Properties

Label 2280.1.t.a
Level 22802280
Weight 11
Character orbit 2280.t
Self dual yes
Analytic conductor 1.1381.138
Analytic rank 00
Dimension 11
Projective image D2D_{2}
CM/RM discs -95, -2280, 24
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2280,1,Mod(1139,2280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2280.1139"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2280=233519 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2280.t (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,-1,1,-1,1,0,-1,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.137868228801.13786822880
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D2D_{2}
Projective field: Galois closure of Q(6,95)\Q(\sqrt{6}, \sqrt{-95})
Artin image: D4D_4
Artin field: Galois closure of 4.2.54720.2
Stark unit: Root of x426x345x226x+1x^{4} - 26x^{3} - 45x^{2} - 26x + 1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == qq2q3+q4q5+q6q8+q9+q10q12+q15+q16q18q19q20+q24+q25q27q30q32+q36+q38++q98+O(q100) q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{8} + q^{9} + q^{10} - q^{12} + q^{15} + q^{16} - q^{18} - q^{19} - q^{20} + q^{24} + q^{25} - q^{27} - q^{30} - q^{32} + q^{36} + q^{38}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2280Z)×\left(\mathbb{Z}/2280\mathbb{Z}\right)^\times.

nn 457457 761761 11411141 17111711 19211921
χ(n)\chi(n) 1-1 1-1 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1139.1
0
−1.00000 −1.00000 1.00000 −1.00000 1.00000 0 −1.00000 1.00000 1.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.f even 2 1 RM by Q(6)\Q(\sqrt{6})
95.d odd 2 1 CM by Q(95)\Q(\sqrt{-95})
2280.t odd 2 1 CM by Q(570)\Q(\sqrt{-570})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2280.1.t.a 1
3.b odd 2 1 2280.1.t.c yes 1
5.b even 2 1 2280.1.t.d yes 1
8.d odd 2 1 2280.1.t.c yes 1
15.d odd 2 1 2280.1.t.b yes 1
19.b odd 2 1 2280.1.t.d yes 1
24.f even 2 1 RM 2280.1.t.a 1
40.e odd 2 1 2280.1.t.b yes 1
57.d even 2 1 2280.1.t.b yes 1
95.d odd 2 1 CM 2280.1.t.a 1
120.m even 2 1 2280.1.t.d yes 1
152.b even 2 1 2280.1.t.b yes 1
285.b even 2 1 2280.1.t.c yes 1
456.l odd 2 1 2280.1.t.d yes 1
760.p even 2 1 2280.1.t.c yes 1
2280.t odd 2 1 CM 2280.1.t.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2280.1.t.a 1 1.a even 1 1 trivial
2280.1.t.a 1 24.f even 2 1 RM
2280.1.t.a 1 95.d odd 2 1 CM
2280.1.t.a 1 2280.t odd 2 1 CM
2280.1.t.b yes 1 15.d odd 2 1
2280.1.t.b yes 1 40.e odd 2 1
2280.1.t.b yes 1 57.d even 2 1
2280.1.t.b yes 1 152.b even 2 1
2280.1.t.c yes 1 3.b odd 2 1
2280.1.t.c yes 1 8.d odd 2 1
2280.1.t.c yes 1 285.b even 2 1
2280.1.t.c yes 1 760.p even 2 1
2280.1.t.d yes 1 5.b even 2 1
2280.1.t.d yes 1 19.b odd 2 1
2280.1.t.d yes 1 120.m even 2 1
2280.1.t.d yes 1 456.l odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(2280,[χ])S_{1}^{\mathrm{new}}(2280, [\chi]):

T11 T_{11} Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display
T23 T_{23} Copy content Toggle raw display
T31 T_{31} Copy content Toggle raw display
T532 T_{53} - 2 Copy content Toggle raw display
T672 T_{67} - 2 Copy content Toggle raw display
T1012 T_{101} - 2 Copy content Toggle raw display
T1912 T_{191} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+1 T + 1 Copy content Toggle raw display
33 T+1 T + 1 Copy content Toggle raw display
55 T+1 T + 1 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T T Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T+1 T + 1 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T2 T - 2 Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T2 T - 2 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T2 T - 2 Copy content Toggle raw display
show more
show less