) 1.23041 0.121829
\(103\) 14.1811 1.39730 0.698652 0.715462i \(-0.253784\pi\)
0.698652 + 0.715462i \(0.253784\pi\)
\(104\) −4.70645 −0.461506
\(105\) −37.0465 −3.61537
\(106\) −0.581638 −0.0564937
\(107\) 10.8716 1.05099 0.525497 0.850795i \(-0.323879\pi\)
0.525497 + 0.850795i \(0.323879\pi\)
\(108\) −16.4201 −1.58003
\(109\) 4.70206 0.450376 0.225188 0.974315i \(-0.427700\pi\)
0.225188 + 0.974315i \(0.427700\pi\)
\(110\) 0 0
\(111\) −13.6512 −1.29572
\(112\) −12.5507 −1.18593
\(113\) −19.4296 −1.82779 −0.913894 0.405954i \(-0.866939\pi\)
−0.913894 + 0.405954i \(0.866939\pi\)
\(114\) −0.714249 −0.0668955
\(115\) 13.0427 1.21623
\(116\) 0.599863 0.0556959
\(117\) 29.0415 2.68488
\(118\) −0.795412 −0.0732236
\(119\) −5.91185 −0.541939
\(120\) −10.2218 −0.933119
\(121\) 0 0
\(122\) −0.616642 −0.0558281
\(123\) 17.1878 1.54978
\(124\) 9.53893 0.856621
\(125\) 11.5373 1.03193
\(126\) −4.81618 −0.429059
\(127\) 11.3068 1.00332 0.501659 0.865066i \(-0.332723\pi\)
0.501659 + 0.865066i \(0.332723\pi\)
\(128\) −7.14132 −0.631209
\(129\) −25.6152 −2.25529
\(130\) 4.33381 0.380101
\(131\) −18.9828 −1.65854 −0.829270 0.558849i \(-0.811243\pi\)
−0.829270 + 0.558849i \(0.811243\pi\)
\(132\) 0 0
\(133\) 3.43180 0.297575
\(134\) 0.784097 0.0677357
\(135\) 30.6892 2.64130
\(136\) −1.63119 −0.139873
\(137\) −3.89700 −0.332943 −0.166472 0.986046i \(-0.553237\pi\)
−0.166472 + 0.986046i \(0.553237\pi\)
\(138\) 2.56619 0.218448
\(139\) −11.5200 −0.977116 −0.488558 0.872532i \(-0.662477\pi\)
−0.488558 + 0.872532i \(0.662477\pi\)
\(140\) 24.1974 2.04505
\(141\) 23.4041 1.97098
\(142\) −0.893002 −0.0749391
\(143\) 0 0
\(144\) 21.3685 1.78071
\(145\) −1.12114 −0.0931058
\(146\) 2.58580 0.214002
\(147\) 14.2062 1.17171
\(148\) 8.91646 0.732929
\(149\) −1.41055 −0.115557 −0.0577785 0.998329i \(-0.518402\pi\)
−0.0577785 + 0.998329i \(0.518402\pi\)
\(150\) 5.84124 0.476935
\(151\) −18.9562 −1.54263 −0.771317 0.636451i \(-0.780402\pi\)
−0.771317 + 0.636451i \(0.780402\pi\)
\(152\) 0.946898 0.0768036
\(153\) 10.0654 0.813736
\(154\) 0 0
\(155\) −17.8282 −1.43200
\(156\) −28.7082 −2.29850
\(157\) −2.29137 −0.182871 −0.0914355 0.995811i \(-0.529146\pi\)
−0.0914355 + 0.995811i \(0.529146\pi\)
\(158\) 2.57261 0.204666
\(159\) −7.20108 −0.571083
\(160\) 10.0636 0.795598
\(161\) −12.3299 −0.971736
\(162\) 1.82801 0.143622
\(163\) −9.98909 −0.782406 −0.391203 0.920304i \(-0.627941\pi\)
−0.391203 + 0.920304i \(0.627941\pi\)
\(164\) −11.2265 −0.876639
\(165\) 0 0
\(166\) 1.56349 0.121351
\(167\) −23.7396 −1.83703 −0.918513 0.395391i \(-0.870609\pi\)
−0.918513 + 0.395391i \(0.870609\pi\)
\(168\) 9.66324 0.745535
\(169\) 11.7048 0.900368
\(170\) 1.50204 0.115201
\(171\) −5.84289 −0.446817
\(172\) 16.7309 1.27572
\(173\) −0.404563 −0.0307583 −0.0153792 0.999882i \(-0.504896\pi\)
−0.0153792 + 0.999882i \(0.504896\pi\)
\(174\) −0.220589 −0.0167228
\(175\) −28.0658 −2.12158
\(176\) 0 0
\(177\) −9.84774 −0.740202
\(178\) 0.721814 0.0541022
\(179\) −6.29255 −0.470327 −0.235164 0.971956i \(-0.575563\pi\)
−0.235164 + 0.971956i \(0.575563\pi\)
\(180\) −41.1978 −3.07070
\(181\) −18.1010 −1.34544 −0.672719 0.739898i \(-0.734874\pi\)
−0.672719 + 0.739898i \(0.734874\pi\)
\(182\) −4.09699 −0.303689
\(183\) −7.63445 −0.564355
\(184\) −3.40206 −0.250803
\(185\) −16.6649 −1.22522
\(186\) −3.50777 −0.257202
\(187\) 0 0
\(188\) −15.2867 −1.11490
\(189\) −29.0122 −2.11032
\(190\) −0.871926 −0.0632562
\(191\) −25.4096 −1.83857 −0.919286 0.393591i \(-0.871233\pi\)
−0.919286 + 0.393591i \(0.871233\pi\)
\(192\) −19.7707 −1.42683
\(193\) −7.46941 −0.537660 −0.268830 0.963188i \(-0.586637\pi\)
−0.268830 + 0.963188i \(0.586637\pi\)
\(194\) 1.19377 0.0857074
\(195\) 53.6556 3.84236
\(196\) −9.27894 −0.662781
\(197\) 4.21937 0.300617 0.150309 0.988639i \(-0.451973\pi\)
0.150309 + 0.988639i \(0.451973\pi\)
\(198\) 0 0
\(199\) 26.5503 1.88210 0.941051 0.338264i \(-0.109840\pi\)
0.941051 + 0.338264i \(0.109840\pi\)
\(200\) −7.74388 −0.547575
\(201\) 9.70766 0.684725
\(202\) −0.0653068 −0.00459497
\(203\) 1.05988 0.0743889
\(204\) −9.94986 −0.696630
\(205\) 20.9822 1.46546
\(206\) 3.40614 0.237317
\(207\) 20.9926 1.45909
\(208\) 18.1776 1.26039
\(209\) 0 0
\(210\) −8.89814 −0.614030
\(211\) 12.4040 0.853923 0.426962 0.904270i \(-0.359584\pi\)
0.426962 + 0.904270i \(0.359584\pi\)
\(212\) 4.70347 0.323036
\(213\) −11.0560 −0.757543
\(214\) 2.61123 0.178500
\(215\) −31.2700 −2.13260
\(216\) −8.00499 −0.544670
\(217\) 16.8540 1.14413
\(218\) 1.12938 0.0764913
\(219\) 32.0139 2.16330
\(220\) 0 0
\(221\) 8.56233 0.575965
\(222\) −3.27887 −0.220063
\(223\) −3.83310 −0.256683 −0.128342 0.991730i \(-0.540965\pi\)
−0.128342 + 0.991730i \(0.540965\pi\)
\(224\) −9.51368 −0.635659
\(225\) 47.7841 3.18561
\(226\) −4.66678 −0.310430
\(227\) −6.90872 −0.458548 −0.229274 0.973362i \(-0.573635\pi\)
−0.229274 + 0.973362i \(0.573635\pi\)
\(228\) 5.77585 0.382515
\(229\) 15.0112 0.991966 0.495983 0.868332i \(-0.334808\pi\)
0.495983 + 0.868332i \(0.334808\pi\)
\(230\) 3.13270 0.206564
\(231\) 0 0
\(232\) 0.292440 0.0191996
\(233\) −14.2940 −0.936433 −0.468217 0.883614i \(-0.655103\pi\)
−0.468217 + 0.883614i \(0.655103\pi\)
\(234\) 6.97543 0.455998
\(235\) 28.5708 1.86375
\(236\) 6.43218 0.418699
\(237\) 31.8507 2.06892
\(238\) −1.41996 −0.0920423
\(239\) −18.4968 −1.19646 −0.598230 0.801324i \(-0.704129\pi\)
−0.598230 + 0.801324i \(0.704129\pi\)
\(240\) 39.4795 2.54839
\(241\) −19.9707 −1.28642 −0.643212 0.765688i \(-0.722399\pi\)
−0.643212 + 0.765688i \(0.722399\pi\)
\(242\) 0 0
\(243\) −2.72974 −0.175113
\(244\) 4.98654 0.319230
\(245\) 17.3423 1.10796
\(246\) 4.12832 0.263212
\(247\) −4.97039 −0.316258
\(248\) 4.65033 0.295297
\(249\) 19.3571 1.22671
\(250\) 2.77112 0.175261
\(251\) −6.86515 −0.433324 −0.216662 0.976247i \(-0.569517\pi\)
−0.216662 + 0.976247i \(0.569517\pi\)
\(252\) 38.9465 2.45340
\(253\) 0 0
\(254\) 2.71577 0.170402
\(255\) 18.5963 1.16454
\(256\) 11.5818 0.723861
\(257\) 6.67199 0.416187 0.208094 0.978109i \(-0.433274\pi\)
0.208094 + 0.978109i \(0.433274\pi\)
\(258\) −6.15248 −0.383037
\(259\) 15.7542 0.978919
\(260\) −35.0458 −2.17345
\(261\) −1.80452 −0.111697
\(262\) −4.55946 −0.281685
\(263\) 15.1344 0.933226 0.466613 0.884462i \(-0.345474\pi\)
0.466613 + 0.884462i \(0.345474\pi\)
\(264\) 0 0
\(265\) −8.79079 −0.540014
\(266\) 0.824280 0.0505398
\(267\) 8.93655 0.546908
\(268\) −6.34068 −0.387319
\(269\) −9.31696 −0.568065 −0.284032 0.958815i \(-0.591672\pi\)
−0.284032 + 0.958815i \(0.591672\pi\)
\(270\) 7.37119 0.448596
\(271\) −19.0275 −1.15584 −0.577920 0.816093i \(-0.696136\pi\)
−0.577920 + 0.816093i \(0.696136\pi\)
\(272\) 6.30011 0.382000
\(273\) −50.7236 −3.06993
\(274\) −0.936016 −0.0565468
\(275\) 0 0
\(276\) −20.7517 −1.24911
\(277\) 14.9645 0.899130 0.449565 0.893248i \(-0.351579\pi\)
0.449565 + 0.893248i \(0.351579\pi\)
\(278\) −2.76698 −0.165952
\(279\) −28.6952 −1.71794
\(280\) 11.7965 0.704975
\(281\) 22.1559 1.32171 0.660855 0.750514i \(-0.270194\pi\)
0.660855 + 0.750514i \(0.270194\pi\)
\(282\) 5.62140 0.334749
\(283\) −21.8076 −1.29633 −0.648163 0.761501i \(-0.724463\pi\)
−0.648163 + 0.761501i \(0.724463\pi\)
\(284\) 7.22135 0.428508
\(285\) −10.7950 −0.639443
\(286\) 0 0
\(287\) −19.8357 −1.17086
\(288\) 16.1977 0.954460
\(289\) −14.0324 −0.825436
\(290\) −0.269286 −0.0158130
\(291\) 14.7796 0.866398
\(292\) −20.9103 −1.22368
\(293\) 10.5735 0.617710 0.308855 0.951109i \(-0.400054\pi\)
0.308855 + 0.951109i \(0.400054\pi\)
\(294\) 3.41216 0.199001
\(295\) −12.0217 −0.699932
\(296\) 4.34688 0.252657
\(297\) 0 0
\(298\) −0.338799 −0.0196261
\(299\) 17.8579 1.03275
\(300\) −47.2358 −2.72716
\(301\) 29.5613 1.70388
\(302\) −4.55307 −0.261999
\(303\) −0.808544 −0.0464496
\(304\) −3.65718 −0.209754
\(305\) −9.31983 −0.533652
\(306\) 2.41758 0.138204
\(307\) −20.5341 −1.17194 −0.585970 0.810332i \(-0.699287\pi\)
−0.585970 + 0.810332i \(0.699287\pi\)
\(308\) 0 0
\(309\) 42.1703 2.39898
\(310\) −4.28214 −0.243209
\(311\) −27.7476 −1.57342 −0.786710 0.617323i \(-0.788217\pi\)
−0.786710 + 0.617323i \(0.788217\pi\)
\(312\) −13.9956 −0.792344
\(313\) −4.89129 −0.276472 −0.138236 0.990399i \(-0.544143\pi\)
−0.138236 + 0.990399i \(0.544143\pi\)
\(314\) −0.550360 −0.0310586
\(315\) −72.7910 −4.10131
\(316\) −20.8037 −1.17030
\(317\) 8.97725 0.504212 0.252106 0.967700i \(-0.418877\pi\)
0.252106 + 0.967700i \(0.418877\pi\)
\(318\) −1.72962 −0.0969921
\(319\) 0 0
\(320\) −24.1353 −1.34920
\(321\) 32.3288 1.80442
\(322\) −2.96151 −0.165039
\(323\) −1.72267 −0.0958518
\(324\) −14.7824 −0.821242
\(325\) 40.6487 2.25478
\(326\) −2.39927 −0.132883
\(327\) 13.9825 0.773235
\(328\) −5.47302 −0.302197
\(329\) −27.0095 −1.48908
\(330\) 0 0
\(331\) −19.6144 −1.07810 −0.539051 0.842273i \(-0.681217\pi\)
−0.539051 + 0.842273i \(0.681217\pi\)
\(332\) −12.6433 −0.693894
\(333\) −26.8227 −1.46987
\(334\) −5.70198 −0.311999
\(335\) 11.8507 0.647474
\(336\) −37.3221 −2.03609
\(337\) 10.7310 0.584554 0.292277 0.956334i \(-0.405587\pi\)
0.292277 + 0.956334i \(0.405587\pi\)
\(338\) 2.81136 0.152918
\(339\) −57.7779 −3.13807
\(340\) −12.1464 −0.658730
\(341\) 0 0
\(342\) −1.40340 −0.0758870
\(343\) 7.62797 0.411872
\(344\) 8.15650 0.439769
\(345\) 38.7850 2.08811
\(346\) −0.0971714 −0.00522396
\(347\) −21.3287 −1.14499 −0.572493 0.819910i \(-0.694024\pi\)
−0.572493 + 0.819910i \(0.694024\pi\)
\(348\) 1.78381 0.0956224
\(349\) 10.5088 0.562524 0.281262 0.959631i \(-0.409247\pi\)
0.281262 + 0.959631i \(0.409247\pi\)
\(350\) −6.74109 −0.360327
\(351\) 42.0192 2.24282
\(352\) 0 0
\(353\) 2.14407 0.114117 0.0570585 0.998371i \(-0.481828\pi\)
0.0570585 + 0.998371i \(0.481828\pi\)
\(354\) −2.36532 −0.125715
\(355\) −13.4967 −0.716330
\(356\) −5.83702 −0.309361
\(357\) −17.5801 −0.930437
\(358\) −1.51140 −0.0798799
\(359\) −1.09058 −0.0575587 −0.0287794 0.999586i \(-0.509162\pi\)
−0.0287794 + 0.999586i \(0.509162\pi\)
\(360\) −20.0844 −1.05854
\(361\) 1.00000 0.0526316
\(362\) −4.34766 −0.228508
\(363\) 0 0
\(364\) 33.1308 1.73652
\(365\) 39.0813 2.04561
\(366\) −1.83371 −0.0958495
\(367\) 4.62671 0.241512 0.120756 0.992682i \(-0.461468\pi\)
0.120756 + 0.992682i \(0.461468\pi\)
\(368\) 13.1397 0.684955
\(369\) 33.7716 1.75808
\(370\) −4.00271 −0.208091
\(371\) 8.31041 0.431455
\(372\) 28.3659 1.47070
\(373\) −23.9884 −1.24207 −0.621036 0.783782i \(-0.713288\pi\)
−0.621036 + 0.783782i \(0.713288\pi\)
\(374\) 0 0
\(375\) 34.3084 1.77168
\(376\) −7.45243 −0.384330
\(377\) −1.53506 −0.0790594
\(378\) −6.96839 −0.358415
\(379\) 17.2638 0.886780 0.443390 0.896329i \(-0.353776\pi\)
0.443390 + 0.896329i \(0.353776\pi\)
\(380\) 7.05092 0.361705
\(381\) 33.6231 1.72256
\(382\) −6.10309 −0.312261
\(383\) −26.6417 −1.36133 −0.680664 0.732596i \(-0.738309\pi\)
−0.680664 + 0.732596i \(0.738309\pi\)
\(384\) −21.2361 −1.08370
\(385\) 0 0
\(386\) −1.79407 −0.0913156
\(387\) −50.3302 −2.55843
\(388\) −9.65351 −0.490083
\(389\) 19.8483 1.00635 0.503175 0.864184i \(-0.332165\pi\)
0.503175 + 0.864184i \(0.332165\pi\)
\(390\) 12.8875 0.652582
\(391\) 6.18928 0.313005
\(392\) −4.52359 −0.228476
\(393\) −56.4493 −2.84749
\(394\) 1.01344 0.0510565
\(395\) 38.8820 1.95637
\(396\) 0 0
\(397\) 6.95940 0.349282 0.174641 0.984632i \(-0.444123\pi\)
0.174641 + 0.984632i \(0.444123\pi\)
\(398\) 6.37708 0.319654
\(399\) 10.2052 0.510897
\(400\) 29.9090 1.49545
\(401\) 2.64600 0.132135 0.0660675 0.997815i \(-0.478955\pi\)
0.0660675 + 0.997815i \(0.478955\pi\)
\(402\) 2.33167 0.116293
\(403\) −24.4102 −1.21596
\(404\) 0.528110 0.0262745
\(405\) 27.6282 1.37286
\(406\) 0.254571 0.0126341
\(407\) 0 0
\(408\) −4.85067 −0.240144
\(409\) 28.1956 1.39418 0.697091 0.716982i \(-0.254477\pi\)
0.697091 + 0.716982i \(0.254477\pi\)
\(410\) 5.03969 0.248893
\(411\) −11.5885 −0.571620
\(412\) −27.5441 −1.35700
\(413\) 11.3648 0.559225
\(414\) 5.04219 0.247810
\(415\) 23.6304 1.15997
\(416\) 13.7790 0.675569
\(417\) −34.2571 −1.67758
\(418\) 0 0
\(419\) −16.7829 −0.819897 −0.409948 0.912109i \(-0.634453\pi\)
−0.409948 + 0.912109i \(0.634453\pi\)
\(420\) 71.9557 3.51108
\(421\) −19.1258 −0.932134 −0.466067 0.884749i \(-0.654330\pi\)
−0.466067 + 0.884749i \(0.654330\pi\)
\(422\) 2.97929 0.145029
\(423\) 45.9857 2.23590
\(424\) 2.29300 0.111358
\(425\) 14.0882 0.683380
\(426\) −2.65552 −0.128660
\(427\) 8.81055 0.426372
\(428\) −21.1160 −1.02068
\(429\) 0 0
\(430\) −7.51070 −0.362198
\(431\) 11.8864 0.572546 0.286273 0.958148i \(-0.407584\pi\)
0.286273 + 0.958148i \(0.407584\pi\)
\(432\) 30.9175 1.48752
\(433\) 10.6232 0.510520 0.255260 0.966872i \(-0.417839\pi\)
0.255260 + 0.966872i \(0.417839\pi\)
\(434\) 4.04814 0.194317
\(435\) −3.33394 −0.159850
\(436\) −9.13286 −0.437384
\(437\) −3.59285 −0.171869
\(438\) 7.68938 0.367413
\(439\) 9.64647 0.460401 0.230200 0.973143i \(-0.426062\pi\)
0.230200 + 0.973143i \(0.426062\pi\)
\(440\) 0 0
\(441\) 27.9131 1.32919
\(442\) 2.05657 0.0978212
\(443\) −4.24791 −0.201824 −0.100912 0.994895i \(-0.532176\pi\)
−0.100912 + 0.994895i \(0.532176\pi\)
\(444\) 26.5149 1.25834
\(445\) 10.9094 0.517154
\(446\) −0.920666 −0.0435948
\(447\) −4.19456 −0.198396
\(448\) 22.8164 1.07797
\(449\) 34.2906 1.61827 0.809137 0.587620i \(-0.199935\pi\)
0.809137 + 0.587620i \(0.199935\pi\)
\(450\) 11.4772 0.541040
\(451\) 0 0
\(452\) 37.7384 1.77506
\(453\) −56.3701 −2.64850
\(454\) −1.65940 −0.0778793
\(455\) −61.9213 −2.90292
\(456\) 2.81579 0.131861
\(457\) 3.59698 0.168259 0.0841297 0.996455i \(-0.473189\pi\)
0.0841297 + 0.996455i \(0.473189\pi\)
\(458\) 3.60551 0.168474
\(459\) 14.5633 0.679755
\(460\) −25.3329 −1.18115
\(461\) 21.9653 1.02302 0.511512 0.859276i \(-0.329085\pi\)
0.511512 + 0.859276i \(0.329085\pi\)
\(462\) 0 0
\(463\) −20.4818 −0.951869 −0.475935 0.879481i \(-0.657890\pi\)
−0.475935 + 0.879481i \(0.657890\pi\)
\(464\) −1.12948 −0.0524350
\(465\) −53.0158 −2.45855
\(466\) −3.43326 −0.159043
\(467\) 29.2181 1.35205 0.676026 0.736878i \(-0.263701\pi\)
0.676026 + 0.736878i \(0.263701\pi\)
\(468\) −56.4075 −2.60744
\(469\) −11.2031 −0.517313
\(470\) 6.86238 0.316538
\(471\) −6.81384 −0.313965
\(472\) 3.13576 0.144335
\(473\) 0 0
\(474\) 7.65017 0.351384
\(475\) −8.17816 −0.375240
\(476\) 11.4827 0.526306
\(477\) −14.1491 −0.647842
\(478\) −4.44273 −0.203206
\(479\) 5.70128 0.260498 0.130249 0.991481i \(-0.458422\pi\)
0.130249 + 0.991481i \(0.458422\pi\)
\(480\) 29.9261 1.36593
\(481\) −22.8173 −1.04038
\(482\) −4.79673 −0.218485
\(483\) −36.6656 −1.66834
\(484\) 0 0
\(485\) 18.0424 0.819263
\(486\) −0.655653 −0.0297410
\(487\) −11.3528 −0.514442 −0.257221 0.966353i \(-0.582807\pi\)
−0.257221 + 0.966353i \(0.582807\pi\)
\(488\) 2.43099 0.110046
\(489\) −29.7046 −1.34329
\(490\) 4.16543 0.188175
\(491\) −8.17015 −0.368714 −0.184357 0.982859i \(-0.559020\pi\)
−0.184357 + 0.982859i \(0.559020\pi\)
\(492\) −33.3841 −1.50507
\(493\) −0.532029 −0.0239614
\(494\) −1.19383 −0.0537130
\(495\) 0 0
\(496\) −17.9609 −0.806468
\(497\) 12.7592 0.572327
\(498\) 4.64936 0.208343
\(499\) −2.00327 −0.0896787 −0.0448393 0.998994i \(-0.514278\pi\)
−0.0448393 + 0.998994i \(0.514278\pi\)
\(500\) −22.4090 −1.00216
\(501\) −70.5945 −3.15393
\(502\) −1.64893 −0.0735954
\(503\) −15.2246 −0.678832 −0.339416 0.940636i \(-0.610229\pi\)
−0.339416 + 0.940636i \(0.610229\pi\)
\(504\) 18.9869 0.845742
\(505\) −0.987037 −0.0439226
\(506\) 0 0
\(507\) 34.8065 1.54581
\(508\) −21.9613 −0.974376
\(509\) 31.9971 1.41824 0.709122 0.705086i \(-0.249091\pi\)
0.709122 + 0.705086i \(0.249091\pi\)
\(510\) 4.46661 0.197785
\(511\) −36.9457 −1.63438
\(512\) 17.0644 0.754149
\(513\) −8.45391 −0.373249
\(514\) 1.60254 0.0706848
\(515\) 51.4798 2.26847
\(516\) 49.7526 2.19024
\(517\) 0 0
\(518\) 3.78398 0.166259
\(519\) −1.20305 −0.0528080
\(520\) −17.0852 −0.749237
\(521\) −14.6982 −0.643939 −0.321969 0.946750i \(-0.604345\pi\)
−0.321969 + 0.946750i \(0.604345\pi\)
\(522\) −0.433425 −0.0189705
\(523\) 32.0653 1.40212 0.701059 0.713104i \(-0.252711\pi\)
0.701059 + 0.713104i \(0.252711\pi\)
\(524\) 36.8706 1.61070
\(525\) −83.4594 −3.64247
\(526\) 3.63511 0.158498
\(527\) −8.46024 −0.368534
\(528\) 0 0
\(529\) −10.0914 −0.438758
\(530\) −2.11145 −0.0917154
\(531\) −19.3494 −0.839692
\(532\) −6.66562 −0.288991
\(533\) 28.7286 1.24437
\(534\) 2.14646 0.0928863
\(535\) 39.4657 1.70625
\(536\) −3.09115 −0.133517
\(537\) −18.7122 −0.807489
\(538\) −2.23783 −0.0964796
\(539\) 0 0
\(540\) −59.6078 −2.56511
\(541\) 24.8298 1.06752 0.533759 0.845637i \(-0.320779\pi\)
0.533759 + 0.845637i \(0.320779\pi\)
\(542\) −4.57020 −0.196307
\(543\) −53.8270 −2.30994
\(544\) 4.77559 0.204752
\(545\) 17.0693 0.731168
\(546\) −12.1832 −0.521394
\(547\) 43.4659 1.85847 0.929234 0.369491i \(-0.120468\pi\)
0.929234 + 0.369491i \(0.120468\pi\)
\(548\) 7.56919 0.323340
\(549\) −15.0006 −0.640210
\(550\) 0 0
\(551\) 0.308840 0.0131570
\(552\) −10.1167 −0.430596
\(553\) −36.7573 −1.56308
\(554\) 3.59430 0.152707
\(555\) −49.5563 −2.10355
\(556\) 22.3755 0.948931
\(557\) −23.8835 −1.01198 −0.505989 0.862540i \(-0.668872\pi\)
−0.505989 + 0.862540i \(0.668872\pi\)
\(558\) −6.89225 −0.291772
\(559\) −42.8145 −1.81086
\(560\) −45.5614 −1.92532
\(561\) 0 0
\(562\) 5.32159 0.224478
\(563\) −27.4955 −1.15880 −0.579399 0.815044i \(-0.696713\pi\)
−0.579399 + 0.815044i \(0.696713\pi\)
\(564\) −45.4580 −1.91413
\(565\) −70.5330 −2.96734
\(566\) −5.23794 −0.220167
\(567\) −26.1185 −1.09687
\(568\) 3.52049 0.147716
\(569\) −41.2077 −1.72752 −0.863758 0.503906i \(-0.831896\pi\)
−0.863758 + 0.503906i \(0.831896\pi\)
\(570\) −2.59285 −0.108602
\(571\) 41.3615 1.73093 0.865463 0.500973i \(-0.167024\pi\)
0.865463 + 0.500973i \(0.167024\pi\)
\(572\) 0 0
\(573\) −75.5604 −3.15658
\(574\) −4.76430 −0.198858
\(575\) 29.3829 1.22535
\(576\) −38.8466 −1.61861
\(577\) 24.6836 1.02759 0.513796 0.857912i \(-0.328239\pi\)
0.513796 + 0.857912i \(0.328239\pi\)
\(578\) −3.37043 −0.140191
\(579\) −22.2118 −0.923091
\(580\) 2.17761 0.0904202
\(581\) −22.3391 −0.926783
\(582\) 3.54990 0.147148
\(583\) 0 0
\(584\) −10.1940 −0.421831
\(585\) 105.426 4.35881
\(586\) 2.53963 0.104911
\(587\) −31.1927 −1.28746 −0.643731 0.765252i \(-0.722614\pi\)
−0.643731 + 0.765252i \(0.722614\pi\)
\(588\) −27.5928 −1.13791
\(589\) 4.91113 0.202359
\(590\) −2.88748 −0.118876
\(591\) 12.5471 0.516120
\(592\) −16.7889 −0.690018
\(593\) 42.4308 1.74243 0.871213 0.490906i \(-0.163334\pi\)
0.871213 + 0.490906i \(0.163334\pi\)
\(594\) 0 0
\(595\) −21.4611 −0.879818
\(596\) 2.73973 0.112224
\(597\) 78.9527 3.23132
\(598\) 4.28925 0.175401
\(599\) 22.8996 0.935651 0.467826 0.883821i \(-0.345038\pi\)
0.467826 + 0.883821i \(0.345038\pi\)
\(600\) −23.0280 −0.940114
\(601\) −34.4330 −1.40455 −0.702276 0.711905i \(-0.747833\pi\)
−0.702276 + 0.711905i \(0.747833\pi\)
\(602\) 7.10028 0.289386
\(603\) 19.0742 0.776760
\(604\) 36.8188 1.49814
\(605\) 0 0
\(606\) −0.194203 −0.00788895
\(607\) −18.2757 −0.741790 −0.370895 0.928675i \(-0.620949\pi\)
−0.370895 + 0.928675i \(0.620949\pi\)
\(608\) −2.77221 −0.112428
\(609\) 3.15176 0.127716
\(610\) −2.23852 −0.0906349
\(611\) 39.1188 1.58258
\(612\) −19.5500 −0.790264
\(613\) 29.8748 1.20663 0.603316 0.797502i \(-0.293846\pi\)
0.603316 + 0.797502i \(0.293846\pi\)
\(614\) −4.93205 −0.199041
\(615\) 62.3949 2.51600
\(616\) 0 0
\(617\) −25.6808 −1.03387 −0.516936 0.856024i \(-0.672927\pi\)
−0.516936 + 0.856024i \(0.672927\pi\)
\(618\) 10.1288 0.407441
\(619\) 6.98676 0.280821 0.140411 0.990093i \(-0.455158\pi\)
0.140411 + 0.990093i \(0.455158\pi\)
\(620\) 34.6280 1.39069
\(621\) 30.3736 1.21885
\(622\) −6.66465 −0.267228
\(623\) −10.3132 −0.413191
\(624\) 54.0548 2.16393
\(625\) 0.991511 0.0396604
\(626\) −1.17483 −0.0469557
\(627\) 0 0
\(628\) 4.45054 0.177596
\(629\) −7.90816 −0.315319
\(630\) −17.4836 −0.696562
\(631\) −32.1719 −1.28074 −0.640372 0.768065i \(-0.721220\pi\)
−0.640372 + 0.768065i \(0.721220\pi\)
\(632\) −10.1420 −0.403428
\(633\) 36.8856 1.46607
\(634\) 2.15623 0.0856349
\(635\) 41.0457 1.62885
\(636\) 13.9867 0.554610
\(637\) 23.7449 0.940807
\(638\) 0 0
\(639\) −21.7234 −0.859365
\(640\) −25.9242 −1.02474
\(641\) −19.8122 −0.782535 −0.391267 0.920277i \(-0.627963\pi\)
−0.391267 + 0.920277i \(0.627963\pi\)
\(642\) 7.76501 0.306460
\(643\) −20.8075 −0.820568 −0.410284 0.911958i \(-0.634570\pi\)
−0.410284 + 0.911958i \(0.634570\pi\)
\(644\) 23.9486 0.943706
\(645\) −92.9876 −3.66138
\(646\) −0.413765 −0.0162794
\(647\) 6.56353 0.258039 0.129020 0.991642i \(-0.458817\pi\)
0.129020 + 0.991642i \(0.458817\pi\)
\(648\) −7.20657 −0.283101
\(649\) 0 0
\(650\) 9.76334 0.382950
\(651\) 50.1188 1.96431
\(652\) 19.4019 0.759837
\(653\) 33.4534 1.30913 0.654565 0.756005i \(-0.272852\pi\)
0.654565 + 0.756005i \(0.272852\pi\)
\(654\) 3.35844 0.131325
\(655\) −68.9110 −2.69258
\(656\) 21.1384 0.825314
\(657\) 62.9028 2.45407
\(658\) −6.48738 −0.252905
\(659\) −42.8961 −1.67100 −0.835498 0.549494i \(-0.814821\pi\)
−0.835498 + 0.549494i \(0.814821\pi\)
\(660\) 0 0
\(661\) 8.63980 0.336049 0.168025 0.985783i \(-0.446261\pi\)
0.168025 + 0.985783i \(0.446261\pi\)
\(662\) −4.71114 −0.183104
\(663\) 25.4618 0.988854
\(664\) −6.16377 −0.239201
\(665\) 12.4580 0.483102
\(666\) −6.44250 −0.249642
\(667\) −1.10962 −0.0429645
\(668\) 46.1097 1.78404
\(669\) −11.3985 −0.440691
\(670\) 2.84641 0.109966
\(671\) 0 0
\(672\) −28.2908 −1.09134
\(673\) −16.3368 −0.629737 −0.314868 0.949135i \(-0.601960\pi\)
−0.314868 + 0.949135i \(0.601960\pi\)
\(674\) 2.57746 0.0992801
\(675\) 69.1374 2.66110
\(676\) −22.7343 −0.874397
\(677\) −36.7155 −1.41109 −0.705545 0.708665i \(-0.749298\pi\)
−0.705545 + 0.708665i \(0.749298\pi\)
\(678\) −13.8776 −0.532966
\(679\) −17.0565 −0.654567
\(680\) −5.92150 −0.227079
\(681\) −20.5445 −0.787265
\(682\) 0 0
\(683\) −1.53856 −0.0588715 −0.0294357 0.999567i \(-0.509371\pi\)
−0.0294357 + 0.999567i \(0.509371\pi\)
\(684\) 11.3487 0.433929
\(685\) −14.1468 −0.540521
\(686\) 1.83215 0.0699519
\(687\) 44.6387 1.70307
\(688\) −31.5027 −1.20103
\(689\) −12.0362 −0.458544
\(690\) 9.31571 0.354643
\(691\) 33.0915 1.25886 0.629429 0.777058i \(-0.283289\pi\)
0.629429 + 0.777058i \(0.283289\pi\)
\(692\) 0.785786 0.0298711
\(693\) 0 0
\(694\) −5.12291 −0.194463
\(695\) −41.8197 −1.58631
\(696\) 0.869629 0.0329632
\(697\) 9.95693 0.377146
\(698\) 2.52410 0.0955385
\(699\) −42.5062 −1.60773
\(700\) 54.5125 2.06038
\(701\) 20.2466 0.764703 0.382352 0.924017i \(-0.375114\pi\)
0.382352 + 0.924017i \(0.375114\pi\)
\(702\) 10.0925 0.380918
\(703\) 4.59065 0.173140
\(704\) 0 0
\(705\) 84.9610 3.19982
\(706\) 0.514980 0.0193815
\(707\) 0.933101 0.0350929
\(708\) 19.1274 0.718850
\(709\) −33.2528 −1.24883 −0.624417 0.781091i \(-0.714663\pi\)
−0.624417 + 0.781091i \(0.714663\pi\)
\(710\) −3.24175 −0.121661
\(711\) 62.5820 2.34701
\(712\) −2.84561 −0.106644
\(713\) −17.6449 −0.660808
\(714\) −4.22254 −0.158024
\(715\) 0 0
\(716\) 12.2221 0.456760
\(717\) −55.0040 −2.05416
\(718\) −0.261945 −0.00977572
\(719\) 15.0721 0.562095 0.281047 0.959694i \(-0.409318\pi\)
0.281047 + 0.959694i \(0.409318\pi\)
\(720\) 77.5715 2.89092
\(721\) −48.6667 −1.81244
\(722\) 0.240189 0.00893889
\(723\) −59.3868 −2.20862
\(724\) 35.1578 1.30663
\(725\) −2.52574 −0.0938037
\(726\) 0 0
\(727\) 13.6674 0.506897 0.253448 0.967349i \(-0.418435\pi\)
0.253448 + 0.967349i \(0.418435\pi\)
\(728\) 16.1516 0.598619
\(729\) −30.9496 −1.14628
\(730\) 9.38689 0.347424
\(731\) −14.8389 −0.548837
\(732\) 14.8285 0.548076
\(733\) 15.7494 0.581716 0.290858 0.956766i \(-0.406059\pi\)
0.290858 + 0.956766i \(0.406059\pi\)
\(734\) 1.11128 0.0410182
\(735\) 51.5709 1.90222
\(736\) 9.96013 0.367135
\(737\) 0 0
\(738\) 8.11156 0.298591
\(739\) 19.6813 0.723990 0.361995 0.932180i \(-0.382096\pi\)
0.361995 + 0.932180i \(0.382096\pi\)
\(740\) 32.3683 1.18988
\(741\) −14.7805 −0.542973
\(742\) 1.99607 0.0732779
\(743\) 1.84817 0.0678027 0.0339014 0.999425i \(-0.489207\pi\)
0.0339014 + 0.999425i \(0.489207\pi\)
\(744\) 13.8287 0.506985
\(745\) −5.12055 −0.187603
\(746\) −5.76174 −0.210952
\(747\) 38.0340 1.39159
\(748\) 0 0
\(749\) −37.3091 −1.36324
\(750\) 8.24049 0.300900
\(751\) −16.0299 −0.584940 −0.292470 0.956275i \(-0.594477\pi\)
−0.292470 + 0.956275i \(0.594477\pi\)
\(752\) 28.7834 1.04962
\(753\) −20.4149 −0.743960
\(754\) −0.368703 −0.0134274
\(755\) −68.8143 −2.50441
\(756\) 56.3506 2.04945
\(757\) −35.0946 −1.27553 −0.637767 0.770230i \(-0.720142\pi\)
−0.637767 + 0.770230i \(0.720142\pi\)
\(758\) 4.14656 0.150610
\(759\) 0 0
\(760\) 3.43740 0.124688
\(761\) −3.05654 −0.110800 −0.0553998 0.998464i \(-0.517643\pi\)
−0.0553998 + 0.998464i \(0.517643\pi\)
\(762\) 8.07588 0.292558
\(763\) −16.1365 −0.584182
\(764\) 49.3532 1.78554
\(765\) 36.5390 1.32107
\(766\) −6.39904 −0.231207
\(767\) −16.4600 −0.594337
\(768\) 34.4407 1.24277
\(769\) 13.1419 0.473908 0.236954 0.971521i \(-0.423851\pi\)
0.236954 + 0.971521i \(0.423851\pi\)
\(770\) 0 0
\(771\) 19.8405 0.714538
\(772\) 14.5079 0.522151
\(773\) 54.9244 1.97549 0.987747 0.156064i \(-0.0498807\pi\)
0.987747 + 0.156064i \(0.0498807\pi\)
\(774\) −12.0887 −0.434521
\(775\) −40.1640 −1.44273
\(776\) −4.70620 −0.168943
\(777\) 46.8483 1.68067
\(778\) 4.76735 0.170918
\(779\) −5.77995 −0.207088
\(780\) −104.216 −3.73152
\(781\) 0 0
\(782\) 1.48659 0.0531605
\(783\) −2.61091 −0.0933061
\(784\) 17.4714 0.623977
\(785\) −8.31806 −0.296884
\(786\) −13.5585 −0.483615
\(787\) −16.6210 −0.592476 −0.296238 0.955114i \(-0.595732\pi\)
−0.296238 + 0.955114i \(0.595732\pi\)
\(788\) −8.19531 −0.291946
\(789\) 45.0051 1.60222
\(790\) 9.33902 0.332267
\(791\) 66.6787 2.37082
\(792\) 0 0
\(793\) −12.7606 −0.453142
\(794\) 1.67157 0.0593218
\(795\) −26.1412 −0.927131
\(796\) −51.5689 −1.82781
\(797\) −20.4679 −0.725010 −0.362505 0.931982i \(-0.618078\pi\)
−0.362505 + 0.931982i \(0.618078\pi\)
\(798\) 2.45116 0.0867702
\(799\) 13.5580 0.479648
\(800\) 22.6716 0.801561
\(801\) 17.5590 0.620418
\(802\) 0.635539 0.0224417
\(803\) 0 0
\(804\) −18.8553 −0.664974
\(805\) −44.7598 −1.57758
\(806\) −5.86306 −0.206517
\(807\) −27.7058 −0.975292
\(808\) 0.257460 0.00905740
\(809\) 6.61853 0.232695 0.116348 0.993209i \(-0.462881\pi\)
0.116348 + 0.993209i \(0.462881\pi\)
\(810\) 6.63598 0.233165
\(811\) 10.5181 0.369339 0.184670 0.982801i \(-0.440878\pi\)
0.184670 + 0.982801i \(0.440878\pi\)
\(812\) −2.05861 −0.0722431
\(813\) −56.5822 −1.98442
\(814\) 0 0
\(815\) −36.2621 −1.27021
\(816\) 18.7346 0.655844
\(817\) 8.61391 0.301363
\(818\) 6.77226 0.236787
\(819\) −99.6646 −3.48256
\(820\) −40.7540 −1.42319
\(821\) 6.43861 0.224709 0.112355 0.993668i \(-0.464161\pi\)
0.112355 + 0.993668i \(0.464161\pi\)
\(822\) −2.78343 −0.0970833
\(823\) 47.3409 1.65020 0.825100 0.564987i \(-0.191119\pi\)
0.825100 + 0.564987i \(0.191119\pi\)
\(824\) −13.4280 −0.467788
\(825\) 0 0
\(826\) 2.72970 0.0949783
\(827\) 4.22212 0.146818 0.0734088 0.997302i \(-0.476612\pi\)
0.0734088 + 0.997302i \(0.476612\pi\)
\(828\) −40.7742 −1.41700
\(829\) −9.02949 −0.313607 −0.156804 0.987630i \(-0.550119\pi\)
−0.156804 + 0.987630i \(0.550119\pi\)
\(830\) 5.67575 0.197008
\(831\) 44.4999 1.54369
\(832\) −33.0457 −1.14565
\(833\) 8.22965 0.285140
\(834\) −8.22816 −0.284918
\(835\) −86.1789 −2.98234
\(836\) 0 0
\(837\) −41.5182 −1.43508
\(838\) −4.03105 −0.139250
\(839\) 42.8767 1.48027 0.740135 0.672459i \(-0.234762\pi\)
0.740135 + 0.672459i \(0.234762\pi\)
\(840\) 35.0792 1.21035
\(841\) −28.9046 −0.996711
\(842\) −4.59380 −0.158313
\(843\) 65.8849 2.26920
\(844\) −24.0923 −0.829292
\(845\) 42.4904 1.46171
\(846\) 11.0452 0.379743
\(847\) 0 0
\(848\) −8.85620 −0.304123
\(849\) −64.8492 −2.22562
\(850\) 3.38384 0.116065
\(851\) −16.4935 −0.565390
\(852\) 21.4741 0.735692
\(853\) 44.2253 1.51424 0.757122 0.653273i \(-0.226605\pi\)
0.757122 + 0.653273i \(0.226605\pi\)
\(854\) 2.11619 0.0724146
\(855\) −21.2107 −0.725391
\(856\) −10.2943 −0.351851
\(857\) 51.4914 1.75891 0.879456 0.475980i \(-0.157907\pi\)
0.879456 + 0.475980i \(0.157907\pi\)
\(858\) 0 0
\(859\) −29.3415 −1.00112 −0.500559 0.865702i \(-0.666872\pi\)
−0.500559 + 0.865702i \(0.666872\pi\)
\(860\) 60.7360 2.07108
\(861\) −58.9853 −2.01021
\(862\) 2.85497 0.0972406
\(863\) −15.3482 −0.522460 −0.261230 0.965277i \(-0.584128\pi\)
−0.261230 + 0.965277i \(0.584128\pi\)
\(864\) 23.4360 0.797309
\(865\) −1.46863 −0.0499350
\(866\) 2.55158 0.0867061
\(867\) −41.7282 −1.41716
\(868\) −32.7357 −1.11112
\(869\) 0 0
\(870\) −0.800775 −0.0271488
\(871\) 16.2259 0.549793
\(872\) −4.45237 −0.150776
\(873\) 29.0399 0.982851
\(874\) −0.862961 −0.0291901
\(875\) −39.5937 −1.33851
\(876\) −62.1809 −2.10090
\(877\) −37.1658 −1.25500 −0.627499 0.778617i \(-0.715921\pi\)
−0.627499 + 0.778617i \(0.715921\pi\)
\(878\) 2.31697 0.0781940
\(879\) 31.4424 1.06053
\(880\) 0 0
\(881\) −28.2259 −0.950954 −0.475477 0.879728i \(-0.657724\pi\)
−0.475477 + 0.879728i \(0.657724\pi\)
\(882\) 6.70440 0.225749
\(883\) 21.5975 0.726815 0.363407 0.931630i \(-0.381613\pi\)
0.363407 + 0.931630i \(0.381613\pi\)
\(884\) −16.6307 −0.559351
\(885\) −35.7490 −1.20169
\(886\) −1.02030 −0.0342776
\(887\) −2.22420 −0.0746813 −0.0373406 0.999303i \(-0.511889\pi\)
−0.0373406 + 0.999303i \(0.511889\pi\)
\(888\) 12.9263 0.433779
\(889\) −38.8027 −1.30140
\(890\) 2.62031 0.0878330
\(891\) 0 0
\(892\) 7.44506 0.249279
\(893\) −7.87037 −0.263372
\(894\) −1.00749 −0.0336954
\(895\) −22.8430 −0.763559
\(896\) 24.5076 0.818741
\(897\) 53.1039 1.77309
\(898\) 8.23622 0.274846
\(899\) 1.51675 0.0505865
\(900\) −92.8115 −3.09372
\(901\) −4.17159 −0.138976
\(902\) 0 0
\(903\) 87.9063 2.92534
\(904\) 18.3979 0.611905
\(905\) −65.7098 −2.18427
\(906\) −13.5395 −0.449818
\(907\) 38.3223 1.27247 0.636236 0.771494i \(-0.280490\pi\)
0.636236 + 0.771494i \(0.280490\pi\)
\(908\) 13.4189 0.445321
\(909\) −1.58867 −0.0526929
\(910\) −14.8728 −0.493028
\(911\) 53.4070 1.76945 0.884726 0.466112i \(-0.154345\pi\)
0.884726 + 0.466112i \(0.154345\pi\)
\(912\) −10.8754 −0.360120
\(913\) 0 0
\(914\) 0.863953 0.0285770
\(915\) −27.7144 −0.916209
\(916\) −29.1563 −0.963352
\(917\) 65.1454 2.15129
\(918\) 3.49793 0.115449
\(919\) −0.0601538 −0.00198429 −0.000992145 1.00000i \(-0.500316\pi\)
−0.000992145 1.00000i \(0.500316\pi\)
\(920\) −12.3501 −0.407170
\(921\) −61.0621 −2.01207
\(922\) 5.27581 0.173749
\(923\) −18.4795 −0.608261
\(924\) 0 0
\(925\) −37.5431 −1.23441
\(926\) −4.91949 −0.161665
\(927\) 82.8586 2.72143
\(928\) −0.856169 −0.0281051
\(929\) 45.5718 1.49516 0.747581 0.664170i \(-0.231215\pi\)
0.747581 + 0.664170i \(0.231215\pi\)
\(930\) −12.7338 −0.417558
\(931\) −4.77727 −0.156569
\(932\) 27.7634 0.909422
\(933\) −82.5129 −2.70135
\(934\) 7.01785 0.229631
\(935\) 0 0
\(936\) −27.4993 −0.898843
\(937\) −30.8138 −1.00664 −0.503321 0.864099i \(-0.667889\pi\)
−0.503321 + 0.864099i \(0.667889\pi\)
\(938\) −2.69087 −0.0878599
\(939\) −14.5452 −0.474666
\(940\) −55.4933 −1.80999
\(941\) −16.5597 −0.539829 −0.269915 0.962884i \(-0.586996\pi\)
−0.269915 + 0.962884i \(0.586996\pi\)
\(942\) −1.63661 −0.0533235
\(943\) 20.7665 0.676250
\(944\) −12.1112 −0.394185
\(945\) −105.319 −3.42603
\(946\) 0 0
\(947\) 26.1615 0.850136 0.425068 0.905161i \(-0.360250\pi\)
0.425068 + 0.905161i \(0.360250\pi\)
\(948\) −61.8639 −2.00924
\(949\) 53.5097 1.73700
\(950\) −1.96430 −0.0637303
\(951\) 26.6956 0.865665
\(952\) 5.59792 0.181430
\(953\) 10.1025 0.327252 0.163626 0.986522i \(-0.447681\pi\)
0.163626 + 0.986522i \(0.447681\pi\)
\(954\) −3.39845 −0.110029
\(955\) −92.2411 −2.98485
\(956\) 35.9266 1.16195
\(957\) 0 0
\(958\) 1.36938 0.0442427
\(959\) 13.3737 0.431861
\(960\) −71.7711 −2.31640
\(961\) −6.88084 −0.221963
\(962\) −5.48046 −0.176697
\(963\) 63.5214 2.04695
\(964\) 38.7892 1.24932
\(965\) −27.1153 −0.872871
\(966\) −8.80665 −0.283349
\(967\) 15.2328 0.489855 0.244927 0.969541i \(-0.421236\pi\)
0.244927 + 0.969541i \(0.421236\pi\)
\(968\) 0 0
\(969\) −5.12270 −0.164565
\(970\) 4.33358 0.139143
\(971\) −12.4024 −0.398012 −0.199006 0.979998i \(-0.563771\pi\)
−0.199006 + 0.979998i \(0.563771\pi\)
\(972\) 5.30201 0.170062
\(973\) 39.5345 1.26742
\(974\) −2.72680 −0.0873723
\(975\) 120.877 3.87116
\(976\) −9.38918 −0.300540
\(977\) −0.244589 −0.00782509 −0.00391255 0.999992i \(-0.501245\pi\)
−0.00391255 + 0.999992i \(0.501245\pi\)
\(978\) −7.13470 −0.228142
\(979\) 0 0
\(980\) −33.6842 −1.07600
\(981\) 27.4736 0.877165
\(982\) −1.96238 −0.0626220
\(983\) 18.7400 0.597712 0.298856 0.954298i \(-0.403395\pi\)
0.298856 + 0.954298i \(0.403395\pi\)
\(984\) −16.2751 −0.518832
\(985\) 15.3170 0.488041
\(986\) −0.127787 −0.00406957
\(987\) −80.3183 −2.55656
\(988\) 9.65404 0.307136
\(989\) −30.9485 −0.984104
\(990\) 0 0
\(991\) 5.45323 0.173228 0.0866138 0.996242i \(-0.472395\pi\)
0.0866138 + 0.996242i \(0.472395\pi\)
\(992\) −13.6147 −0.432266
\(993\) −58.3272 −1.85096
\(994\) 3.06461 0.0972034
\(995\) 96.3823 3.05552
\(996\) −37.5975 −1.19132
\(997\) 0.725474 0.0229760 0.0114880 0.999934i \(-0.496343\pi\)
0.0114880 + 0.999934i \(0.496343\pi\)
\(998\) −0.481163 −0.0152309
\(999\) −38.8089 −1.22786
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2299.2.a.y.1.11 20
11.7 odd 10 209.2.f.c.115.5 yes 40
11.8 odd 10 209.2.f.c.20.5 40
11.10 odd 2 2299.2.a.x.1.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.f.c.20.5 40 11.8 odd 10
209.2.f.c.115.5 yes 40 11.7 odd 10
2299.2.a.x.1.10 20 11.10 odd 2
2299.2.a.y.1.11 20 1.1 even 1 trivial