Properties

Label 2280.1.el.b.2189.1
Level $2280$
Weight $1$
Character 2280.2189
Analytic conductor $1.138$
Analytic rank $0$
Dimension $12$
Projective image $D_{18}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2280,1,Mod(149,2280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2280.149"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2280, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 9, 9, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2280.el (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.13786822880\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{18}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{18} - \cdots)\)

Embedding invariants

Embedding label 2189.1
Root \(-0.984808 - 0.173648i\) of defining polynomial
Character \(\chi\) \(=\) 2280.2189
Dual form 2280.1.el.b.1829.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.984808 - 0.173648i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.642788 + 0.766044i) q^{5} +(-0.766044 + 0.642788i) q^{6} +1.00000i q^{8} +(0.939693 - 0.342020i) q^{9} +(-0.939693 - 0.342020i) q^{10} +(0.342020 - 0.939693i) q^{12} +(0.766044 + 0.642788i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.642788 - 0.233956i) q^{17} +(-0.642788 + 0.766044i) q^{18} +(-0.173648 - 0.984808i) q^{19} +(0.984808 - 0.173648i) q^{20} +(1.32683 + 1.11334i) q^{23} +(0.173648 + 0.984808i) q^{24} +(-0.173648 + 0.984808i) q^{25} +(0.866025 - 0.500000i) q^{27} +(-0.984808 - 0.173648i) q^{30} +(0.173648 - 0.300767i) q^{31} +(0.866025 + 0.500000i) q^{32} +(0.673648 - 0.118782i) q^{34} +(0.173648 - 0.984808i) q^{36} +(0.642788 + 0.766044i) q^{38} +(-0.766044 + 0.642788i) q^{40} +(0.866025 + 0.500000i) q^{45} +(-1.70574 - 0.300767i) q^{46} +(1.20805 - 0.439693i) q^{47} +(-0.642788 - 0.766044i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(-0.342020 - 0.939693i) q^{50} +(-0.673648 - 0.118782i) q^{51} +(-1.20805 + 1.43969i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(-0.342020 - 0.939693i) q^{57} +(0.939693 - 0.342020i) q^{60} +(-1.11334 + 1.32683i) q^{61} +0.347296i q^{62} -1.00000 q^{64} +(-0.524005 + 0.439693i) q^{68} +(1.50000 + 0.866025i) q^{69} +(0.342020 + 0.939693i) q^{72} +1.00000i q^{75} +(-0.939693 - 0.342020i) q^{76} +(-0.173648 - 0.984808i) q^{79} +(0.342020 - 0.939693i) q^{80} +(0.766044 - 0.642788i) q^{81} +(-0.300767 - 0.173648i) q^{83} +(-0.233956 - 0.642788i) q^{85} -1.00000 q^{90} +(1.62760 - 0.592396i) q^{92} +(0.118782 - 0.326352i) q^{93} +(-0.826352 + 0.984808i) q^{94} +(0.642788 - 0.766044i) q^{95} +(0.939693 + 0.342020i) q^{96} +(0.866025 + 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} - 6 q^{16} + 6 q^{34} - 6 q^{49} - 6 q^{51} - 6 q^{54} - 12 q^{64} + 18 q^{69} - 12 q^{85} - 12 q^{90} - 12 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2280\mathbb{Z}\right)^\times\).

\(n\) \(457\) \(761\) \(1141\) \(1711\) \(1921\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(3\) 0.984808 0.173648i 0.984808 0.173648i
\(4\) 0.500000 0.866025i 0.500000 0.866025i
\(5\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(6\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(7\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) 1.00000i 1.00000i
\(9\) 0.939693 0.342020i 0.939693 0.342020i
\(10\) −0.939693 0.342020i −0.939693 0.342020i
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0.342020 0.939693i 0.342020 0.939693i
\(13\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(14\) 0 0
\(15\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(16\) −0.500000 0.866025i −0.500000 0.866025i
\(17\) −0.642788 0.233956i −0.642788 0.233956i 1.00000i \(-0.5\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(18\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(19\) −0.173648 0.984808i −0.173648 0.984808i
\(20\) 0.984808 0.173648i 0.984808 0.173648i
\(21\) 0 0
\(22\) 0 0
\(23\) 1.32683 + 1.11334i 1.32683 + 1.11334i 0.984808 + 0.173648i \(0.0555556\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(24\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(25\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(26\) 0 0
\(27\) 0.866025 0.500000i 0.866025 0.500000i
\(28\) 0 0
\(29\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(30\) −0.984808 0.173648i −0.984808 0.173648i
\(31\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(32\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(33\) 0 0
\(34\) 0.673648 0.118782i 0.673648 0.118782i
\(35\) 0 0
\(36\) 0.173648 0.984808i 0.173648 0.984808i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(39\) 0 0
\(40\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(41\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(42\) 0 0
\(43\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(44\) 0 0
\(45\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(46\) −1.70574 0.300767i −1.70574 0.300767i
\(47\) 1.20805 0.439693i 1.20805 0.439693i 0.342020 0.939693i \(-0.388889\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) −0.642788 0.766044i −0.642788 0.766044i
\(49\) −0.500000 0.866025i −0.500000 0.866025i
\(50\) −0.342020 0.939693i −0.342020 0.939693i
\(51\) −0.673648 0.118782i −0.673648 0.118782i
\(52\) 0 0
\(53\) −1.20805 + 1.43969i −1.20805 + 1.43969i −0.342020 + 0.939693i \(0.611111\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(54\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(55\) 0 0
\(56\) 0 0
\(57\) −0.342020 0.939693i −0.342020 0.939693i
\(58\) 0 0
\(59\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(60\) 0.939693 0.342020i 0.939693 0.342020i
\(61\) −1.11334 + 1.32683i −1.11334 + 1.32683i −0.173648 + 0.984808i \(0.555556\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(62\) 0.347296i 0.347296i
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(68\) −0.524005 + 0.439693i −0.524005 + 0.439693i
\(69\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(70\) 0 0
\(71\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(72\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(73\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(74\) 0 0
\(75\) 1.00000i 1.00000i
\(76\) −0.939693 0.342020i −0.939693 0.342020i
\(77\) 0 0
\(78\) 0 0
\(79\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(80\) 0.342020 0.939693i 0.342020 0.939693i
\(81\) 0.766044 0.642788i 0.766044 0.642788i
\(82\) 0 0
\(83\) −0.300767 0.173648i −0.300767 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(84\) 0 0
\(85\) −0.233956 0.642788i −0.233956 0.642788i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(90\) −1.00000 −1.00000
\(91\) 0 0
\(92\) 1.62760 0.592396i 1.62760 0.592396i
\(93\) 0.118782 0.326352i 0.118782 0.326352i
\(94\) −0.826352 + 0.984808i −0.826352 + 0.984808i
\(95\) 0.642788 0.766044i 0.642788 0.766044i
\(96\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(97\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(98\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(99\) 0 0
\(100\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(101\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(102\) 0.642788 0.233956i 0.642788 0.233956i
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.326352 1.85083i 0.326352 1.85083i
\(107\) −1.62760 0.939693i −1.62760 0.939693i −0.984808 0.173648i \(-0.944444\pi\)
−0.642788 0.766044i \(-0.722222\pi\)
\(108\) 1.00000i 1.00000i
\(109\) 0.439693 + 0.524005i 0.439693 + 0.524005i 0.939693 0.342020i \(-0.111111\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.96962 −1.96962 −0.984808 0.173648i \(-0.944444\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(114\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(115\) 1.73205i 1.73205i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(121\) 0.500000 0.866025i 0.500000 0.866025i
\(122\) 0.300767 1.70574i 0.300767 1.70574i
\(123\) 0 0
\(124\) −0.173648 0.300767i −0.173648 0.300767i
\(125\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(126\) 0 0
\(127\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(128\) 0.866025 0.500000i 0.866025 0.500000i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(136\) 0.233956 0.642788i 0.233956 0.642788i
\(137\) 0.984808 + 0.826352i 0.984808 + 0.826352i 0.984808 0.173648i \(-0.0555556\pi\)
1.00000i \(0.5\pi\)
\(138\) −1.73205 −1.73205
\(139\) 0.673648 + 0.118782i 0.673648 + 0.118782i 0.500000 0.866025i \(-0.333333\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(140\) 0 0
\(141\) 1.11334 0.642788i 1.11334 0.642788i
\(142\) 0 0
\(143\) 0 0
\(144\) −0.766044 0.642788i −0.766044 0.642788i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.642788 0.766044i −0.642788 0.766044i
\(148\) 0 0
\(149\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(150\) −0.500000 0.866025i −0.500000 0.866025i
\(151\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(152\) 0.984808 0.173648i 0.984808 0.173648i
\(153\) −0.684040 −0.684040
\(154\) 0 0
\(155\) 0.342020 0.0603074i 0.342020 0.0603074i
\(156\) 0 0
\(157\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(158\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(159\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(160\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(161\) 0 0
\(162\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(163\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.347296 0.347296
\(167\) −1.50881 1.26604i −1.50881 1.26604i −0.866025 0.500000i \(-0.833333\pi\)
−0.642788 0.766044i \(-0.722222\pi\)
\(168\) 0 0
\(169\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(170\) 0.524005 + 0.439693i 0.524005 + 0.439693i
\(171\) −0.500000 0.866025i −0.500000 0.866025i
\(172\) 0 0
\(173\) −0.342020 + 0.939693i −0.342020 + 0.939693i 0.642788 + 0.766044i \(0.277778\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0.866025 0.500000i 0.866025 0.500000i
\(181\) −0.673648 1.85083i −0.673648 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(182\) 0 0
\(183\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(184\) −1.11334 + 1.32683i −1.11334 + 1.32683i
\(185\) 0 0
\(186\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(187\) 0 0
\(188\) 0.223238 1.26604i 0.223238 1.26604i
\(189\) 0 0
\(190\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(193\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1.00000 −1.00000
\(197\) −1.32683 0.766044i −1.32683 0.766044i −0.342020 0.939693i \(-0.611111\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(198\) 0 0
\(199\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(200\) −0.984808 0.173648i −0.984808 0.173648i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −0.439693 + 0.524005i −0.439693 + 0.524005i
\(205\) 0 0
\(206\) 0 0
\(207\) 1.62760 + 0.592396i 1.62760 + 0.592396i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.439693 + 1.20805i −0.439693 + 1.20805i 0.500000 + 0.866025i \(0.333333\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(212\) 0.642788 + 1.76604i 0.642788 + 1.76604i
\(213\) 0 0
\(214\) 1.87939 1.87939
\(215\) 0 0
\(216\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(217\) 0 0
\(218\) −0.642788 0.233956i −0.642788 0.233956i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(224\) 0 0
\(225\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(226\) 1.70574 0.984808i 1.70574 0.984808i
\(227\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(228\) −0.984808 0.173648i −0.984808 0.173648i
\(229\) 1.28558i 1.28558i 0.766044 + 0.642788i \(0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(230\) −0.866025 1.50000i −0.866025 1.50000i
\(231\) 0 0
\(232\) 0 0
\(233\) 1.50881 1.26604i 1.50881 1.26604i 0.642788 0.766044i \(-0.277778\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(234\) 0 0
\(235\) 1.11334 + 0.642788i 1.11334 + 0.642788i
\(236\) 0 0
\(237\) −0.342020 0.939693i −0.342020 0.939693i
\(238\) 0 0
\(239\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(240\) 0.173648 0.984808i 0.173648 0.984808i
\(241\) −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i \(0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(242\) 1.00000i 1.00000i
\(243\) 0.642788 0.766044i 0.642788 0.766044i
\(244\) 0.592396 + 1.62760i 0.592396 + 1.62760i
\(245\) 0.342020 0.939693i 0.342020 0.939693i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.300767 + 0.173648i 0.300767 + 0.173648i
\(249\) −0.326352 0.118782i −0.326352 0.118782i
\(250\) 0.500000 0.866025i 0.500000 0.866025i
\(251\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −0.342020 0.592396i −0.342020 0.592396i
\(256\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(257\) −1.62760 + 0.592396i −1.62760 + 0.592396i −0.984808 0.173648i \(-0.944444\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.342020 + 1.93969i 0.342020 + 1.93969i 0.342020 + 0.939693i \(0.388889\pi\)
1.00000i \(0.500000\pi\)
\(264\) 0 0
\(265\) −1.87939 −1.87939
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(270\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(271\) 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
1.00000 \(0\)
\(272\) 0.118782 + 0.673648i 0.118782 + 0.673648i
\(273\) 0 0
\(274\) −1.26604 0.223238i −1.26604 0.223238i
\(275\) 0 0
\(276\) 1.50000 0.866025i 1.50000 0.866025i
\(277\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(278\) −0.642788 + 0.233956i −0.642788 + 0.233956i
\(279\) 0.0603074 0.342020i 0.0603074 0.342020i
\(280\) 0 0
\(281\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(282\) −0.642788 + 1.11334i −0.642788 + 1.11334i
\(283\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(284\) 0 0
\(285\) 0.500000 0.866025i 0.500000 0.866025i
\(286\) 0 0
\(287\) 0 0
\(288\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(289\) −0.407604 0.342020i −0.407604 0.342020i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.300767 + 0.173648i −0.300767 + 0.173648i −0.642788 0.766044i \(-0.722222\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(294\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(301\) 0 0
\(302\) −1.32683 + 0.766044i −1.32683 + 0.766044i
\(303\) 0 0
\(304\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(305\) −1.73205 −1.73205
\(306\) 0.592396 0.342020i 0.592396 0.342020i
\(307\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.939693 0.342020i −0.939693 0.342020i
\(317\) −0.342020 0.0603074i −0.342020 0.0603074i 1.00000i \(-0.5\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(318\) 1.87939i 1.87939i
\(319\) 0 0
\(320\) −0.642788 0.766044i −0.642788 0.766044i
\(321\) −1.76604 0.642788i −1.76604 0.642788i
\(322\) 0 0
\(323\) −0.118782 + 0.673648i −0.118782 + 0.673648i
\(324\) −0.173648 0.984808i −0.173648 0.984808i
\(325\) 0 0
\(326\) 0 0
\(327\) 0.524005 + 0.439693i 0.524005 + 0.439693i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
1.00000 \(0\)
\(332\) −0.300767 + 0.173648i −0.300767 + 0.173648i
\(333\) 0 0
\(334\) 1.93969 + 0.342020i 1.93969 + 0.342020i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(338\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(339\) −1.93969 + 0.342020i −1.93969 + 0.342020i
\(340\) −0.673648 0.118782i −0.673648 0.118782i
\(341\) 0 0
\(342\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(343\) 0 0
\(344\) 0 0
\(345\) 0.300767 + 1.70574i 0.300767 + 1.70574i
\(346\) −0.173648 0.984808i −0.173648 0.984808i
\(347\) −1.20805 1.43969i −1.20805 1.43969i −0.866025 0.500000i \(-0.833333\pi\)
−0.342020 0.939693i \(-0.611111\pi\)
\(348\) 0 0
\(349\) −1.70574 0.984808i −1.70574 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
−0.766044 0.642788i \(-0.777778\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(360\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(361\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(362\) 1.50881 + 1.26604i 1.50881 + 1.26604i
\(363\) 0.342020 0.939693i 0.342020 0.939693i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.73205i 1.73205i
\(367\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(368\) 0.300767 1.70574i 0.300767 1.70574i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −0.223238 0.266044i −0.223238 0.266044i
\(373\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(374\) 0 0
\(375\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(376\) 0.439693 + 1.20805i 0.439693 + 1.20805i
\(377\) 0 0
\(378\) 0 0
\(379\) 1.73205i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(380\) −0.342020 0.939693i −0.342020 0.939693i
\(381\) 0 0
\(382\) 0 0
\(383\) −0.118782 0.673648i −0.118782 0.673648i −0.984808 0.173648i \(-0.944444\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(384\) 0.766044 0.642788i 0.766044 0.642788i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(390\) 0 0
\(391\) −0.592396 1.02606i −0.592396 1.02606i
\(392\) 0.866025 0.500000i 0.866025 0.500000i
\(393\) 0 0
\(394\) 1.53209 1.53209
\(395\) 0.642788 0.766044i 0.642788 0.766044i
\(396\) 0 0
\(397\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(398\) 0.642788 0.766044i 0.642788 0.766044i
\(399\) 0 0
\(400\) 0.939693 0.342020i 0.939693 0.342020i
\(401\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(406\) 0 0
\(407\) 0 0
\(408\) 0.118782 0.673648i 0.118782 0.673648i
\(409\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(410\) 0 0
\(411\) 1.11334 + 0.642788i 1.11334 + 0.642788i
\(412\) 0 0
\(413\) 0 0
\(414\) −1.70574 + 0.300767i −1.70574 + 0.300767i
\(415\) −0.0603074 0.342020i −0.0603074 0.342020i
\(416\) 0 0
\(417\) 0.684040 0.684040
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(422\) −0.223238 1.26604i −0.223238 1.26604i
\(423\) 0.984808 0.826352i 0.984808 0.826352i
\(424\) −1.43969 1.20805i −1.43969 1.20805i
\(425\) 0.342020 0.592396i 0.342020 0.592396i
\(426\) 0 0
\(427\) 0 0
\(428\) −1.62760 + 0.939693i −1.62760 + 0.939693i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(432\) −0.866025 0.500000i −0.866025 0.500000i
\(433\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.673648 0.118782i 0.673648 0.118782i
\(437\) 0.866025 1.50000i 0.866025 1.50000i
\(438\) 0 0
\(439\) −1.76604 0.642788i −1.76604 0.642788i −0.766044 0.642788i \(-0.777778\pi\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −0.766044 0.642788i −0.766044 0.642788i
\(442\) 0 0
\(443\) 1.85083 + 0.326352i 1.85083 + 0.326352i 0.984808 0.173648i \(-0.0555556\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) −0.642788 0.766044i −0.642788 0.766044i
\(451\) 0 0
\(452\) −0.984808 + 1.70574i −0.984808 + 1.70574i
\(453\) 1.50881 0.266044i 1.50881 0.266044i
\(454\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(455\) 0 0
\(456\) 0.939693 0.342020i 0.939693 0.342020i
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −0.642788 1.11334i −0.642788 1.11334i
\(459\) −0.673648 + 0.118782i −0.673648 + 0.118782i
\(460\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(461\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(462\) 0 0
\(463\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 0 0
\(465\) 0.326352 0.118782i 0.326352 0.118782i
\(466\) −0.673648 + 1.85083i −0.673648 + 1.85083i
\(467\) −1.32683 + 0.766044i −1.32683 + 0.766044i −0.984808 0.173648i \(-0.944444\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1.28558 −1.28558
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(475\) 1.00000 1.00000
\(476\) 0 0
\(477\) −0.642788 + 1.76604i −0.642788 + 1.76604i
\(478\) 0 0
\(479\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(480\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(481\) 0 0
\(482\) −0.524005 1.43969i −0.524005 1.43969i
\(483\) 0 0
\(484\) −0.500000 0.866025i −0.500000 0.866025i
\(485\) 0 0
\(486\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(487\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) −1.32683 1.11334i −1.32683 1.11334i
\(489\) 0 0
\(490\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(491\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.347296 −0.347296
\(497\) 0 0
\(498\) 0.342020 0.0603074i 0.342020 0.0603074i
\(499\) −0.826352 0.984808i −0.826352 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
−1.00000 \(\pi\)
\(500\) 1.00000i 1.00000i
\(501\) −1.70574 0.984808i −1.70574 0.984808i
\(502\) 0 0
\(503\) 0.642788 0.233956i 0.642788 0.233956i 1.00000i \(-0.5\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(508\) 0 0
\(509\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(510\) 0.592396 + 0.342020i 0.592396 + 0.342020i
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) −0.642788 0.766044i −0.642788 0.766044i
\(514\) 1.11334 1.32683i 1.11334 1.32683i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −1.26604 1.50881i −1.26604 1.50881i
\(527\) −0.181985 + 0.152704i −0.181985 + 0.152704i
\(528\) 0 0
\(529\) 0.347296 + 1.96962i 0.347296 + 1.96962i
\(530\) 1.62760 0.939693i 1.62760 0.939693i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.326352 1.85083i −0.326352 1.85083i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0.766044 0.642788i 0.766044 0.642788i
\(541\) −0.439693 1.20805i −0.439693 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(542\) −0.524005 + 1.43969i −0.524005 + 1.43969i
\(543\) −0.984808 1.70574i −0.984808 1.70574i
\(544\) −0.439693 0.524005i −0.439693 0.524005i
\(545\) −0.118782 + 0.673648i −0.118782 + 0.673648i
\(546\) 0 0
\(547\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(548\) 1.20805 0.439693i 1.20805 0.439693i
\(549\) −0.592396 + 1.62760i −0.592396 + 1.62760i
\(550\) 0 0
\(551\) 0 0
\(552\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.439693 0.524005i 0.439693 0.524005i
\(557\) −0.984808 0.173648i −0.984808 0.173648i −0.342020 0.939693i \(-0.611111\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(558\) 0.118782 + 0.326352i 0.118782 + 0.326352i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.300767 + 0.173648i 0.300767 + 0.173648i 0.642788 0.766044i \(-0.277778\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(564\) 1.28558i 1.28558i
\(565\) −1.26604 1.50881i −1.26604 1.50881i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 1.00000i 1.00000i
\(571\) 1.96962i 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.32683 + 1.11334i −1.32683 + 1.11334i
\(576\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0.524005 + 0.0923963i 0.524005 + 0.0923963i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0.173648 0.300767i 0.173648 0.300767i
\(587\) −0.524005 + 1.43969i −0.524005 + 1.43969i 0.342020 + 0.939693i \(0.388889\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(589\) −0.326352 0.118782i −0.326352 0.118782i
\(590\) 0 0
\(591\) −1.43969 0.524005i −1.43969 0.524005i
\(592\) 0 0
\(593\) 1.50881 + 1.26604i 1.50881 + 1.26604i 0.866025 + 0.500000i \(0.166667\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(598\) 0 0
\(599\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(600\) −1.00000 −1.00000
\(601\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.766044 1.32683i 0.766044 1.32683i
\(605\) 0.984808 0.173648i 0.984808 0.173648i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0.342020 0.939693i 0.342020 0.939693i
\(609\) 0 0
\(610\) 1.50000 0.866025i 1.50000 0.866025i
\(611\) 0 0
\(612\) −0.342020 + 0.592396i −0.342020 + 0.592396i
\(613\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.85083 0.673648i 1.85083 0.673648i 0.866025 0.500000i \(-0.166667\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(618\) 0 0
\(619\) 1.70574 0.984808i 1.70574 0.984808i 0.766044 0.642788i \(-0.222222\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(620\) 0.118782 0.326352i 0.118782 0.326352i
\(621\) 1.70574 + 0.300767i 1.70574 + 0.300767i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.939693 0.342020i −0.939693 0.342020i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(632\) 0.984808 0.173648i 0.984808 0.173648i
\(633\) −0.223238 + 1.26604i −0.223238 + 1.26604i
\(634\) 0.326352 0.118782i 0.326352 0.118782i
\(635\) 0 0
\(636\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(641\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(642\) 1.85083 0.326352i 1.85083 0.326352i
\(643\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.233956 0.642788i −0.233956 0.642788i
\(647\) −1.96962 −1.96962 −0.984808 0.173648i \(-0.944444\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(648\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(654\) −0.673648 0.118782i −0.673648 0.118782i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(660\) 0 0
\(661\) −0.826352 + 0.984808i −0.826352 + 0.984808i 0.173648 + 0.984808i \(0.444444\pi\)
−1.00000 \(\pi\)
\(662\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(663\) 0 0
\(664\) 0.173648 0.300767i 0.173648 0.300767i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −1.85083 + 0.673648i −1.85083 + 0.673648i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(674\) 0 0
\(675\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(676\) 0.766044 0.642788i 0.766044 0.642788i
\(677\) 1.32683 + 0.766044i 1.32683 + 0.766044i 0.984808 0.173648i \(-0.0555556\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(678\) 1.50881 1.26604i 1.50881 1.26604i
\(679\) 0 0
\(680\) 0.642788 0.233956i 0.642788 0.233956i
\(681\) −0.173648 0.984808i −0.173648 0.984808i
\(682\) 0 0
\(683\) 1.53209i 1.53209i 0.642788 + 0.766044i \(0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(684\) −1.00000 −1.00000
\(685\) 1.28558i 1.28558i
\(686\) 0 0
\(687\) 0.223238 + 1.26604i 0.223238 + 1.26604i
\(688\) 0 0
\(689\) 0 0
\(690\) −1.11334 1.32683i −1.11334 1.32683i
\(691\) −0.592396 0.342020i −0.592396 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(692\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(693\) 0 0
\(694\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(695\) 0.342020 + 0.592396i 0.342020 + 0.592396i
\(696\) 0 0
\(697\) 0 0
\(698\) 1.96962 1.96962
\(699\) 1.26604 1.50881i 1.26604 1.50881i
\(700\) 0 0
\(701\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 1.20805 + 0.439693i 1.20805 + 0.439693i
\(706\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(707\) 0 0
\(708\) 0 0
\(709\) 1.93969 + 0.342020i 1.93969 + 0.342020i 1.00000 \(0\)
0.939693 + 0.342020i \(0.111111\pi\)
\(710\) 0 0
\(711\) −0.500000 0.866025i −0.500000 0.866025i
\(712\) 0 0
\(713\) 0.565258 0.205737i 0.565258 0.205737i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(720\) 1.00000i 1.00000i
\(721\) 0 0
\(722\) 0.642788 0.766044i 0.642788 0.766044i
\(723\) 1.53209i 1.53209i
\(724\) −1.93969 0.342020i −1.93969 0.342020i
\(725\) 0 0
\(726\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(727\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(728\) 0 0
\(729\) 0.500000 0.866025i 0.500000 0.866025i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(733\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) 0 0
\(735\) 0.173648 0.984808i 0.173648 0.984808i
\(736\) 0.592396 + 1.62760i 0.592396 + 1.62760i
\(737\) 0 0
\(738\) 0 0
\(739\) −0.439693 + 1.20805i −0.439693 + 1.20805i 0.500000 + 0.866025i \(0.333333\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.20805 0.439693i −1.20805 0.439693i −0.342020 0.939693i \(-0.611111\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(745\) 0 0
\(746\) 0 0
\(747\) −0.342020 0.0603074i −0.342020 0.0603074i
\(748\) 0 0
\(749\) 0 0
\(750\) 0.342020 0.939693i 0.342020 0.939693i
\(751\) −1.76604 + 0.642788i −1.76604 + 0.642788i −0.766044 + 0.642788i \(0.777778\pi\)
−1.00000 \(1.00000\pi\)
\(752\) −0.984808 0.826352i −0.984808 0.826352i
\(753\) 0 0
\(754\) 0 0
\(755\) 0.984808 + 1.17365i 0.984808 + 1.17365i
\(756\) 0 0
\(757\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(758\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(759\) 0 0
\(760\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.439693 0.524005i −0.439693 0.524005i
\(766\) 0.439693 + 0.524005i 0.439693 + 0.524005i
\(767\) 0 0
\(768\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(769\) 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) 0 0
\(771\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(772\) 0 0
\(773\) −0.984808 0.173648i −0.984808 0.173648i −0.342020 0.939693i \(-0.611111\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(774\) 0 0
\(775\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 1.02606 + 0.592396i 1.02606 + 0.592396i
\(783\) 0 0
\(784\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(788\) −1.32683 + 0.766044i −1.32683 + 0.766044i
\(789\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(790\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −1.85083 + 0.326352i −1.85083 + 0.326352i
\(796\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(797\) 1.53209i 1.53209i −0.642788 0.766044i \(-0.722222\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(798\) 0 0
\(799\) −0.879385 −0.879385
\(800\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(811\) 1.93969 + 0.342020i 1.93969 + 0.342020i 1.00000 \(0\)
0.939693 + 0.342020i \(0.111111\pi\)
\(812\) 0 0
\(813\) 0.984808 1.17365i 0.984808 1.17365i
\(814\) 0 0
\(815\) 0 0
\(816\) 0.233956 + 0.642788i 0.233956 + 0.642788i
\(817\) 0 0
\(818\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(822\) −1.28558 −1.28558
\(823\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.642788 + 1.76604i 0.642788 + 1.76604i 0.642788 + 0.766044i \(0.277778\pi\)
1.00000i \(0.5\pi\)
\(828\) 1.32683 1.11334i 1.32683 1.11334i
\(829\) 0.592396 + 0.342020i 0.592396 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(830\) 0.223238 + 0.266044i 0.223238 + 0.266044i
\(831\) 0 0
\(832\) 0 0
\(833\) 0.118782 + 0.673648i 0.118782 + 0.673648i
\(834\) −0.592396 + 0.342020i −0.592396 + 0.342020i
\(835\) 1.96962i 1.96962i
\(836\) 0 0
\(837\) 0.347296i 0.347296i
\(838\) 0 0
\(839\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(840\) 0 0
\(841\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(842\) 0 0
\(843\) 0 0
\(844\) 0.826352 + 0.984808i 0.826352 + 0.984808i
\(845\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(846\) −0.439693 + 1.20805i −0.439693 + 1.20805i
\(847\) 0 0
\(848\) 1.85083 + 0.326352i 1.85083 + 0.326352i
\(849\) 0 0
\(850\) 0.684040i 0.684040i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(854\) 0 0
\(855\) 0.342020 0.939693i 0.342020 0.939693i
\(856\) 0.939693 1.62760i 0.939693 1.62760i
\(857\) 1.85083 + 0.673648i 1.85083 + 0.673648i 0.984808 + 0.173648i \(0.0555556\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) 0.439693 0.524005i 0.439693 0.524005i −0.500000 0.866025i \(-0.666667\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(864\) 1.00000 1.00000
\(865\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(866\) 0 0
\(867\) −0.460802 0.266044i −0.460802 0.266044i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.524005 + 0.439693i −0.524005 + 0.439693i
\(873\) 0 0
\(874\) 1.73205i 1.73205i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(878\) 1.85083 0.326352i 1.85083 0.326352i
\(879\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(880\) 0 0
\(881\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(883\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(887\) 0.223238 1.26604i 0.223238 1.26604i −0.642788 0.766044i \(-0.722222\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.642788 1.11334i −0.642788 1.11334i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(901\) 1.11334 0.642788i 1.11334 0.642788i
\(902\) 0 0
\(903\) 0 0
\(904\) 1.96962i 1.96962i
\(905\) 0.984808 1.70574i 0.984808 1.70574i
\(906\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(907\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(908\) −0.866025 0.500000i −0.866025 0.500000i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(913\) 0 0
\(914\) 0 0
\(915\) −1.70574 + 0.300767i −1.70574 + 0.300767i
\(916\) 1.11334 + 0.642788i 1.11334 + 0.642788i
\(917\) 0 0
\(918\) 0.524005 0.439693i 0.524005 0.439693i
\(919\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(920\) −1.73205 −1.73205
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(930\) −0.223238 + 0.266044i −0.223238 + 0.266044i
\(931\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(932\) −0.342020 1.93969i −0.342020 1.93969i
\(933\) 0 0
\(934\) 0.766044 1.32683i 0.766044 1.32683i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.11334 0.642788i 1.11334 0.642788i
\(941\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(948\) −0.984808 0.173648i −0.984808 0.173648i
\(949\) 0 0
\(950\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(951\) −0.347296 −0.347296
\(952\) 0 0
\(953\) −0.223238 1.26604i −0.223238 1.26604i −0.866025 0.500000i \(-0.833333\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(954\) −0.326352 1.85083i −0.326352 1.85083i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −0.766044 0.642788i −0.766044 0.642788i
\(961\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(962\) 0 0
\(963\) −1.85083 0.326352i −1.85083 0.326352i
\(964\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(968\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(969\) 0.684040i 0.684040i
\(970\) 0 0
\(971\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(972\) −0.342020 0.939693i −0.342020 0.939693i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 1.70574 + 0.300767i 1.70574 + 0.300767i
\(977\) 0.642788 + 1.11334i 0.642788 + 1.11334i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.642788 0.766044i −0.642788 0.766044i
\(981\) 0.592396 + 0.342020i 0.592396 + 0.342020i
\(982\) 0 0
\(983\) 0.524005 0.439693i 0.524005 0.439693i −0.342020 0.939693i \(-0.611111\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(984\) 0 0
\(985\) −0.266044 1.50881i −0.266044 1.50881i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0.300767 0.173648i 0.300767 0.173648i
\(993\) 1.32683 1.11334i 1.32683 1.11334i
\(994\) 0 0
\(995\) −0.866025 0.500000i −0.866025 0.500000i
\(996\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(997\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(998\) 1.20805 + 0.439693i 1.20805 + 0.439693i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2280.1.el.b.2189.1 yes 12
3.2 odd 2 inner 2280.1.el.b.2189.2 yes 12
5.4 even 2 inner 2280.1.el.b.2189.2 yes 12
8.5 even 2 2280.1.el.a.2189.1 yes 12
15.14 odd 2 CM 2280.1.el.b.2189.1 yes 12
19.5 even 9 2280.1.el.a.1829.1 12
24.5 odd 2 2280.1.el.a.2189.2 yes 12
40.29 even 2 2280.1.el.a.2189.2 yes 12
57.5 odd 18 2280.1.el.a.1829.2 yes 12
95.24 even 18 2280.1.el.a.1829.2 yes 12
120.29 odd 2 2280.1.el.a.2189.1 yes 12
152.5 even 18 inner 2280.1.el.b.1829.1 yes 12
285.119 odd 18 2280.1.el.a.1829.1 12
456.5 odd 18 inner 2280.1.el.b.1829.2 yes 12
760.309 even 18 inner 2280.1.el.b.1829.2 yes 12
2280.1829 odd 18 inner 2280.1.el.b.1829.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2280.1.el.a.1829.1 12 19.5 even 9
2280.1.el.a.1829.1 12 285.119 odd 18
2280.1.el.a.1829.2 yes 12 57.5 odd 18
2280.1.el.a.1829.2 yes 12 95.24 even 18
2280.1.el.a.2189.1 yes 12 8.5 even 2
2280.1.el.a.2189.1 yes 12 120.29 odd 2
2280.1.el.a.2189.2 yes 12 24.5 odd 2
2280.1.el.a.2189.2 yes 12 40.29 even 2
2280.1.el.b.1829.1 yes 12 152.5 even 18 inner
2280.1.el.b.1829.1 yes 12 2280.1829 odd 18 inner
2280.1.el.b.1829.2 yes 12 456.5 odd 18 inner
2280.1.el.b.1829.2 yes 12 760.309 even 18 inner
2280.1.el.b.2189.1 yes 12 1.1 even 1 trivial
2280.1.el.b.2189.1 yes 12 15.14 odd 2 CM
2280.1.el.b.2189.2 yes 12 3.2 odd 2 inner
2280.1.el.b.2189.2 yes 12 5.4 even 2 inner