Properties

Label 2299.1.t.a
Level $2299$
Weight $1$
Character orbit 2299.t
Analytic conductor $1.147$
Analytic rank $0$
Dimension $10$
Projective image $D_{11}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,1,Mod(56,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([2, 11])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.56"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2299.t (of order \(22\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14735046404\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} + \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{22}^{8} q^{4} + ( - \zeta_{22}^{7} + \zeta_{22}^{2}) q^{5} + (\zeta_{22}^{10} + \zeta_{22}^{2}) q^{7} + q^{9} + q^{11} - \zeta_{22}^{5} q^{16} + (\zeta_{22}^{6} - \zeta_{22}) q^{17} + \zeta_{22}^{2} q^{19} + \cdots + q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{4} - 2 q^{5} - 2 q^{7} + 10 q^{9} + 10 q^{11} - q^{16} - 2 q^{17} - q^{19} - 2 q^{20} - 2 q^{23} - 3 q^{25} - 2 q^{28} - 4 q^{35} - q^{36} - 2 q^{43} - q^{44} - 2 q^{45} - 2 q^{47} - 3 q^{49}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2299\mathbb{Z}\right)^\times\).

\(n\) \(970\) \(1332\)
\(\chi(n)\) \(\zeta_{22}^{8}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
56.1
0.654861 + 0.755750i
0.959493 0.281733i
0.142315 0.989821i
−0.841254 0.540641i
−0.841254 + 0.540641i
0.142315 + 0.989821i
0.959493 + 0.281733i
0.654861 0.755750i
−0.415415 0.909632i
−0.415415 + 0.909632i
0 0 0.841254 + 0.540641i −1.10181 + 1.27155i 0 −0.797176 + 1.74557i 0 1.00000 0
265.1 0 0 −0.654861 0.755750i 1.25667 + 0.368991i 0 −0.118239 0.822373i 0 1.00000 0
474.1 0 0 0.415415 + 0.909632i −0.118239 0.822373i 0 −1.10181 1.27155i 0 1.00000 0
683.1 0 0 −0.142315 0.989821i −0.239446 + 0.153882i 0 1.25667 + 0.368991i 0 1.00000 0
892.1 0 0 −0.142315 + 0.989821i −0.239446 0.153882i 0 1.25667 0.368991i 0 1.00000 0
1101.1 0 0 0.415415 0.909632i −0.118239 + 0.822373i 0 −1.10181 + 1.27155i 0 1.00000 0
1310.1 0 0 −0.654861 + 0.755750i 1.25667 0.368991i 0 −0.118239 + 0.822373i 0 1.00000 0
1519.1 0 0 0.841254 0.540641i −1.10181 1.27155i 0 −0.797176 1.74557i 0 1.00000 0
1728.1 0 0 −0.959493 + 0.281733i −0.797176 + 1.74557i 0 −0.239446 0.153882i 0 1.00000 0
2146.1 0 0 −0.959493 0.281733i −0.797176 1.74557i 0 −0.239446 + 0.153882i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 56.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
121.e even 11 1 inner
2299.t odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.1.t.a 10
19.b odd 2 1 CM 2299.1.t.a 10
121.e even 11 1 inner 2299.1.t.a 10
2299.t odd 22 1 inner 2299.1.t.a 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2299.1.t.a 10 1.a even 1 1 trivial
2299.1.t.a 10 19.b odd 2 1 CM
2299.1.t.a 10 121.e even 11 1 inner
2299.1.t.a 10 2299.t odd 22 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(2299, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} \) Copy content Toggle raw display
$3$ \( T^{10} \) Copy content Toggle raw display
$5$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( (T - 1)^{10} \) Copy content Toggle raw display
$13$ \( T^{10} \) Copy content Toggle raw display
$17$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{10} \) Copy content Toggle raw display
$31$ \( T^{10} \) Copy content Toggle raw display
$37$ \( T^{10} \) Copy content Toggle raw display
$41$ \( T^{10} \) Copy content Toggle raw display
$43$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{10} \) Copy content Toggle raw display
$59$ \( T^{10} \) Copy content Toggle raw display
$61$ \( T^{10} + 2 T^{9} + \cdots + 1024 \) Copy content Toggle raw display
$67$ \( T^{10} \) Copy content Toggle raw display
$71$ \( T^{10} \) Copy content Toggle raw display
$73$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{10} \) Copy content Toggle raw display
$83$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{10} \) Copy content Toggle raw display
$97$ \( T^{10} \) Copy content Toggle raw display
show more
show less