Properties

Label 2-2280-2280.1139-c0-0-3
Degree $2$
Conductor $2280$
Sign $1$
Analytic cond. $1.13786$
Root an. cond. $1.06670$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 8-s + 9-s + 10-s − 12-s + 15-s + 16-s − 18-s − 19-s − 20-s + 24-s + 25-s − 27-s − 30-s − 32-s + 36-s + 38-s + 40-s − 45-s − 48-s − 49-s − 50-s + 2·53-s + ⋯
L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 8-s + 9-s + 10-s − 12-s + 15-s + 16-s − 18-s − 19-s − 20-s + 24-s + 25-s − 27-s − 30-s − 32-s + 36-s + 38-s + 40-s − 45-s − 48-s − 49-s − 50-s + 2·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2280\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(1.13786\)
Root analytic conductor: \(1.06670\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2280} (1139, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2280,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3870215290\)
\(L(\frac12)\) \(\approx\) \(0.3870215290\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
19 \( 1 + T \)
good7 \( 1 + T^{2} \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( ( 1 - T )( 1 + T ) \)
17 \( 1 + T^{2} \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( 1 + T^{2} \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( 1 + T^{2} \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( ( 1 - T )^{2} \)
59 \( 1 + T^{2} \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 - T )^{2} \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( 1 + T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 + T^{2} \)
97 \( ( 1 - T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.155171962430298048597364167184, −8.392850450159217094121106835052, −7.67900183073201085108217941061, −6.94117271501523476540784011378, −6.36261615833280163332555866641, −5.39644911830679853444687875443, −4.39258961813203148241749345082, −3.46382345358157202994862339452, −2.09462370975376312751494933779, −0.71370802561562918809958745811, 0.71370802561562918809958745811, 2.09462370975376312751494933779, 3.46382345358157202994862339452, 4.39258961813203148241749345082, 5.39644911830679853444687875443, 6.36261615833280163332555866641, 6.94117271501523476540784011378, 7.67900183073201085108217941061, 8.392850450159217094121106835052, 9.155171962430298048597364167184

Graph of the $Z$-function along the critical line