Properties

Label 2299.1.t.a.892.1
Level $2299$
Weight $1$
Character 2299.892
Analytic conductor $1.147$
Analytic rank $0$
Dimension $10$
Projective image $D_{11}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,1,Mod(56,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.56"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([2, 11])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2299.t (of order \(22\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14735046404\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} + \cdots)\)

Embedding invariants

Embedding label 892.1
Root \(-0.841254 + 0.540641i\) of defining polynomial
Character \(\chi\) \(=\) 2299.892
Dual form 2299.1.t.a.683.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.142315 + 0.989821i) q^{4} +(-0.239446 - 0.153882i) q^{5} +(1.25667 - 0.368991i) q^{7} +1.00000 q^{9} +1.00000 q^{11} +(-0.959493 - 0.281733i) q^{16} +(-0.118239 - 0.258908i) q^{17} +(0.415415 - 0.909632i) q^{19} +(0.186393 - 0.215109i) q^{20} +(-0.797176 - 0.234072i) q^{23} +(-0.381761 - 0.835939i) q^{25} +(0.186393 + 1.29639i) q^{28} +(-0.357685 - 0.105026i) q^{35} +(-0.142315 + 0.989821i) q^{36} +(0.698939 - 0.449181i) q^{43} +(-0.142315 + 0.989821i) q^{44} +(-0.239446 - 0.153882i) q^{45} +(-1.10181 + 1.27155i) q^{47} +(0.601808 - 0.386758i) q^{49} +(-0.239446 - 0.153882i) q^{55} +(-1.30972 + 1.51150i) q^{61} +(1.25667 - 0.368991i) q^{63} +(0.415415 - 0.909632i) q^{64} +(0.273100 - 0.0801894i) q^{68} +(1.25667 + 0.368991i) q^{73} +(0.841254 + 0.540641i) q^{76} +(1.25667 - 0.368991i) q^{77} +(0.186393 + 0.215109i) q^{80} +1.00000 q^{81} +(-0.797176 + 0.234072i) q^{83} +(-0.0115295 + 0.0801894i) q^{85} +(0.345139 - 0.755750i) q^{92} +(-0.239446 + 0.153882i) q^{95} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{4} - 2 q^{5} - 2 q^{7} + 10 q^{9} + 10 q^{11} - q^{16} - 2 q^{17} - q^{19} - 2 q^{20} - 2 q^{23} - 3 q^{25} - 2 q^{28} - 4 q^{35} - q^{36} - 2 q^{43} - q^{44} - 2 q^{45} - 2 q^{47} - 3 q^{49}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2299\mathbb{Z}\right)^\times\).

\(n\) \(970\) \(1332\)
\(\chi(n)\) \(e\left(\frac{3}{11}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(5\) −0.239446 0.153882i −0.239446 0.153882i 0.415415 0.909632i \(-0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(6\) 0 0
\(7\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(8\) 0 0
\(9\) 1.00000 1.00000
\(10\) 0 0
\(11\) 1.00000 1.00000
\(12\) 0 0
\(13\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.959493 0.281733i −0.959493 0.281733i
\(17\) −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i \(-0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(18\) 0 0
\(19\) 0.415415 0.909632i 0.415415 0.909632i
\(20\) 0.186393 0.215109i 0.186393 0.215109i
\(21\) 0 0
\(22\) 0 0
\(23\) −0.797176 0.234072i −0.797176 0.234072i −0.142315 0.989821i \(-0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(24\) 0 0
\(25\) −0.381761 0.835939i −0.381761 0.835939i
\(26\) 0 0
\(27\) 0 0
\(28\) 0.186393 + 1.29639i 0.186393 + 1.29639i
\(29\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(30\) 0 0
\(31\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.357685 0.105026i −0.357685 0.105026i
\(36\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(37\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(42\) 0 0
\(43\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(44\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(45\) −0.239446 0.153882i −0.239446 0.153882i
\(46\) 0 0
\(47\) −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i \(0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(48\) 0 0
\(49\) 0.601808 0.386758i 0.601808 0.386758i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(54\) 0 0
\(55\) −0.239446 0.153882i −0.239446 0.153882i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(60\) 0 0
\(61\) −1.30972 + 1.51150i −1.30972 + 1.51150i −0.654861 + 0.755750i \(0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(62\) 0 0
\(63\) 1.25667 0.368991i 1.25667 0.368991i
\(64\) 0.415415 0.909632i 0.415415 0.909632i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(68\) 0.273100 0.0801894i 0.273100 0.0801894i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(72\) 0 0
\(73\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(77\) 1.25667 0.368991i 1.25667 0.368991i
\(78\) 0 0
\(79\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(80\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(84\) 0 0
\(85\) −0.0115295 + 0.0801894i −0.0115295 + 0.0801894i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.345139 0.755750i 0.345139 0.755750i
\(93\) 0 0
\(94\) 0 0
\(95\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(96\) 0 0
\(97\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(98\) 0 0
\(99\) 1.00000 1.00000
\(100\) 0.881761 0.258908i 0.881761 0.258908i
\(101\) −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i \(0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(102\) 0 0
\(103\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(108\) 0 0
\(109\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.30972 −1.30972
\(113\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(114\) 0 0
\(115\) 0.154861 + 0.178719i 0.154861 + 0.178719i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.244123 0.281733i −0.244123 0.281733i
\(120\) 0 0
\(121\) 1.00000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.0777324 + 0.540641i −0.0777324 + 0.540641i
\(126\) 0 0
\(127\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(132\) 0 0
\(133\) 0.186393 1.29639i 0.186393 1.29639i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.91899 0.563465i −1.91899 0.563465i −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 0.281733i \(-0.909091\pi\)
\(138\) 0 0
\(139\) 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 \(0\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(140\) 0.154861 0.339098i 0.154861 0.339098i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.959493 0.281733i −0.959493 0.281733i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(150\) 0 0
\(151\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(152\) 0 0
\(153\) −0.118239 0.258908i −0.118239 0.258908i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.08816 −1.08816
\(162\) 0 0
\(163\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(168\) 0 0
\(169\) −0.959493 0.281733i −0.959493 0.281733i
\(170\) 0 0
\(171\) 0.415415 0.909632i 0.415415 0.909632i
\(172\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(173\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(174\) 0 0
\(175\) −0.788201 0.909632i −0.788201 0.909632i
\(176\) −0.959493 0.281733i −0.959493 0.281733i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(180\) 0.186393 0.215109i 0.186393 0.215109i
\(181\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.118239 0.258908i −0.118239 0.258908i
\(188\) −1.10181 1.27155i −1.10181 1.27155i
\(189\) 0 0
\(190\) 0 0
\(191\) −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i \(-0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(192\) 0 0
\(193\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.297176 + 0.650724i 0.297176 + 0.650724i
\(197\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(198\) 0 0
\(199\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.797176 0.234072i −0.797176 0.234072i
\(208\) 0 0
\(209\) 0.415415 0.909632i 0.415415 0.909632i
\(210\) 0 0
\(211\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.236479 −0.236479
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0.186393 0.215109i 0.186393 0.215109i
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(224\) 0 0
\(225\) −0.381761 0.835939i −0.381761 0.835939i
\(226\) 0 0
\(227\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(228\) 0 0
\(229\) 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
1.00000 \(0\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(234\) 0 0
\(235\) 0.459493 0.134919i 0.459493 0.134919i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −1.30972 1.51150i −1.30972 1.51150i
\(245\) −0.203616 −0.203616
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(252\) 0.186393 + 1.29639i 0.186393 + 1.29639i
\(253\) −0.797176 0.234072i −0.797176 0.234072i
\(254\) 0 0
\(255\) 0 0
\(256\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(257\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(272\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(273\) 0 0
\(274\) 0 0
\(275\) −0.381761 0.835939i −0.381761 0.835939i
\(276\) 0 0
\(277\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(282\) 0 0
\(283\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.601808 0.694523i 0.601808 0.694523i
\(290\) 0 0
\(291\) 0 0
\(292\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(293\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0.712591 0.822373i 0.712591 0.822373i
\(302\) 0 0
\(303\) 0 0
\(304\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(305\) 0.546200 0.160379i 0.546200 0.160379i
\(306\) 0 0
\(307\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(308\) 0.186393 + 1.29639i 0.186393 + 1.29639i
\(309\) 0 0
\(310\) 0 0
\(311\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(312\) 0 0
\(313\) 0.830830 1.81926i 0.830830 1.81926i 0.415415 0.909632i \(-0.363636\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(314\) 0 0
\(315\) −0.357685 0.105026i −0.357685 0.105026i
\(316\) 0 0
\(317\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(321\) 0 0
\(322\) 0 0
\(323\) −0.284630 −0.284630
\(324\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.915415 + 2.00448i −0.915415 + 2.00448i
\(330\) 0 0
\(331\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(332\) −0.118239 0.822373i −0.118239 0.822373i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −0.0777324 0.0228243i −0.0777324 0.0228243i
\(341\) 0 0
\(342\) 0 0
\(343\) −0.244123 + 0.281733i −0.244123 + 0.281733i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(348\) 0 0
\(349\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(360\) 0 0
\(361\) −0.654861 0.755750i −0.654861 0.755750i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.244123 0.281733i −0.244123 0.281733i
\(366\) 0 0
\(367\) 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
1.00000 \(0\)
\(368\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(380\) −0.118239 0.258908i −0.118239 0.258908i
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(384\) 0 0
\(385\) −0.357685 0.105026i −0.357685 0.105026i
\(386\) 0 0
\(387\) 0.698939 0.449181i 0.698939 0.449181i
\(388\) 0 0
\(389\) 1.68251 1.08128i 1.68251 1.08128i 0.841254 0.540641i \(-0.181818\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(390\) 0 0
\(391\) 0.0336545 + 0.234072i 0.0336545 + 0.234072i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(397\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.130785 + 0.909632i 0.130785 + 0.909632i
\(401\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.10181 1.27155i −1.10181 1.27155i
\(405\) −0.239446 0.153882i −0.239446 0.153882i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0.226900 + 0.0666238i 0.226900 + 0.0666238i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(420\) 0 0
\(421\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(422\) 0 0
\(423\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(424\) 0 0
\(425\) −0.171292 + 0.197682i −0.171292 + 0.197682i
\(426\) 0 0
\(427\) −1.08816 + 2.38273i −1.08816 + 2.38273i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(432\) 0 0
\(433\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.544078 + 0.627899i −0.544078 + 0.627899i
\(438\) 0 0
\(439\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(440\) 0 0
\(441\) 0.601808 0.386758i 0.601808 0.386758i
\(442\) 0 0
\(443\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.186393 1.29639i 0.186393 1.29639i
\(449\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −0.198939 + 0.127850i −0.198939 + 0.127850i
\(461\) −0.797176 0.234072i −0.797176 0.234072i −0.142315 0.989821i \(-0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(462\) 0 0
\(463\) 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
1.00000 \(0\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 \(0\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.698939 0.449181i 0.698939 0.449181i
\(474\) 0 0
\(475\) −0.918986 −0.918986
\(476\) 0.313607 0.201543i 0.313607 0.201543i
\(477\) 0 0
\(478\) 0 0
\(479\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
1.00000 \(0\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.239446 0.153882i −0.239446 0.153882i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(500\) −0.524075 0.153882i −0.524075 0.153882i
\(501\) 0 0
\(502\) 0 0
\(503\) 0.345139 0.755750i 0.345139 0.755750i −0.654861 0.755750i \(-0.727273\pi\)
1.00000 \(0\)
\(504\) 0 0
\(505\) 0.459493 0.134919i 0.459493 0.134919i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(510\) 0 0
\(511\) 1.71537 1.71537
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(522\) 0 0
\(523\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(524\) −1.91899 −1.91899
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.260554 0.167448i −0.260554 0.167448i
\(530\) 0 0
\(531\) 0 0
\(532\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.601808 0.386758i 0.601808 0.386758i
\(540\) 0 0
\(541\) 0.345139 0.755750i 0.345139 0.755750i −0.654861 0.755750i \(-0.727273\pi\)
1.00000 \(0\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(548\) 0.830830 1.81926i 0.830830 1.81926i
\(549\) −1.30972 + 1.51150i −1.30972 + 1.51150i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(557\) 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 \(0\)
0.841254 + 0.540641i \(0.181818\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0.313607 + 0.201543i 0.313607 + 0.201543i
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.25667 0.368991i 1.25667 0.368991i
\(568\) 0 0
\(569\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(570\) 0 0
\(571\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.108660 + 0.755750i 0.108660 + 0.755750i
\(576\) 0.415415 0.909632i 0.415415 0.909632i
\(577\) −0.239446 1.66538i −0.239446 1.66538i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.915415 + 0.588302i −0.915415 + 0.588302i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(594\) 0 0
\(595\) 0.0151004 + 0.105026i 0.0151004 + 0.105026i
\(596\) 0.830830 0.830830
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(600\) 0 0
\(601\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.239446 0.153882i −0.239446 0.153882i
\(606\) 0 0
\(607\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0.273100 0.0801894i 0.273100 0.0801894i
\(613\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(618\) 0 0
\(619\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 + 0.577031i −0.500000 + 0.577031i
\(626\) 0 0
\(627\) 0 0
\(628\) −1.61435 0.474017i −1.61435 0.474017i
\(629\) 0 0
\(630\) 0 0
\(631\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(642\) 0 0
\(643\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(644\) 0.154861 1.07708i 0.154861 1.07708i
\(645\) 0 0
\(646\) 0 0
\(647\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.857685 0.989821i 0.857685 0.989821i
\(653\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(654\) 0 0
\(655\) 0.226900 0.496841i 0.226900 0.496841i
\(656\) 0 0
\(657\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(658\) 0 0
\(659\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(660\) 0 0
\(661\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.244123 + 0.281733i −0.244123 + 0.281733i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.30972 + 1.51150i −1.30972 + 1.51150i
\(672\) 0 0
\(673\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0.415415 0.909632i 0.415415 0.909632i
\(677\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(684\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(685\) 0.372786 + 0.430218i 0.372786 + 0.430218i
\(686\) 0 0
\(687\) 0 0
\(688\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(689\) 0 0
\(690\) 0 0
\(691\) −1.91899 0.563465i −1.91899 0.563465i −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 0.281733i \(-0.909091\pi\)
\(692\) 0 0
\(693\) 1.25667 0.368991i 1.25667 0.368991i
\(694\) 0 0
\(695\) −0.0530529 0.368991i −0.0530529 0.368991i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 1.01255 0.650724i 1.01255 0.650724i
\(701\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.415415 0.909632i 0.415415 0.909632i
\(705\) 0 0
\(706\) 0 0
\(707\) −0.915415 + 2.00448i −0.915415 + 2.00448i
\(708\) 0 0
\(709\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(720\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) −0.198939 0.127850i −0.198939 0.127850i
\(732\) 0 0
\(733\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i \(0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(744\) 0 0
\(745\) −0.0982369 + 0.215109i −0.0982369 + 0.215109i
\(746\) 0 0
\(747\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(748\) 0.273100 0.0801894i 0.273100 0.0801894i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(752\) 1.41542 0.909632i 1.41542 0.909632i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 \(0\)
0.841254 + 0.540641i \(0.181818\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.273100 0.0801894i 0.273100 0.0801894i
\(765\) −0.0115295 + 0.0801894i −0.0115295 + 0.0801894i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.686393 + 0.201543i −0.686393 + 0.201543i
\(785\) 0.313607 0.361922i 0.313607 0.361922i
\(786\) 0 0
\(787\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(788\) 1.25667 1.45027i 1.25667 1.45027i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(797\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(798\) 0 0
\(799\) 0.459493 + 0.134919i 0.459493 + 0.134919i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(804\) 0 0
\(805\) 0.260554 + 0.167448i 0.260554 + 0.167448i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(810\) 0 0
\(811\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.154861 + 0.339098i 0.154861 + 0.339098i
\(816\) 0 0
\(817\) −0.118239 0.822373i −0.118239 0.822373i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(822\) 0 0
\(823\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(828\) 0.345139 0.755750i 0.345139 0.755750i
\(829\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.171292 0.110083i −0.171292 0.110083i
\(834\) 0 0
\(835\) 0 0
\(836\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(840\) 0 0
\(841\) −0.654861 0.755750i −0.654861 0.755750i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(846\) 0 0
\(847\) 1.25667 0.368991i 1.25667 0.368991i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(854\) 0 0
\(855\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(856\) 0 0
\(857\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(858\) 0 0
\(859\) −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i \(0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(860\) 0.0336545 0.234072i 0.0336545 0.234072i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.101808 + 0.708089i 0.101808 + 0.708089i
\(876\) 0 0
\(877\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(881\) −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i \(0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(882\) 0 0
\(883\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.00000 1.00000
\(892\) 0 0
\(893\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.881761 0.258908i 0.881761 0.258908i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(908\) 0 0
\(909\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(910\) 0 0
\(911\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(912\) 0 0
\(913\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(914\) 0 0
\(915\) 0 0
\(916\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i
\(917\) 1.04408 + 2.28621i 1.04408 + 2.28621i
\(918\) 0 0
\(919\) −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(930\) 0 0
\(931\) −0.101808 0.708089i −0.101808 0.708089i
\(932\) 0.186393 1.29639i 0.186393 1.29639i
\(933\) 0 0
\(934\) 0 0
\(935\) −0.0115295 + 0.0801894i −0.0115295 + 0.0801894i
\(936\) 0 0
\(937\) 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.0681534 + 0.474017i 0.0681534 + 0.474017i
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(954\) 0 0
\(955\) −0.0115295 + 0.0801894i −0.0115295 + 0.0801894i
\(956\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(957\) 0 0
\(958\) 0 0
\(959\) −2.61944 −2.61944
\(960\) 0 0
\(961\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 1.44306 + 0.927399i 1.44306 + 0.927399i
\(974\) 0 0
\(975\) 0 0
\(976\) 1.68251 1.08128i 1.68251 1.08128i
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.0289775 0.201543i 0.0289775 0.201543i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(984\) 0 0
\(985\) 0.226900 + 0.496841i 0.226900 + 0.496841i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.662317 + 0.194474i −0.662317 + 0.194474i
\(990\) 0 0
\(991\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.236479 −0.236479
\(996\) 0 0
\(997\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2299.1.t.a.892.1 yes 10
19.18 odd 2 CM 2299.1.t.a.892.1 yes 10
121.78 even 11 inner 2299.1.t.a.683.1 10
2299.683 odd 22 inner 2299.1.t.a.683.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2299.1.t.a.683.1 10 121.78 even 11 inner
2299.1.t.a.683.1 10 2299.683 odd 22 inner
2299.1.t.a.892.1 yes 10 1.1 even 1 trivial
2299.1.t.a.892.1 yes 10 19.18 odd 2 CM