Properties

Label 2299.2.a.r.1.5
Level $2299$
Weight $2$
Character 2299.1
Self dual yes
Analytic conductor $18.358$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,2,Mod(1,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,2,-1,6,-1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 8x^{5} + 14x^{4} + 17x^{3} - 18x^{2} - 16x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.79190\) of defining polynomial
Character \(\chi\) \(=\) 2299.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.79190 q^{2} -2.48473 q^{3} +1.21090 q^{4} +0.260416 q^{5} -4.45238 q^{6} +3.76880 q^{7} -1.41399 q^{8} +3.17387 q^{9} +0.466638 q^{10} -3.00874 q^{12} +2.05680 q^{13} +6.75331 q^{14} -0.647062 q^{15} -4.95552 q^{16} +0.278836 q^{17} +5.68725 q^{18} -1.00000 q^{19} +0.315336 q^{20} -9.36445 q^{21} +6.11616 q^{23} +3.51339 q^{24} -4.93218 q^{25} +3.68558 q^{26} -0.432022 q^{27} +4.56363 q^{28} +5.99500 q^{29} -1.15947 q^{30} -6.51669 q^{31} -6.05180 q^{32} +0.499645 q^{34} +0.981456 q^{35} +3.84322 q^{36} +8.75610 q^{37} -1.79190 q^{38} -5.11059 q^{39} -0.368226 q^{40} -3.53945 q^{41} -16.7801 q^{42} -4.65322 q^{43} +0.826526 q^{45} +10.9595 q^{46} +8.70515 q^{47} +12.3131 q^{48} +7.20389 q^{49} -8.83797 q^{50} -0.692830 q^{51} +2.49057 q^{52} -4.68367 q^{53} -0.774138 q^{54} -5.32907 q^{56} +2.48473 q^{57} +10.7424 q^{58} +5.29748 q^{59} -0.783524 q^{60} +11.6024 q^{61} -11.6772 q^{62} +11.9617 q^{63} -0.933152 q^{64} +0.535623 q^{65} +13.0562 q^{67} +0.337641 q^{68} -15.1970 q^{69} +1.75867 q^{70} +7.50689 q^{71} -4.48784 q^{72} +0.611683 q^{73} +15.6900 q^{74} +12.2551 q^{75} -1.21090 q^{76} -9.15765 q^{78} +4.35513 q^{79} -1.29050 q^{80} -8.44816 q^{81} -6.34233 q^{82} -9.53801 q^{83} -11.3394 q^{84} +0.0726132 q^{85} -8.33810 q^{86} -14.8959 q^{87} +7.47422 q^{89} +1.48105 q^{90} +7.75168 q^{91} +7.40603 q^{92} +16.1922 q^{93} +15.5987 q^{94} -0.260416 q^{95} +15.0371 q^{96} +13.4845 q^{97} +12.9086 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} - q^{3} + 6 q^{4} - q^{5} + 2 q^{7} + 6 q^{8} + 4 q^{9} - 3 q^{10} - 9 q^{12} + 12 q^{13} + 3 q^{14} + 5 q^{15} + 12 q^{17} - 3 q^{18} - 7 q^{19} - 17 q^{20} + 9 q^{21} - 9 q^{23} + 27 q^{24}+ \cdots + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.79190 1.26706 0.633531 0.773717i \(-0.281605\pi\)
0.633531 + 0.773717i \(0.281605\pi\)
\(3\) −2.48473 −1.43456 −0.717279 0.696786i \(-0.754613\pi\)
−0.717279 + 0.696786i \(0.754613\pi\)
\(4\) 1.21090 0.605448
\(5\) 0.260416 0.116461 0.0582307 0.998303i \(-0.481454\pi\)
0.0582307 + 0.998303i \(0.481454\pi\)
\(6\) −4.45238 −1.81767
\(7\) 3.76880 1.42447 0.712237 0.701939i \(-0.247682\pi\)
0.712237 + 0.701939i \(0.247682\pi\)
\(8\) −1.41399 −0.499923
\(9\) 3.17387 1.05796
\(10\) 0.466638 0.147564
\(11\) 0 0
\(12\) −3.00874 −0.868550
\(13\) 2.05680 0.570454 0.285227 0.958460i \(-0.407931\pi\)
0.285227 + 0.958460i \(0.407931\pi\)
\(14\) 6.75331 1.80490
\(15\) −0.647062 −0.167071
\(16\) −4.95552 −1.23888
\(17\) 0.278836 0.0676276 0.0338138 0.999428i \(-0.489235\pi\)
0.0338138 + 0.999428i \(0.489235\pi\)
\(18\) 5.68725 1.34050
\(19\) −1.00000 −0.229416
\(20\) 0.315336 0.0705113
\(21\) −9.36445 −2.04349
\(22\) 0 0
\(23\) 6.11616 1.27531 0.637654 0.770323i \(-0.279905\pi\)
0.637654 + 0.770323i \(0.279905\pi\)
\(24\) 3.51339 0.717168
\(25\) −4.93218 −0.986437
\(26\) 3.68558 0.722801
\(27\) −0.432022 −0.0831426
\(28\) 4.56363 0.862444
\(29\) 5.99500 1.11324 0.556621 0.830766i \(-0.312097\pi\)
0.556621 + 0.830766i \(0.312097\pi\)
\(30\) −1.15947 −0.211689
\(31\) −6.51669 −1.17043 −0.585216 0.810878i \(-0.698990\pi\)
−0.585216 + 0.810878i \(0.698990\pi\)
\(32\) −6.05180 −1.06982
\(33\) 0 0
\(34\) 0.499645 0.0856884
\(35\) 0.981456 0.165896
\(36\) 3.84322 0.640537
\(37\) 8.75610 1.43949 0.719747 0.694236i \(-0.244258\pi\)
0.719747 + 0.694236i \(0.244258\pi\)
\(38\) −1.79190 −0.290684
\(39\) −5.11059 −0.818349
\(40\) −0.368226 −0.0582217
\(41\) −3.53945 −0.552769 −0.276385 0.961047i \(-0.589136\pi\)
−0.276385 + 0.961047i \(0.589136\pi\)
\(42\) −16.7801 −2.58923
\(43\) −4.65322 −0.709610 −0.354805 0.934940i \(-0.615453\pi\)
−0.354805 + 0.934940i \(0.615453\pi\)
\(44\) 0 0
\(45\) 0.826526 0.123211
\(46\) 10.9595 1.61589
\(47\) 8.70515 1.26978 0.634888 0.772604i \(-0.281046\pi\)
0.634888 + 0.772604i \(0.281046\pi\)
\(48\) 12.3131 1.77725
\(49\) 7.20389 1.02913
\(50\) −8.83797 −1.24988
\(51\) −0.692830 −0.0970157
\(52\) 2.49057 0.345380
\(53\) −4.68367 −0.643352 −0.321676 0.946850i \(-0.604246\pi\)
−0.321676 + 0.946850i \(0.604246\pi\)
\(54\) −0.774138 −0.105347
\(55\) 0 0
\(56\) −5.32907 −0.712127
\(57\) 2.48473 0.329110
\(58\) 10.7424 1.41055
\(59\) 5.29748 0.689673 0.344837 0.938663i \(-0.387934\pi\)
0.344837 + 0.938663i \(0.387934\pi\)
\(60\) −0.783524 −0.101153
\(61\) 11.6024 1.48553 0.742765 0.669553i \(-0.233514\pi\)
0.742765 + 0.669553i \(0.233514\pi\)
\(62\) −11.6772 −1.48301
\(63\) 11.9617 1.50703
\(64\) −0.933152 −0.116644
\(65\) 0.535623 0.0664359
\(66\) 0 0
\(67\) 13.0562 1.59507 0.797534 0.603274i \(-0.206138\pi\)
0.797534 + 0.603274i \(0.206138\pi\)
\(68\) 0.337641 0.0409449
\(69\) −15.1970 −1.82950
\(70\) 1.75867 0.210201
\(71\) 7.50689 0.890904 0.445452 0.895306i \(-0.353043\pi\)
0.445452 + 0.895306i \(0.353043\pi\)
\(72\) −4.48784 −0.528897
\(73\) 0.611683 0.0715921 0.0357961 0.999359i \(-0.488603\pi\)
0.0357961 + 0.999359i \(0.488603\pi\)
\(74\) 15.6900 1.82393
\(75\) 12.2551 1.41510
\(76\) −1.21090 −0.138899
\(77\) 0 0
\(78\) −9.15765 −1.03690
\(79\) 4.35513 0.489990 0.244995 0.969524i \(-0.421214\pi\)
0.244995 + 0.969524i \(0.421214\pi\)
\(80\) −1.29050 −0.144282
\(81\) −8.44816 −0.938684
\(82\) −6.34233 −0.700393
\(83\) −9.53801 −1.04693 −0.523467 0.852046i \(-0.675361\pi\)
−0.523467 + 0.852046i \(0.675361\pi\)
\(84\) −11.3394 −1.23723
\(85\) 0.0726132 0.00787600
\(86\) −8.33810 −0.899120
\(87\) −14.8959 −1.59701
\(88\) 0 0
\(89\) 7.47422 0.792266 0.396133 0.918193i \(-0.370352\pi\)
0.396133 + 0.918193i \(0.370352\pi\)
\(90\) 1.48105 0.156116
\(91\) 7.75168 0.812597
\(92\) 7.40603 0.772132
\(93\) 16.1922 1.67905
\(94\) 15.5987 1.60889
\(95\) −0.260416 −0.0267181
\(96\) 15.0371 1.53471
\(97\) 13.4845 1.36914 0.684570 0.728947i \(-0.259990\pi\)
0.684570 + 0.728947i \(0.259990\pi\)
\(98\) 12.9086 1.30397
\(99\) 0 0
\(100\) −5.97236 −0.597236
\(101\) −2.48504 −0.247271 −0.123635 0.992328i \(-0.539455\pi\)
−0.123635 + 0.992328i \(0.539455\pi\)
\(102\) −1.24148 −0.122925
\(103\) 0.449953 0.0443352 0.0221676 0.999754i \(-0.492943\pi\)
0.0221676 + 0.999754i \(0.492943\pi\)
\(104\) −2.90831 −0.285183
\(105\) −2.43865 −0.237988
\(106\) −8.39265 −0.815167
\(107\) −1.15345 −0.111508 −0.0557540 0.998445i \(-0.517756\pi\)
−0.0557540 + 0.998445i \(0.517756\pi\)
\(108\) −0.523133 −0.0503385
\(109\) 13.2279 1.26700 0.633502 0.773741i \(-0.281617\pi\)
0.633502 + 0.773741i \(0.281617\pi\)
\(110\) 0 0
\(111\) −21.7565 −2.06504
\(112\) −18.6764 −1.76475
\(113\) 16.7837 1.57888 0.789441 0.613827i \(-0.210371\pi\)
0.789441 + 0.613827i \(0.210371\pi\)
\(114\) 4.45238 0.417003
\(115\) 1.59274 0.148524
\(116\) 7.25931 0.674010
\(117\) 6.52802 0.603516
\(118\) 9.49254 0.873859
\(119\) 1.05088 0.0963337
\(120\) 0.914942 0.0835224
\(121\) 0 0
\(122\) 20.7902 1.88226
\(123\) 8.79457 0.792980
\(124\) −7.89103 −0.708635
\(125\) −2.58650 −0.231343
\(126\) 21.4341 1.90950
\(127\) 6.90332 0.612571 0.306285 0.951940i \(-0.400914\pi\)
0.306285 + 0.951940i \(0.400914\pi\)
\(128\) 10.4315 0.922022
\(129\) 11.5620 1.01798
\(130\) 0.959782 0.0841784
\(131\) −10.2693 −0.897230 −0.448615 0.893725i \(-0.648083\pi\)
−0.448615 + 0.893725i \(0.648083\pi\)
\(132\) 0 0
\(133\) −3.76880 −0.326797
\(134\) 23.3953 2.02105
\(135\) −0.112505 −0.00968291
\(136\) −0.394272 −0.0338086
\(137\) −18.6804 −1.59598 −0.797988 0.602673i \(-0.794102\pi\)
−0.797988 + 0.602673i \(0.794102\pi\)
\(138\) −27.2315 −2.31810
\(139\) 0.826591 0.0701105 0.0350553 0.999385i \(-0.488839\pi\)
0.0350553 + 0.999385i \(0.488839\pi\)
\(140\) 1.18844 0.100442
\(141\) −21.6299 −1.82157
\(142\) 13.4516 1.12883
\(143\) 0 0
\(144\) −15.7282 −1.31068
\(145\) 1.56119 0.129650
\(146\) 1.09607 0.0907117
\(147\) −17.8997 −1.47634
\(148\) 10.6027 0.871538
\(149\) 11.5052 0.942544 0.471272 0.881988i \(-0.343795\pi\)
0.471272 + 0.881988i \(0.343795\pi\)
\(150\) 21.9599 1.79302
\(151\) −14.2758 −1.16174 −0.580872 0.813995i \(-0.697289\pi\)
−0.580872 + 0.813995i \(0.697289\pi\)
\(152\) 1.41399 0.114690
\(153\) 0.884988 0.0715471
\(154\) 0 0
\(155\) −1.69705 −0.136310
\(156\) −6.18839 −0.495468
\(157\) −15.9760 −1.27503 −0.637513 0.770439i \(-0.720037\pi\)
−0.637513 + 0.770439i \(0.720037\pi\)
\(158\) 7.80394 0.620848
\(159\) 11.6376 0.922925
\(160\) −1.57598 −0.124592
\(161\) 23.0506 1.81664
\(162\) −15.1382 −1.18937
\(163\) 18.6219 1.45858 0.729290 0.684205i \(-0.239851\pi\)
0.729290 + 0.684205i \(0.239851\pi\)
\(164\) −4.28590 −0.334673
\(165\) 0 0
\(166\) −17.0911 −1.32653
\(167\) 18.8050 1.45517 0.727587 0.686016i \(-0.240642\pi\)
0.727587 + 0.686016i \(0.240642\pi\)
\(168\) 13.2413 1.02159
\(169\) −8.76957 −0.674582
\(170\) 0.130115 0.00997939
\(171\) −3.17387 −0.242712
\(172\) −5.63457 −0.429632
\(173\) 13.7644 1.04649 0.523244 0.852183i \(-0.324722\pi\)
0.523244 + 0.852183i \(0.324722\pi\)
\(174\) −26.6920 −2.02351
\(175\) −18.5884 −1.40515
\(176\) 0 0
\(177\) −13.1628 −0.989376
\(178\) 13.3930 1.00385
\(179\) −25.7379 −1.92374 −0.961871 0.273502i \(-0.911818\pi\)
−0.961871 + 0.273502i \(0.911818\pi\)
\(180\) 1.00084 0.0745979
\(181\) 14.8940 1.10707 0.553533 0.832827i \(-0.313279\pi\)
0.553533 + 0.832827i \(0.313279\pi\)
\(182\) 13.8902 1.02961
\(183\) −28.8287 −2.13108
\(184\) −8.64822 −0.637555
\(185\) 2.28023 0.167646
\(186\) 29.0147 2.12746
\(187\) 0 0
\(188\) 10.5410 0.768783
\(189\) −1.62820 −0.118434
\(190\) −0.466638 −0.0338535
\(191\) −22.4953 −1.62770 −0.813851 0.581073i \(-0.802633\pi\)
−0.813851 + 0.581073i \(0.802633\pi\)
\(192\) 2.31863 0.167333
\(193\) −5.20478 −0.374648 −0.187324 0.982298i \(-0.559982\pi\)
−0.187324 + 0.982298i \(0.559982\pi\)
\(194\) 24.1628 1.73479
\(195\) −1.33088 −0.0953061
\(196\) 8.72315 0.623082
\(197\) 17.3812 1.23836 0.619179 0.785250i \(-0.287465\pi\)
0.619179 + 0.785250i \(0.287465\pi\)
\(198\) 0 0
\(199\) −20.1483 −1.42828 −0.714138 0.700005i \(-0.753181\pi\)
−0.714138 + 0.700005i \(0.753181\pi\)
\(200\) 6.97408 0.493142
\(201\) −32.4411 −2.28822
\(202\) −4.45293 −0.313307
\(203\) 22.5940 1.58579
\(204\) −0.838945 −0.0587379
\(205\) −0.921728 −0.0643763
\(206\) 0.806269 0.0561754
\(207\) 19.4119 1.34922
\(208\) −10.1925 −0.706724
\(209\) 0 0
\(210\) −4.36981 −0.301546
\(211\) −1.90770 −0.131332 −0.0656658 0.997842i \(-0.520917\pi\)
−0.0656658 + 0.997842i \(0.520917\pi\)
\(212\) −5.67143 −0.389516
\(213\) −18.6526 −1.27805
\(214\) −2.06686 −0.141287
\(215\) −1.21177 −0.0826422
\(216\) 0.610876 0.0415649
\(217\) −24.5601 −1.66725
\(218\) 23.7031 1.60537
\(219\) −1.51987 −0.102703
\(220\) 0 0
\(221\) 0.573509 0.0385784
\(222\) −38.9855 −2.61653
\(223\) −12.5836 −0.842660 −0.421330 0.906907i \(-0.638437\pi\)
−0.421330 + 0.906907i \(0.638437\pi\)
\(224\) −22.8080 −1.52393
\(225\) −15.6541 −1.04361
\(226\) 30.0747 2.00054
\(227\) −19.4974 −1.29408 −0.647042 0.762454i \(-0.723994\pi\)
−0.647042 + 0.762454i \(0.723994\pi\)
\(228\) 3.00874 0.199259
\(229\) 8.71196 0.575702 0.287851 0.957675i \(-0.407059\pi\)
0.287851 + 0.957675i \(0.407059\pi\)
\(230\) 2.85403 0.188189
\(231\) 0 0
\(232\) −8.47689 −0.556535
\(233\) 18.7602 1.22902 0.614511 0.788908i \(-0.289353\pi\)
0.614511 + 0.788908i \(0.289353\pi\)
\(234\) 11.6975 0.764692
\(235\) 2.26696 0.147880
\(236\) 6.41469 0.417561
\(237\) −10.8213 −0.702919
\(238\) 1.88306 0.122061
\(239\) −6.13330 −0.396731 −0.198365 0.980128i \(-0.563563\pi\)
−0.198365 + 0.980128i \(0.563563\pi\)
\(240\) 3.20653 0.206981
\(241\) −27.5582 −1.77518 −0.887591 0.460633i \(-0.847622\pi\)
−0.887591 + 0.460633i \(0.847622\pi\)
\(242\) 0 0
\(243\) 22.2874 1.42974
\(244\) 14.0492 0.899410
\(245\) 1.87601 0.119854
\(246\) 15.7590 1.00475
\(247\) −2.05680 −0.130871
\(248\) 9.21456 0.585125
\(249\) 23.6994 1.50189
\(250\) −4.63474 −0.293126
\(251\) −16.6160 −1.04879 −0.524397 0.851474i \(-0.675709\pi\)
−0.524397 + 0.851474i \(0.675709\pi\)
\(252\) 14.4844 0.912429
\(253\) 0 0
\(254\) 12.3700 0.776166
\(255\) −0.180424 −0.0112986
\(256\) 20.5584 1.28490
\(257\) 4.84015 0.301920 0.150960 0.988540i \(-0.451763\pi\)
0.150960 + 0.988540i \(0.451763\pi\)
\(258\) 20.7179 1.28984
\(259\) 33.0000 2.05052
\(260\) 0.648584 0.0402234
\(261\) 19.0273 1.17776
\(262\) −18.4015 −1.13685
\(263\) 26.1141 1.61027 0.805133 0.593094i \(-0.202094\pi\)
0.805133 + 0.593094i \(0.202094\pi\)
\(264\) 0 0
\(265\) −1.21970 −0.0749256
\(266\) −6.75331 −0.414072
\(267\) −18.5714 −1.13655
\(268\) 15.8097 0.965730
\(269\) −14.9397 −0.910889 −0.455444 0.890264i \(-0.650520\pi\)
−0.455444 + 0.890264i \(0.650520\pi\)
\(270\) −0.201598 −0.0122688
\(271\) −27.6208 −1.67785 −0.838923 0.544250i \(-0.816814\pi\)
−0.838923 + 0.544250i \(0.816814\pi\)
\(272\) −1.38178 −0.0837825
\(273\) −19.2608 −1.16572
\(274\) −33.4734 −2.02220
\(275\) 0 0
\(276\) −18.4020 −1.10767
\(277\) −28.3197 −1.70157 −0.850784 0.525515i \(-0.823873\pi\)
−0.850784 + 0.525515i \(0.823873\pi\)
\(278\) 1.48117 0.0888344
\(279\) −20.6831 −1.23827
\(280\) −1.38777 −0.0829353
\(281\) 21.8536 1.30368 0.651838 0.758359i \(-0.273998\pi\)
0.651838 + 0.758359i \(0.273998\pi\)
\(282\) −38.7586 −2.30804
\(283\) 13.5236 0.803895 0.401947 0.915663i \(-0.368333\pi\)
0.401947 + 0.915663i \(0.368333\pi\)
\(284\) 9.09005 0.539395
\(285\) 0.647062 0.0383286
\(286\) 0 0
\(287\) −13.3395 −0.787406
\(288\) −19.2076 −1.13182
\(289\) −16.9223 −0.995427
\(290\) 2.79749 0.164275
\(291\) −33.5052 −1.96411
\(292\) 0.740684 0.0433453
\(293\) −17.0018 −0.993257 −0.496628 0.867963i \(-0.665429\pi\)
−0.496628 + 0.867963i \(0.665429\pi\)
\(294\) −32.0744 −1.87062
\(295\) 1.37955 0.0803203
\(296\) −12.3811 −0.719636
\(297\) 0 0
\(298\) 20.6162 1.19426
\(299\) 12.5797 0.727504
\(300\) 14.8397 0.856769
\(301\) −17.5371 −1.01082
\(302\) −25.5807 −1.47200
\(303\) 6.17464 0.354724
\(304\) 4.95552 0.284219
\(305\) 3.02143 0.173007
\(306\) 1.58581 0.0906546
\(307\) 16.5331 0.943592 0.471796 0.881708i \(-0.343606\pi\)
0.471796 + 0.881708i \(0.343606\pi\)
\(308\) 0 0
\(309\) −1.11801 −0.0636014
\(310\) −3.04094 −0.172714
\(311\) −3.60078 −0.204182 −0.102091 0.994775i \(-0.532553\pi\)
−0.102091 + 0.994775i \(0.532553\pi\)
\(312\) 7.22635 0.409111
\(313\) −25.0524 −1.41604 −0.708022 0.706191i \(-0.750412\pi\)
−0.708022 + 0.706191i \(0.750412\pi\)
\(314\) −28.6274 −1.61554
\(315\) 3.11501 0.175511
\(316\) 5.27360 0.296663
\(317\) −14.9343 −0.838792 −0.419396 0.907803i \(-0.637758\pi\)
−0.419396 + 0.907803i \(0.637758\pi\)
\(318\) 20.8535 1.16940
\(319\) 0 0
\(320\) −0.243007 −0.0135845
\(321\) 2.86600 0.159965
\(322\) 41.3043 2.30180
\(323\) −0.278836 −0.0155148
\(324\) −10.2298 −0.568324
\(325\) −10.1445 −0.562717
\(326\) 33.3685 1.84811
\(327\) −32.8678 −1.81759
\(328\) 5.00476 0.276342
\(329\) 32.8080 1.80876
\(330\) 0 0
\(331\) −3.63411 −0.199749 −0.0998745 0.995000i \(-0.531844\pi\)
−0.0998745 + 0.995000i \(0.531844\pi\)
\(332\) −11.5495 −0.633863
\(333\) 27.7907 1.52292
\(334\) 33.6966 1.84380
\(335\) 3.40004 0.185764
\(336\) 46.4058 2.53164
\(337\) 24.1428 1.31514 0.657570 0.753393i \(-0.271584\pi\)
0.657570 + 0.753393i \(0.271584\pi\)
\(338\) −15.7142 −0.854738
\(339\) −41.7030 −2.26500
\(340\) 0.0879269 0.00476851
\(341\) 0 0
\(342\) −5.68725 −0.307531
\(343\) 0.768413 0.0414904
\(344\) 6.57963 0.354750
\(345\) −3.95754 −0.213067
\(346\) 24.6644 1.32597
\(347\) 8.99715 0.482992 0.241496 0.970402i \(-0.422362\pi\)
0.241496 + 0.970402i \(0.422362\pi\)
\(348\) −18.0374 −0.966907
\(349\) 16.6965 0.893745 0.446872 0.894598i \(-0.352538\pi\)
0.446872 + 0.894598i \(0.352538\pi\)
\(350\) −33.3086 −1.78042
\(351\) −0.888582 −0.0474290
\(352\) 0 0
\(353\) 14.5070 0.772132 0.386066 0.922471i \(-0.373834\pi\)
0.386066 + 0.922471i \(0.373834\pi\)
\(354\) −23.5864 −1.25360
\(355\) 1.95491 0.103756
\(356\) 9.05050 0.479675
\(357\) −2.61114 −0.138196
\(358\) −46.1197 −2.43750
\(359\) −20.4038 −1.07687 −0.538436 0.842667i \(-0.680984\pi\)
−0.538436 + 0.842667i \(0.680984\pi\)
\(360\) −1.16870 −0.0615961
\(361\) 1.00000 0.0526316
\(362\) 26.6886 1.40272
\(363\) 0 0
\(364\) 9.38647 0.491985
\(365\) 0.159292 0.00833772
\(366\) −51.6580 −2.70021
\(367\) 9.53338 0.497639 0.248819 0.968550i \(-0.419957\pi\)
0.248819 + 0.968550i \(0.419957\pi\)
\(368\) −30.3088 −1.57995
\(369\) −11.2338 −0.584806
\(370\) 4.08593 0.212417
\(371\) −17.6518 −0.916438
\(372\) 19.6070 1.01658
\(373\) −16.7534 −0.867458 −0.433729 0.901043i \(-0.642803\pi\)
−0.433729 + 0.901043i \(0.642803\pi\)
\(374\) 0 0
\(375\) 6.42674 0.331875
\(376\) −12.3090 −0.634790
\(377\) 12.3305 0.635054
\(378\) −2.91758 −0.150064
\(379\) 1.61061 0.0827314 0.0413657 0.999144i \(-0.486829\pi\)
0.0413657 + 0.999144i \(0.486829\pi\)
\(380\) −0.315336 −0.0161764
\(381\) −17.1529 −0.878768
\(382\) −40.3093 −2.06240
\(383\) −7.02805 −0.359117 −0.179558 0.983747i \(-0.557467\pi\)
−0.179558 + 0.983747i \(0.557467\pi\)
\(384\) −25.9194 −1.32269
\(385\) 0 0
\(386\) −9.32644 −0.474703
\(387\) −14.7687 −0.750737
\(388\) 16.3283 0.828942
\(389\) 12.2663 0.621924 0.310962 0.950422i \(-0.399349\pi\)
0.310962 + 0.950422i \(0.399349\pi\)
\(390\) −2.38480 −0.120759
\(391\) 1.70540 0.0862460
\(392\) −10.1863 −0.514484
\(393\) 25.5163 1.28713
\(394\) 31.1453 1.56908
\(395\) 1.13414 0.0570650
\(396\) 0 0
\(397\) −14.0905 −0.707180 −0.353590 0.935400i \(-0.615039\pi\)
−0.353590 + 0.935400i \(0.615039\pi\)
\(398\) −36.1037 −1.80972
\(399\) 9.36445 0.468809
\(400\) 24.4416 1.22208
\(401\) 17.8578 0.891774 0.445887 0.895089i \(-0.352888\pi\)
0.445887 + 0.895089i \(0.352888\pi\)
\(402\) −58.1311 −2.89931
\(403\) −13.4035 −0.667677
\(404\) −3.00912 −0.149709
\(405\) −2.20003 −0.109320
\(406\) 40.4861 2.00929
\(407\) 0 0
\(408\) 0.979659 0.0485003
\(409\) −35.6237 −1.76148 −0.880739 0.473602i \(-0.842953\pi\)
−0.880739 + 0.473602i \(0.842953\pi\)
\(410\) −1.65164 −0.0815688
\(411\) 46.4158 2.28952
\(412\) 0.544845 0.0268426
\(413\) 19.9652 0.982422
\(414\) 34.7841 1.70955
\(415\) −2.48385 −0.121927
\(416\) −12.4473 −0.610281
\(417\) −2.05385 −0.100578
\(418\) 0 0
\(419\) 9.73712 0.475689 0.237845 0.971303i \(-0.423559\pi\)
0.237845 + 0.971303i \(0.423559\pi\)
\(420\) −2.95295 −0.144089
\(421\) 29.5648 1.44090 0.720449 0.693508i \(-0.243936\pi\)
0.720449 + 0.693508i \(0.243936\pi\)
\(422\) −3.41840 −0.166405
\(423\) 27.6290 1.34337
\(424\) 6.62268 0.321626
\(425\) −1.37527 −0.0667103
\(426\) −33.4235 −1.61937
\(427\) 43.7270 2.11610
\(428\) −1.39670 −0.0675122
\(429\) 0 0
\(430\) −2.17137 −0.104713
\(431\) 2.84752 0.137160 0.0685800 0.997646i \(-0.478153\pi\)
0.0685800 + 0.997646i \(0.478153\pi\)
\(432\) 2.14089 0.103004
\(433\) −2.63979 −0.126860 −0.0634302 0.997986i \(-0.520204\pi\)
−0.0634302 + 0.997986i \(0.520204\pi\)
\(434\) −44.0092 −2.11251
\(435\) −3.87914 −0.185990
\(436\) 16.0176 0.767105
\(437\) −6.11616 −0.292576
\(438\) −2.72344 −0.130131
\(439\) −21.0320 −1.00380 −0.501902 0.864925i \(-0.667366\pi\)
−0.501902 + 0.864925i \(0.667366\pi\)
\(440\) 0 0
\(441\) 22.8642 1.08877
\(442\) 1.02767 0.0488813
\(443\) 10.4235 0.495235 0.247618 0.968858i \(-0.420352\pi\)
0.247618 + 0.968858i \(0.420352\pi\)
\(444\) −26.3449 −1.25027
\(445\) 1.94640 0.0922684
\(446\) −22.5485 −1.06770
\(447\) −28.5873 −1.35213
\(448\) −3.51687 −0.166156
\(449\) 26.4268 1.24716 0.623579 0.781761i \(-0.285678\pi\)
0.623579 + 0.781761i \(0.285678\pi\)
\(450\) −28.0506 −1.32232
\(451\) 0 0
\(452\) 20.3233 0.955930
\(453\) 35.4714 1.66659
\(454\) −34.9373 −1.63969
\(455\) 2.01866 0.0946362
\(456\) −3.51339 −0.164530
\(457\) 13.4092 0.627258 0.313629 0.949546i \(-0.398455\pi\)
0.313629 + 0.949546i \(0.398455\pi\)
\(458\) 15.6109 0.729451
\(459\) −0.120463 −0.00562273
\(460\) 1.92865 0.0899236
\(461\) 34.0055 1.58379 0.791897 0.610655i \(-0.209094\pi\)
0.791897 + 0.610655i \(0.209094\pi\)
\(462\) 0 0
\(463\) −32.1254 −1.49299 −0.746497 0.665389i \(-0.768266\pi\)
−0.746497 + 0.665389i \(0.768266\pi\)
\(464\) −29.7083 −1.37918
\(465\) 4.21670 0.195545
\(466\) 33.6164 1.55725
\(467\) 1.95804 0.0906071 0.0453035 0.998973i \(-0.485574\pi\)
0.0453035 + 0.998973i \(0.485574\pi\)
\(468\) 7.90475 0.365397
\(469\) 49.2062 2.27213
\(470\) 4.06215 0.187373
\(471\) 39.6961 1.82910
\(472\) −7.49061 −0.344783
\(473\) 0 0
\(474\) −19.3907 −0.890643
\(475\) 4.93218 0.226304
\(476\) 1.27250 0.0583250
\(477\) −14.8654 −0.680638
\(478\) −10.9903 −0.502682
\(479\) −21.3775 −0.976762 −0.488381 0.872631i \(-0.662412\pi\)
−0.488381 + 0.872631i \(0.662412\pi\)
\(480\) 3.91589 0.178735
\(481\) 18.0096 0.821165
\(482\) −49.3815 −2.24927
\(483\) −57.2745 −2.60608
\(484\) 0 0
\(485\) 3.51156 0.159452
\(486\) 39.9368 1.81157
\(487\) −26.3339 −1.19330 −0.596651 0.802501i \(-0.703502\pi\)
−0.596651 + 0.802501i \(0.703502\pi\)
\(488\) −16.4057 −0.742650
\(489\) −46.2703 −2.09242
\(490\) 3.36161 0.151862
\(491\) −12.3994 −0.559578 −0.279789 0.960062i \(-0.590265\pi\)
−0.279789 + 0.960062i \(0.590265\pi\)
\(492\) 10.6493 0.480108
\(493\) 1.67162 0.0752859
\(494\) −3.68558 −0.165822
\(495\) 0 0
\(496\) 32.2936 1.45003
\(497\) 28.2920 1.26907
\(498\) 42.4668 1.90298
\(499\) −34.7531 −1.55576 −0.777881 0.628411i \(-0.783706\pi\)
−0.777881 + 0.628411i \(0.783706\pi\)
\(500\) −3.13198 −0.140066
\(501\) −46.7253 −2.08753
\(502\) −29.7742 −1.32889
\(503\) 7.99272 0.356378 0.178189 0.983996i \(-0.442976\pi\)
0.178189 + 0.983996i \(0.442976\pi\)
\(504\) −16.9138 −0.753400
\(505\) −0.647143 −0.0287975
\(506\) 0 0
\(507\) 21.7900 0.967728
\(508\) 8.35920 0.370879
\(509\) −10.5728 −0.468629 −0.234315 0.972161i \(-0.575285\pi\)
−0.234315 + 0.972161i \(0.575285\pi\)
\(510\) −0.323301 −0.0143160
\(511\) 2.30532 0.101981
\(512\) 15.9757 0.706031
\(513\) 0.432022 0.0190742
\(514\) 8.67305 0.382552
\(515\) 0.117175 0.00516334
\(516\) 14.0004 0.616331
\(517\) 0 0
\(518\) 59.1327 2.59814
\(519\) −34.2008 −1.50125
\(520\) −0.757369 −0.0332128
\(521\) −7.50121 −0.328634 −0.164317 0.986408i \(-0.552542\pi\)
−0.164317 + 0.986408i \(0.552542\pi\)
\(522\) 34.0950 1.49230
\(523\) −19.1032 −0.835325 −0.417663 0.908602i \(-0.637151\pi\)
−0.417663 + 0.908602i \(0.637151\pi\)
\(524\) −12.4350 −0.543226
\(525\) 46.1872 2.01577
\(526\) 46.7939 2.04031
\(527\) −1.81708 −0.0791535
\(528\) 0 0
\(529\) 14.4074 0.626410
\(530\) −2.18558 −0.0949355
\(531\) 16.8135 0.729645
\(532\) −4.56363 −0.197858
\(533\) −7.27994 −0.315329
\(534\) −33.2780 −1.44008
\(535\) −0.300376 −0.0129864
\(536\) −18.4614 −0.797410
\(537\) 63.9517 2.75972
\(538\) −26.7704 −1.15415
\(539\) 0 0
\(540\) −0.136232 −0.00586249
\(541\) 3.66193 0.157439 0.0787193 0.996897i \(-0.474917\pi\)
0.0787193 + 0.996897i \(0.474917\pi\)
\(542\) −49.4937 −2.12594
\(543\) −37.0077 −1.58815
\(544\) −1.68746 −0.0723491
\(545\) 3.44476 0.147557
\(546\) −34.5134 −1.47704
\(547\) 3.71881 0.159005 0.0795025 0.996835i \(-0.474667\pi\)
0.0795025 + 0.996835i \(0.474667\pi\)
\(548\) −22.6200 −0.966280
\(549\) 36.8244 1.57163
\(550\) 0 0
\(551\) −5.99500 −0.255395
\(552\) 21.4885 0.914610
\(553\) 16.4136 0.697978
\(554\) −50.7461 −2.15599
\(555\) −5.66574 −0.240497
\(556\) 1.00091 0.0424482
\(557\) 36.0925 1.52929 0.764643 0.644454i \(-0.222915\pi\)
0.764643 + 0.644454i \(0.222915\pi\)
\(558\) −37.0620 −1.56896
\(559\) −9.57076 −0.404800
\(560\) −4.86363 −0.205526
\(561\) 0 0
\(562\) 39.1594 1.65184
\(563\) −32.9936 −1.39052 −0.695258 0.718761i \(-0.744710\pi\)
−0.695258 + 0.718761i \(0.744710\pi\)
\(564\) −26.1916 −1.10286
\(565\) 4.37075 0.183879
\(566\) 24.2329 1.01859
\(567\) −31.8395 −1.33713
\(568\) −10.6147 −0.445383
\(569\) 23.6786 0.992658 0.496329 0.868134i \(-0.334681\pi\)
0.496329 + 0.868134i \(0.334681\pi\)
\(570\) 1.15947 0.0485648
\(571\) 26.7723 1.12039 0.560193 0.828362i \(-0.310727\pi\)
0.560193 + 0.828362i \(0.310727\pi\)
\(572\) 0 0
\(573\) 55.8947 2.33503
\(574\) −23.9030 −0.997692
\(575\) −30.1660 −1.25801
\(576\) −2.96170 −0.123404
\(577\) −21.8266 −0.908655 −0.454327 0.890835i \(-0.650120\pi\)
−0.454327 + 0.890835i \(0.650120\pi\)
\(578\) −30.3229 −1.26127
\(579\) 12.9325 0.537455
\(580\) 1.89044 0.0784962
\(581\) −35.9469 −1.49133
\(582\) −60.0379 −2.48865
\(583\) 0 0
\(584\) −0.864917 −0.0357905
\(585\) 1.70000 0.0702863
\(586\) −30.4655 −1.25852
\(587\) −9.12072 −0.376452 −0.188226 0.982126i \(-0.560274\pi\)
−0.188226 + 0.982126i \(0.560274\pi\)
\(588\) −21.6747 −0.893848
\(589\) 6.51669 0.268515
\(590\) 2.47201 0.101771
\(591\) −43.1875 −1.77650
\(592\) −43.3911 −1.78336
\(593\) −28.8333 −1.18404 −0.592021 0.805923i \(-0.701670\pi\)
−0.592021 + 0.805923i \(0.701670\pi\)
\(594\) 0 0
\(595\) 0.273665 0.0112192
\(596\) 13.9316 0.570661
\(597\) 50.0631 2.04895
\(598\) 22.5416 0.921794
\(599\) 22.0967 0.902848 0.451424 0.892310i \(-0.350916\pi\)
0.451424 + 0.892310i \(0.350916\pi\)
\(600\) −17.3287 −0.707441
\(601\) 13.9178 0.567720 0.283860 0.958866i \(-0.408385\pi\)
0.283860 + 0.958866i \(0.408385\pi\)
\(602\) −31.4247 −1.28077
\(603\) 41.4387 1.68751
\(604\) −17.2864 −0.703376
\(605\) 0 0
\(606\) 11.0643 0.449457
\(607\) −34.5923 −1.40406 −0.702029 0.712149i \(-0.747722\pi\)
−0.702029 + 0.712149i \(0.747722\pi\)
\(608\) 6.05180 0.245433
\(609\) −56.1399 −2.27490
\(610\) 5.41410 0.219211
\(611\) 17.9048 0.724349
\(612\) 1.07163 0.0433180
\(613\) −12.0413 −0.486343 −0.243171 0.969983i \(-0.578188\pi\)
−0.243171 + 0.969983i \(0.578188\pi\)
\(614\) 29.6255 1.19559
\(615\) 2.29024 0.0923516
\(616\) 0 0
\(617\) −38.8403 −1.56365 −0.781825 0.623498i \(-0.785711\pi\)
−0.781825 + 0.623498i \(0.785711\pi\)
\(618\) −2.00336 −0.0805869
\(619\) −16.0129 −0.643612 −0.321806 0.946806i \(-0.604290\pi\)
−0.321806 + 0.946806i \(0.604290\pi\)
\(620\) −2.05495 −0.0825287
\(621\) −2.64231 −0.106032
\(622\) −6.45223 −0.258711
\(623\) 28.1689 1.12856
\(624\) 25.3256 1.01384
\(625\) 23.9874 0.959494
\(626\) −44.8913 −1.79422
\(627\) 0 0
\(628\) −19.3453 −0.771962
\(629\) 2.44151 0.0973495
\(630\) 5.58178 0.222384
\(631\) 30.6829 1.22147 0.610734 0.791836i \(-0.290874\pi\)
0.610734 + 0.791836i \(0.290874\pi\)
\(632\) −6.15813 −0.244957
\(633\) 4.74012 0.188403
\(634\) −26.7607 −1.06280
\(635\) 1.79773 0.0713409
\(636\) 14.0920 0.558783
\(637\) 14.8170 0.587069
\(638\) 0 0
\(639\) 23.8259 0.942538
\(640\) 2.71652 0.107380
\(641\) 19.5971 0.774041 0.387020 0.922071i \(-0.373504\pi\)
0.387020 + 0.922071i \(0.373504\pi\)
\(642\) 5.13558 0.202685
\(643\) −29.6476 −1.16919 −0.584594 0.811326i \(-0.698746\pi\)
−0.584594 + 0.811326i \(0.698746\pi\)
\(644\) 27.9119 1.09988
\(645\) 3.01092 0.118555
\(646\) −0.499645 −0.0196583
\(647\) 22.9490 0.902219 0.451110 0.892469i \(-0.351028\pi\)
0.451110 + 0.892469i \(0.351028\pi\)
\(648\) 11.9457 0.469269
\(649\) 0 0
\(650\) −18.1779 −0.712997
\(651\) 61.0252 2.39177
\(652\) 22.5492 0.883093
\(653\) 22.6057 0.884631 0.442315 0.896860i \(-0.354157\pi\)
0.442315 + 0.896860i \(0.354157\pi\)
\(654\) −58.8957 −2.30300
\(655\) −2.67428 −0.104493
\(656\) 17.5398 0.684815
\(657\) 1.94140 0.0757414
\(658\) 58.7885 2.29182
\(659\) 22.8318 0.889399 0.444699 0.895680i \(-0.353310\pi\)
0.444699 + 0.895680i \(0.353310\pi\)
\(660\) 0 0
\(661\) −18.5071 −0.719844 −0.359922 0.932982i \(-0.617197\pi\)
−0.359922 + 0.932982i \(0.617197\pi\)
\(662\) −6.51196 −0.253094
\(663\) −1.42501 −0.0553430
\(664\) 13.4867 0.523386
\(665\) −0.981456 −0.0380592
\(666\) 49.7981 1.92964
\(667\) 36.6664 1.41973
\(668\) 22.7709 0.881031
\(669\) 31.2668 1.20884
\(670\) 6.09252 0.235374
\(671\) 0 0
\(672\) 56.6718 2.18616
\(673\) −20.2417 −0.780259 −0.390129 0.920760i \(-0.627570\pi\)
−0.390129 + 0.920760i \(0.627570\pi\)
\(674\) 43.2613 1.66636
\(675\) 2.13081 0.0820149
\(676\) −10.6190 −0.408424
\(677\) 32.1530 1.23574 0.617871 0.786279i \(-0.287995\pi\)
0.617871 + 0.786279i \(0.287995\pi\)
\(678\) −74.7275 −2.86989
\(679\) 50.8203 1.95030
\(680\) −0.102675 −0.00393739
\(681\) 48.4456 1.85644
\(682\) 0 0
\(683\) 14.2346 0.544673 0.272336 0.962202i \(-0.412204\pi\)
0.272336 + 0.962202i \(0.412204\pi\)
\(684\) −3.84322 −0.146949
\(685\) −4.86468 −0.185870
\(686\) 1.37692 0.0525709
\(687\) −21.6468 −0.825878
\(688\) 23.0592 0.879122
\(689\) −9.63338 −0.367002
\(690\) −7.09150 −0.269969
\(691\) −10.0542 −0.382481 −0.191240 0.981543i \(-0.561251\pi\)
−0.191240 + 0.981543i \(0.561251\pi\)
\(692\) 16.6672 0.633594
\(693\) 0 0
\(694\) 16.1220 0.611982
\(695\) 0.215257 0.00816517
\(696\) 21.0628 0.798382
\(697\) −0.986925 −0.0373824
\(698\) 29.9185 1.13243
\(699\) −46.6140 −1.76310
\(700\) −22.5086 −0.850747
\(701\) 43.4165 1.63982 0.819909 0.572494i \(-0.194024\pi\)
0.819909 + 0.572494i \(0.194024\pi\)
\(702\) −1.59225 −0.0600955
\(703\) −8.75610 −0.330243
\(704\) 0 0
\(705\) −5.63277 −0.212142
\(706\) 25.9951 0.978339
\(707\) −9.36562 −0.352230
\(708\) −15.9388 −0.599015
\(709\) 35.7269 1.34175 0.670876 0.741570i \(-0.265918\pi\)
0.670876 + 0.741570i \(0.265918\pi\)
\(710\) 3.50300 0.131465
\(711\) 13.8226 0.518388
\(712\) −10.5685 −0.396072
\(713\) −39.8571 −1.49266
\(714\) −4.67890 −0.175103
\(715\) 0 0
\(716\) −31.1659 −1.16473
\(717\) 15.2396 0.569133
\(718\) −36.5615 −1.36446
\(719\) 17.0581 0.636160 0.318080 0.948064i \(-0.396962\pi\)
0.318080 + 0.948064i \(0.396962\pi\)
\(720\) −4.09587 −0.152644
\(721\) 1.69578 0.0631543
\(722\) 1.79190 0.0666875
\(723\) 68.4747 2.54660
\(724\) 18.0351 0.670270
\(725\) −29.5684 −1.09814
\(726\) 0 0
\(727\) −32.3512 −1.19984 −0.599919 0.800061i \(-0.704801\pi\)
−0.599919 + 0.800061i \(0.704801\pi\)
\(728\) −10.9608 −0.406236
\(729\) −30.0337 −1.11236
\(730\) 0.285435 0.0105644
\(731\) −1.29748 −0.0479892
\(732\) −34.9085 −1.29026
\(733\) −10.1414 −0.374580 −0.187290 0.982305i \(-0.559970\pi\)
−0.187290 + 0.982305i \(0.559970\pi\)
\(734\) 17.0828 0.630539
\(735\) −4.66136 −0.171937
\(736\) −37.0138 −1.36435
\(737\) 0 0
\(738\) −20.1297 −0.740986
\(739\) 39.3685 1.44819 0.724097 0.689698i \(-0.242257\pi\)
0.724097 + 0.689698i \(0.242257\pi\)
\(740\) 2.76111 0.101501
\(741\) 5.11059 0.187742
\(742\) −31.6303 −1.16118
\(743\) −0.416166 −0.0152677 −0.00763383 0.999971i \(-0.502430\pi\)
−0.00763383 + 0.999971i \(0.502430\pi\)
\(744\) −22.8957 −0.839396
\(745\) 2.99614 0.109770
\(746\) −30.0204 −1.09912
\(747\) −30.2724 −1.10761
\(748\) 0 0
\(749\) −4.34712 −0.158840
\(750\) 11.5161 0.420507
\(751\) 18.5177 0.675719 0.337860 0.941197i \(-0.390297\pi\)
0.337860 + 0.941197i \(0.390297\pi\)
\(752\) −43.1386 −1.57310
\(753\) 41.2863 1.50456
\(754\) 22.0950 0.804653
\(755\) −3.71763 −0.135298
\(756\) −1.97159 −0.0717059
\(757\) −8.43089 −0.306426 −0.153213 0.988193i \(-0.548962\pi\)
−0.153213 + 0.988193i \(0.548962\pi\)
\(758\) 2.88605 0.104826
\(759\) 0 0
\(760\) 0.368226 0.0133570
\(761\) −26.6054 −0.964444 −0.482222 0.876049i \(-0.660170\pi\)
−0.482222 + 0.876049i \(0.660170\pi\)
\(762\) −30.7362 −1.11345
\(763\) 49.8534 1.80482
\(764\) −27.2394 −0.985489
\(765\) 0.230465 0.00833247
\(766\) −12.5935 −0.455023
\(767\) 10.8959 0.393427
\(768\) −51.0821 −1.84327
\(769\) 8.62176 0.310908 0.155454 0.987843i \(-0.450316\pi\)
0.155454 + 0.987843i \(0.450316\pi\)
\(770\) 0 0
\(771\) −12.0265 −0.433122
\(772\) −6.30245 −0.226830
\(773\) 31.6229 1.13740 0.568698 0.822546i \(-0.307447\pi\)
0.568698 + 0.822546i \(0.307447\pi\)
\(774\) −26.4640 −0.951230
\(775\) 32.1415 1.15456
\(776\) −19.0670 −0.684464
\(777\) −81.9961 −2.94159
\(778\) 21.9799 0.788017
\(779\) 3.53945 0.126814
\(780\) −1.61155 −0.0577029
\(781\) 0 0
\(782\) 3.05591 0.109279
\(783\) −2.58997 −0.0925579
\(784\) −35.6990 −1.27497
\(785\) −4.16041 −0.148491
\(786\) 45.7227 1.63087
\(787\) 14.2139 0.506670 0.253335 0.967379i \(-0.418473\pi\)
0.253335 + 0.967379i \(0.418473\pi\)
\(788\) 21.0468 0.749761
\(789\) −64.8865 −2.31002
\(790\) 2.03227 0.0723049
\(791\) 63.2546 2.24908
\(792\) 0 0
\(793\) 23.8637 0.847426
\(794\) −25.2487 −0.896041
\(795\) 3.03062 0.107485
\(796\) −24.3975 −0.864746
\(797\) −14.5762 −0.516317 −0.258158 0.966103i \(-0.583116\pi\)
−0.258158 + 0.966103i \(0.583116\pi\)
\(798\) 16.7801 0.594010
\(799\) 2.42730 0.0858719
\(800\) 29.8486 1.05531
\(801\) 23.7222 0.838183
\(802\) 31.9993 1.12993
\(803\) 0 0
\(804\) −39.2827 −1.38540
\(805\) 6.00274 0.211569
\(806\) −24.0177 −0.845989
\(807\) 37.1211 1.30672
\(808\) 3.51383 0.123616
\(809\) −17.8912 −0.629021 −0.314511 0.949254i \(-0.601840\pi\)
−0.314511 + 0.949254i \(0.601840\pi\)
\(810\) −3.94223 −0.138516
\(811\) 41.7192 1.46496 0.732480 0.680789i \(-0.238363\pi\)
0.732480 + 0.680789i \(0.238363\pi\)
\(812\) 27.3589 0.960110
\(813\) 68.6302 2.40697
\(814\) 0 0
\(815\) 4.84943 0.169868
\(816\) 3.43334 0.120191
\(817\) 4.65322 0.162796
\(818\) −63.8340 −2.23190
\(819\) 24.6028 0.859693
\(820\) −1.11612 −0.0389765
\(821\) 35.1689 1.22740 0.613701 0.789538i \(-0.289680\pi\)
0.613701 + 0.789538i \(0.289680\pi\)
\(822\) 83.1723 2.90097
\(823\) −7.14661 −0.249115 −0.124558 0.992212i \(-0.539751\pi\)
−0.124558 + 0.992212i \(0.539751\pi\)
\(824\) −0.636231 −0.0221642
\(825\) 0 0
\(826\) 35.7755 1.24479
\(827\) 20.5226 0.713641 0.356820 0.934173i \(-0.383861\pi\)
0.356820 + 0.934173i \(0.383861\pi\)
\(828\) 23.5058 0.816882
\(829\) 3.00661 0.104424 0.0522120 0.998636i \(-0.483373\pi\)
0.0522120 + 0.998636i \(0.483373\pi\)
\(830\) −4.45080 −0.154490
\(831\) 70.3669 2.44100
\(832\) −1.91931 −0.0665400
\(833\) 2.00870 0.0695973
\(834\) −3.68029 −0.127438
\(835\) 4.89711 0.169472
\(836\) 0 0
\(837\) 2.81535 0.0973127
\(838\) 17.4479 0.602728
\(839\) −33.7640 −1.16566 −0.582831 0.812594i \(-0.698055\pi\)
−0.582831 + 0.812594i \(0.698055\pi\)
\(840\) 3.44824 0.118976
\(841\) 6.93999 0.239310
\(842\) 52.9770 1.82571
\(843\) −54.3002 −1.87020
\(844\) −2.31003 −0.0795144
\(845\) −2.28373 −0.0785628
\(846\) 49.5083 1.70213
\(847\) 0 0
\(848\) 23.2100 0.797036
\(849\) −33.6025 −1.15323
\(850\) −2.46434 −0.0845261
\(851\) 53.5537 1.83580
\(852\) −22.5863 −0.773794
\(853\) −7.06813 −0.242008 −0.121004 0.992652i \(-0.538611\pi\)
−0.121004 + 0.992652i \(0.538611\pi\)
\(854\) 78.3543 2.68123
\(855\) −0.826526 −0.0282666
\(856\) 1.63097 0.0557453
\(857\) 36.6480 1.25187 0.625935 0.779875i \(-0.284717\pi\)
0.625935 + 0.779875i \(0.284717\pi\)
\(858\) 0 0
\(859\) 1.24027 0.0423173 0.0211587 0.999776i \(-0.493264\pi\)
0.0211587 + 0.999776i \(0.493264\pi\)
\(860\) −1.46733 −0.0500355
\(861\) 33.1450 1.12958
\(862\) 5.10246 0.173790
\(863\) −30.3554 −1.03331 −0.516654 0.856194i \(-0.672823\pi\)
−0.516654 + 0.856194i \(0.672823\pi\)
\(864\) 2.61451 0.0889473
\(865\) 3.58447 0.121876
\(866\) −4.73024 −0.160740
\(867\) 42.0472 1.42800
\(868\) −29.7397 −1.00943
\(869\) 0 0
\(870\) −6.95101 −0.235661
\(871\) 26.8540 0.909913
\(872\) −18.7042 −0.633405
\(873\) 42.7979 1.44849
\(874\) −10.9595 −0.370712
\(875\) −9.74800 −0.329543
\(876\) −1.84040 −0.0621813
\(877\) −35.5881 −1.20173 −0.600863 0.799352i \(-0.705176\pi\)
−0.600863 + 0.799352i \(0.705176\pi\)
\(878\) −37.6872 −1.27188
\(879\) 42.2449 1.42488
\(880\) 0 0
\(881\) −18.9997 −0.640116 −0.320058 0.947398i \(-0.603702\pi\)
−0.320058 + 0.947398i \(0.603702\pi\)
\(882\) 40.9703 1.37954
\(883\) −31.2798 −1.05265 −0.526325 0.850284i \(-0.676430\pi\)
−0.526325 + 0.850284i \(0.676430\pi\)
\(884\) 0.694460 0.0233572
\(885\) −3.42780 −0.115224
\(886\) 18.6778 0.627494
\(887\) −10.6811 −0.358637 −0.179319 0.983791i \(-0.557389\pi\)
−0.179319 + 0.983791i \(0.557389\pi\)
\(888\) 30.7636 1.03236
\(889\) 26.0173 0.872591
\(890\) 3.48776 0.116910
\(891\) 0 0
\(892\) −15.2374 −0.510186
\(893\) −8.70515 −0.291307
\(894\) −51.2255 −1.71324
\(895\) −6.70256 −0.224042
\(896\) 39.3142 1.31340
\(897\) −31.2572 −1.04365
\(898\) 47.3541 1.58023
\(899\) −39.0675 −1.30297
\(900\) −18.9555 −0.631850
\(901\) −1.30597 −0.0435083
\(902\) 0 0
\(903\) 43.5749 1.45008
\(904\) −23.7321 −0.789318
\(905\) 3.87864 0.128931
\(906\) 63.5611 2.11167
\(907\) 27.6869 0.919327 0.459664 0.888093i \(-0.347970\pi\)
0.459664 + 0.888093i \(0.347970\pi\)
\(908\) −23.6092 −0.783500
\(909\) −7.88719 −0.261602
\(910\) 3.61723 0.119910
\(911\) −7.03345 −0.233029 −0.116514 0.993189i \(-0.537172\pi\)
−0.116514 + 0.993189i \(0.537172\pi\)
\(912\) −12.3131 −0.407728
\(913\) 0 0
\(914\) 24.0280 0.794775
\(915\) −7.50744 −0.248188
\(916\) 10.5493 0.348558
\(917\) −38.7029 −1.27808
\(918\) −0.215857 −0.00712435
\(919\) −23.3604 −0.770587 −0.385294 0.922794i \(-0.625900\pi\)
−0.385294 + 0.922794i \(0.625900\pi\)
\(920\) −2.25213 −0.0742506
\(921\) −41.0802 −1.35364
\(922\) 60.9343 2.00677
\(923\) 15.4402 0.508220
\(924\) 0 0
\(925\) −43.1867 −1.41997
\(926\) −57.5654 −1.89172
\(927\) 1.42809 0.0469047
\(928\) −36.2805 −1.19097
\(929\) 20.4047 0.669455 0.334727 0.942315i \(-0.391356\pi\)
0.334727 + 0.942315i \(0.391356\pi\)
\(930\) 7.55590 0.247768
\(931\) −7.20389 −0.236098
\(932\) 22.7166 0.744108
\(933\) 8.94696 0.292910
\(934\) 3.50860 0.114805
\(935\) 0 0
\(936\) −9.23059 −0.301711
\(937\) −18.8142 −0.614634 −0.307317 0.951607i \(-0.599431\pi\)
−0.307317 + 0.951607i \(0.599431\pi\)
\(938\) 88.1725 2.87893
\(939\) 62.2483 2.03140
\(940\) 2.74505 0.0895335
\(941\) 48.8440 1.59227 0.796135 0.605120i \(-0.206875\pi\)
0.796135 + 0.605120i \(0.206875\pi\)
\(942\) 71.1313 2.31758
\(943\) −21.6479 −0.704951
\(944\) −26.2518 −0.854423
\(945\) −0.424010 −0.0137930
\(946\) 0 0
\(947\) 46.9717 1.52638 0.763188 0.646177i \(-0.223633\pi\)
0.763188 + 0.646177i \(0.223633\pi\)
\(948\) −13.1035 −0.425581
\(949\) 1.25811 0.0408400
\(950\) 8.83797 0.286741
\(951\) 37.1076 1.20330
\(952\) −1.48593 −0.0481594
\(953\) −10.9130 −0.353506 −0.176753 0.984255i \(-0.556559\pi\)
−0.176753 + 0.984255i \(0.556559\pi\)
\(954\) −26.6372 −0.862411
\(955\) −5.85813 −0.189565
\(956\) −7.42679 −0.240200
\(957\) 0 0
\(958\) −38.3062 −1.23762
\(959\) −70.4029 −2.27343
\(960\) 0.603807 0.0194878
\(961\) 11.4672 0.369911
\(962\) 32.2713 1.04047
\(963\) −3.66089 −0.117971
\(964\) −33.3701 −1.07478
\(965\) −1.35541 −0.0436321
\(966\) −102.630 −3.30207
\(967\) −41.7908 −1.34390 −0.671950 0.740596i \(-0.734543\pi\)
−0.671950 + 0.740596i \(0.734543\pi\)
\(968\) 0 0
\(969\) 0.692830 0.0222569
\(970\) 6.29236 0.202036
\(971\) −25.0190 −0.802899 −0.401449 0.915881i \(-0.631493\pi\)
−0.401449 + 0.915881i \(0.631493\pi\)
\(972\) 26.9877 0.865632
\(973\) 3.11526 0.0998706
\(974\) −47.1876 −1.51199
\(975\) 25.2064 0.807250
\(976\) −57.4957 −1.84039
\(977\) −59.1109 −1.89112 −0.945562 0.325441i \(-0.894487\pi\)
−0.945562 + 0.325441i \(0.894487\pi\)
\(978\) −82.9117 −2.65122
\(979\) 0 0
\(980\) 2.27165 0.0725651
\(981\) 41.9837 1.34044
\(982\) −22.2185 −0.709020
\(983\) −48.0058 −1.53115 −0.765574 0.643348i \(-0.777545\pi\)
−0.765574 + 0.643348i \(0.777545\pi\)
\(984\) −12.4355 −0.396429
\(985\) 4.52633 0.144221
\(986\) 2.99537 0.0953920
\(987\) −81.5189 −2.59478
\(988\) −2.49057 −0.0792356
\(989\) −28.4599 −0.904971
\(990\) 0 0
\(991\) −36.6298 −1.16358 −0.581792 0.813338i \(-0.697648\pi\)
−0.581792 + 0.813338i \(0.697648\pi\)
\(992\) 39.4377 1.25215
\(993\) 9.02978 0.286552
\(994\) 50.6963 1.60799
\(995\) −5.24694 −0.166339
\(996\) 28.6974 0.909313
\(997\) 52.9863 1.67809 0.839046 0.544060i \(-0.183114\pi\)
0.839046 + 0.544060i \(0.183114\pi\)
\(998\) −62.2740 −1.97125
\(999\) −3.78282 −0.119683
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2299.2.a.r.1.5 yes 7
11.10 odd 2 2299.2.a.p.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2299.2.a.p.1.3 7 11.10 odd 2
2299.2.a.r.1.5 yes 7 1.1 even 1 trivial