Properties

Label 228.2.i.a.49.1
Level $228$
Weight $2$
Character 228.49
Analytic conductor $1.821$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [228,2,Mod(49,228)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("228.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(228, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 228 = 2^{2} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 228.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.82058916609\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 228.49
Dual form 228.2.i.a.121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(-1.22474 + 2.12132i) q^{5} -3.44949 q^{7} +(-0.500000 - 0.866025i) q^{9} -2.44949 q^{11} +(0.500000 + 0.866025i) q^{13} +(-1.22474 - 2.12132i) q^{15} +(-2.44949 + 4.24264i) q^{17} +(1.00000 - 4.24264i) q^{19} +(1.72474 - 2.98735i) q^{21} +(4.22474 + 7.31747i) q^{23} +(-0.500000 - 0.866025i) q^{25} +1.00000 q^{27} +(2.44949 + 4.24264i) q^{29} -9.44949 q^{31} +(1.22474 - 2.12132i) q^{33} +(4.22474 - 7.31747i) q^{35} +8.79796 q^{37} -1.00000 q^{39} +(1.72474 - 2.98735i) q^{43} +2.44949 q^{45} +(-0.550510 - 0.953512i) q^{47} +4.89898 q^{49} +(-2.44949 - 4.24264i) q^{51} +(1.22474 + 2.12132i) q^{53} +(3.00000 - 5.19615i) q^{55} +(3.17423 + 2.98735i) q^{57} +(3.67423 - 6.36396i) q^{59} +(1.05051 + 1.81954i) q^{61} +(1.72474 + 2.98735i) q^{63} -2.44949 q^{65} +(2.27526 + 3.94086i) q^{67} -8.44949 q^{69} +(-3.00000 + 5.19615i) q^{71} +(5.94949 - 10.3048i) q^{73} +1.00000 q^{75} +8.44949 q^{77} +(-6.17423 + 10.6941i) q^{79} +(-0.500000 + 0.866025i) q^{81} -16.8990 q^{83} +(-6.00000 - 10.3923i) q^{85} -4.89898 q^{87} +(1.77526 + 3.07483i) q^{89} +(-1.72474 - 2.98735i) q^{91} +(4.72474 - 8.18350i) q^{93} +(7.77526 + 7.31747i) q^{95} +(-5.34847 + 9.26382i) q^{97} +(1.22474 + 2.12132i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 4 q^{7} - 2 q^{9} + 2 q^{13} + 4 q^{19} + 2 q^{21} + 12 q^{23} - 2 q^{25} + 4 q^{27} - 28 q^{31} + 12 q^{35} - 4 q^{37} - 4 q^{39} + 2 q^{43} - 12 q^{47} + 12 q^{55} - 2 q^{57} + 14 q^{61}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/228\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(97\) \(115\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) −1.22474 + 2.12132i −0.547723 + 0.948683i 0.450708 + 0.892672i \(0.351172\pi\)
−0.998430 + 0.0560116i \(0.982162\pi\)
\(6\) 0 0
\(7\) −3.44949 −1.30378 −0.651892 0.758312i \(-0.726025\pi\)
−0.651892 + 0.758312i \(0.726025\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −2.44949 −0.738549 −0.369274 0.929320i \(-0.620394\pi\)
−0.369274 + 0.929320i \(0.620394\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i 0.926995 0.375073i \(-0.122382\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) 0 0
\(15\) −1.22474 2.12132i −0.316228 0.547723i
\(16\) 0 0
\(17\) −2.44949 + 4.24264i −0.594089 + 1.02899i 0.399586 + 0.916696i \(0.369154\pi\)
−0.993675 + 0.112296i \(0.964180\pi\)
\(18\) 0 0
\(19\) 1.00000 4.24264i 0.229416 0.973329i
\(20\) 0 0
\(21\) 1.72474 2.98735i 0.376370 0.651892i
\(22\) 0 0
\(23\) 4.22474 + 7.31747i 0.880920 + 1.52580i 0.850319 + 0.526267i \(0.176409\pi\)
0.0306007 + 0.999532i \(0.490258\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.44949 + 4.24264i 0.454859 + 0.787839i 0.998680 0.0513625i \(-0.0163564\pi\)
−0.543821 + 0.839201i \(0.683023\pi\)
\(30\) 0 0
\(31\) −9.44949 −1.69718 −0.848589 0.529052i \(-0.822548\pi\)
−0.848589 + 0.529052i \(0.822548\pi\)
\(32\) 0 0
\(33\) 1.22474 2.12132i 0.213201 0.369274i
\(34\) 0 0
\(35\) 4.22474 7.31747i 0.714112 1.23688i
\(36\) 0 0
\(37\) 8.79796 1.44638 0.723188 0.690651i \(-0.242676\pi\)
0.723188 + 0.690651i \(0.242676\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 0 0
\(43\) 1.72474 2.98735i 0.263021 0.455566i −0.704022 0.710178i \(-0.748614\pi\)
0.967043 + 0.254612i \(0.0819478\pi\)
\(44\) 0 0
\(45\) 2.44949 0.365148
\(46\) 0 0
\(47\) −0.550510 0.953512i −0.0803002 0.139084i 0.823079 0.567927i \(-0.192255\pi\)
−0.903379 + 0.428843i \(0.858921\pi\)
\(48\) 0 0
\(49\) 4.89898 0.699854
\(50\) 0 0
\(51\) −2.44949 4.24264i −0.342997 0.594089i
\(52\) 0 0
\(53\) 1.22474 + 2.12132i 0.168232 + 0.291386i 0.937798 0.347181i \(-0.112861\pi\)
−0.769567 + 0.638567i \(0.779528\pi\)
\(54\) 0 0
\(55\) 3.00000 5.19615i 0.404520 0.700649i
\(56\) 0 0
\(57\) 3.17423 + 2.98735i 0.420438 + 0.395684i
\(58\) 0 0
\(59\) 3.67423 6.36396i 0.478345 0.828517i −0.521347 0.853345i \(-0.674570\pi\)
0.999692 + 0.0248275i \(0.00790366\pi\)
\(60\) 0 0
\(61\) 1.05051 + 1.81954i 0.134504 + 0.232968i 0.925408 0.378973i \(-0.123723\pi\)
−0.790904 + 0.611940i \(0.790389\pi\)
\(62\) 0 0
\(63\) 1.72474 + 2.98735i 0.217297 + 0.376370i
\(64\) 0 0
\(65\) −2.44949 −0.303822
\(66\) 0 0
\(67\) 2.27526 + 3.94086i 0.277967 + 0.481452i 0.970879 0.239569i \(-0.0770062\pi\)
−0.692913 + 0.721022i \(0.743673\pi\)
\(68\) 0 0
\(69\) −8.44949 −1.01720
\(70\) 0 0
\(71\) −3.00000 + 5.19615i −0.356034 + 0.616670i −0.987294 0.158901i \(-0.949205\pi\)
0.631260 + 0.775571i \(0.282538\pi\)
\(72\) 0 0
\(73\) 5.94949 10.3048i 0.696335 1.20609i −0.273393 0.961902i \(-0.588146\pi\)
0.969729 0.244185i \(-0.0785206\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 8.44949 0.962909
\(78\) 0 0
\(79\) −6.17423 + 10.6941i −0.694656 + 1.20318i 0.275641 + 0.961261i \(0.411110\pi\)
−0.970297 + 0.241918i \(0.922223\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −16.8990 −1.85490 −0.927452 0.373942i \(-0.878006\pi\)
−0.927452 + 0.373942i \(0.878006\pi\)
\(84\) 0 0
\(85\) −6.00000 10.3923i −0.650791 1.12720i
\(86\) 0 0
\(87\) −4.89898 −0.525226
\(88\) 0 0
\(89\) 1.77526 + 3.07483i 0.188177 + 0.325932i 0.944642 0.328102i \(-0.106409\pi\)
−0.756466 + 0.654033i \(0.773076\pi\)
\(90\) 0 0
\(91\) −1.72474 2.98735i −0.180802 0.313159i
\(92\) 0 0
\(93\) 4.72474 8.18350i 0.489933 0.848589i
\(94\) 0 0
\(95\) 7.77526 + 7.31747i 0.797724 + 0.750757i
\(96\) 0 0
\(97\) −5.34847 + 9.26382i −0.543055 + 0.940598i 0.455672 + 0.890148i \(0.349399\pi\)
−0.998727 + 0.0504506i \(0.983934\pi\)
\(98\) 0 0
\(99\) 1.22474 + 2.12132i 0.123091 + 0.213201i
\(100\) 0 0
\(101\) −5.44949 9.43879i −0.542244 0.939195i −0.998775 0.0494871i \(-0.984241\pi\)
0.456530 0.889708i \(-0.349092\pi\)
\(102\) 0 0
\(103\) 13.4495 1.32522 0.662609 0.748966i \(-0.269449\pi\)
0.662609 + 0.748966i \(0.269449\pi\)
\(104\) 0 0
\(105\) 4.22474 + 7.31747i 0.412293 + 0.714112i
\(106\) 0 0
\(107\) 3.79796 0.367163 0.183581 0.983005i \(-0.441231\pi\)
0.183581 + 0.983005i \(0.441231\pi\)
\(108\) 0 0
\(109\) −4.00000 + 6.92820i −0.383131 + 0.663602i −0.991508 0.130046i \(-0.958487\pi\)
0.608377 + 0.793648i \(0.291821\pi\)
\(110\) 0 0
\(111\) −4.39898 + 7.61926i −0.417533 + 0.723188i
\(112\) 0 0
\(113\) −18.2474 −1.71658 −0.858288 0.513169i \(-0.828472\pi\)
−0.858288 + 0.513169i \(0.828472\pi\)
\(114\) 0 0
\(115\) −20.6969 −1.93000
\(116\) 0 0
\(117\) 0.500000 0.866025i 0.0462250 0.0800641i
\(118\) 0 0
\(119\) 8.44949 14.6349i 0.774563 1.34158i
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.79796 −0.876356
\(126\) 0 0
\(127\) 9.34847 + 16.1920i 0.829543 + 1.43681i 0.898398 + 0.439183i \(0.144732\pi\)
−0.0688551 + 0.997627i \(0.521935\pi\)
\(128\) 0 0
\(129\) 1.72474 + 2.98735i 0.151855 + 0.263021i
\(130\) 0 0
\(131\) 1.89898 3.28913i 0.165915 0.287373i −0.771065 0.636756i \(-0.780276\pi\)
0.936980 + 0.349384i \(0.113609\pi\)
\(132\) 0 0
\(133\) −3.44949 + 14.6349i −0.299109 + 1.26901i
\(134\) 0 0
\(135\) −1.22474 + 2.12132i −0.105409 + 0.182574i
\(136\) 0 0
\(137\) 6.55051 + 11.3458i 0.559648 + 0.969339i 0.997526 + 0.0703040i \(0.0223969\pi\)
−0.437878 + 0.899035i \(0.644270\pi\)
\(138\) 0 0
\(139\) 4.72474 + 8.18350i 0.400748 + 0.694115i 0.993816 0.111037i \(-0.0354171\pi\)
−0.593069 + 0.805152i \(0.702084\pi\)
\(140\) 0 0
\(141\) 1.10102 0.0927227
\(142\) 0 0
\(143\) −1.22474 2.12132i −0.102418 0.177394i
\(144\) 0 0
\(145\) −12.0000 −0.996546
\(146\) 0 0
\(147\) −2.44949 + 4.24264i −0.202031 + 0.349927i
\(148\) 0 0
\(149\) 10.2247 17.7098i 0.837644 1.45084i −0.0542159 0.998529i \(-0.517266\pi\)
0.891860 0.452312i \(-0.149401\pi\)
\(150\) 0 0
\(151\) −6.69694 −0.544989 −0.272495 0.962157i \(-0.587849\pi\)
−0.272495 + 0.962157i \(0.587849\pi\)
\(152\) 0 0
\(153\) 4.89898 0.396059
\(154\) 0 0
\(155\) 11.5732 20.0454i 0.929583 1.61008i
\(156\) 0 0
\(157\) −1.94949 + 3.37662i −0.155586 + 0.269483i −0.933272 0.359170i \(-0.883060\pi\)
0.777686 + 0.628653i \(0.216393\pi\)
\(158\) 0 0
\(159\) −2.44949 −0.194257
\(160\) 0 0
\(161\) −14.5732 25.2415i −1.14853 1.98931i
\(162\) 0 0
\(163\) 10.1464 0.794730 0.397365 0.917661i \(-0.369925\pi\)
0.397365 + 0.917661i \(0.369925\pi\)
\(164\) 0 0
\(165\) 3.00000 + 5.19615i 0.233550 + 0.404520i
\(166\) 0 0
\(167\) −2.32577 4.02834i −0.179973 0.311723i 0.761898 0.647697i \(-0.224268\pi\)
−0.941871 + 0.335974i \(0.890934\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0 0
\(171\) −4.17423 + 1.25529i −0.319212 + 0.0959948i
\(172\) 0 0
\(173\) −8.44949 + 14.6349i −0.642403 + 1.11267i 0.342492 + 0.939521i \(0.388729\pi\)
−0.984895 + 0.173154i \(0.944604\pi\)
\(174\) 0 0
\(175\) 1.72474 + 2.98735i 0.130378 + 0.225822i
\(176\) 0 0
\(177\) 3.67423 + 6.36396i 0.276172 + 0.478345i
\(178\) 0 0
\(179\) −3.55051 −0.265378 −0.132689 0.991158i \(-0.542361\pi\)
−0.132689 + 0.991158i \(0.542361\pi\)
\(180\) 0 0
\(181\) −5.34847 9.26382i −0.397549 0.688574i 0.595874 0.803078i \(-0.296806\pi\)
−0.993423 + 0.114503i \(0.963472\pi\)
\(182\) 0 0
\(183\) −2.10102 −0.155312
\(184\) 0 0
\(185\) −10.7753 + 18.6633i −0.792213 + 1.37215i
\(186\) 0 0
\(187\) 6.00000 10.3923i 0.438763 0.759961i
\(188\) 0 0
\(189\) −3.44949 −0.250913
\(190\) 0 0
\(191\) 18.2474 1.32034 0.660170 0.751117i \(-0.270484\pi\)
0.660170 + 0.751117i \(0.270484\pi\)
\(192\) 0 0
\(193\) 5.94949 10.3048i 0.428254 0.741757i −0.568464 0.822708i \(-0.692462\pi\)
0.996718 + 0.0809508i \(0.0257957\pi\)
\(194\) 0 0
\(195\) 1.22474 2.12132i 0.0877058 0.151911i
\(196\) 0 0
\(197\) 11.1464 0.794150 0.397075 0.917786i \(-0.370025\pi\)
0.397075 + 0.917786i \(0.370025\pi\)
\(198\) 0 0
\(199\) 1.17423 + 2.03383i 0.0832393 + 0.144175i 0.904640 0.426177i \(-0.140140\pi\)
−0.821400 + 0.570352i \(0.806807\pi\)
\(200\) 0 0
\(201\) −4.55051 −0.320968
\(202\) 0 0
\(203\) −8.44949 14.6349i −0.593038 1.02717i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.22474 7.31747i 0.293640 0.508600i
\(208\) 0 0
\(209\) −2.44949 + 10.3923i −0.169435 + 0.718851i
\(210\) 0 0
\(211\) 7.17423 12.4261i 0.493895 0.855451i −0.506081 0.862486i \(-0.668906\pi\)
0.999975 + 0.00703553i \(0.00223950\pi\)
\(212\) 0 0
\(213\) −3.00000 5.19615i −0.205557 0.356034i
\(214\) 0 0
\(215\) 4.22474 + 7.31747i 0.288125 + 0.499048i
\(216\) 0 0
\(217\) 32.5959 2.21276
\(218\) 0 0
\(219\) 5.94949 + 10.3048i 0.402029 + 0.696335i
\(220\) 0 0
\(221\) −4.89898 −0.329541
\(222\) 0 0
\(223\) −8.62372 + 14.9367i −0.577487 + 1.00024i 0.418279 + 0.908319i \(0.362633\pi\)
−0.995767 + 0.0919188i \(0.970700\pi\)
\(224\) 0 0
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) 0 0
\(227\) 25.3485 1.68244 0.841218 0.540695i \(-0.181839\pi\)
0.841218 + 0.540695i \(0.181839\pi\)
\(228\) 0 0
\(229\) 20.7980 1.37437 0.687184 0.726484i \(-0.258847\pi\)
0.687184 + 0.726484i \(0.258847\pi\)
\(230\) 0 0
\(231\) −4.22474 + 7.31747i −0.277968 + 0.481454i
\(232\) 0 0
\(233\) 11.4495 19.8311i 0.750081 1.29918i −0.197702 0.980262i \(-0.563348\pi\)
0.947783 0.318916i \(-0.103319\pi\)
\(234\) 0 0
\(235\) 2.69694 0.175929
\(236\) 0 0
\(237\) −6.17423 10.6941i −0.401060 0.694656i
\(238\) 0 0
\(239\) 11.1464 0.721003 0.360501 0.932759i \(-0.382606\pi\)
0.360501 + 0.932759i \(0.382606\pi\)
\(240\) 0 0
\(241\) 7.05051 + 12.2118i 0.454163 + 0.786634i 0.998640 0.0521423i \(-0.0166049\pi\)
−0.544476 + 0.838776i \(0.683272\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) −6.00000 + 10.3923i −0.383326 + 0.663940i
\(246\) 0 0
\(247\) 4.17423 1.25529i 0.265600 0.0798725i
\(248\) 0 0
\(249\) 8.44949 14.6349i 0.535465 0.927452i
\(250\) 0 0
\(251\) 11.4495 + 19.8311i 0.722685 + 1.25173i 0.959920 + 0.280275i \(0.0904258\pi\)
−0.237234 + 0.971452i \(0.576241\pi\)
\(252\) 0 0
\(253\) −10.3485 17.9241i −0.650603 1.12688i
\(254\) 0 0
\(255\) 12.0000 0.751469
\(256\) 0 0
\(257\) −13.2247 22.9059i −0.824937 1.42883i −0.901967 0.431804i \(-0.857877\pi\)
0.0770306 0.997029i \(-0.475456\pi\)
\(258\) 0 0
\(259\) −30.3485 −1.88576
\(260\) 0 0
\(261\) 2.44949 4.24264i 0.151620 0.262613i
\(262\) 0 0
\(263\) −6.79796 + 11.7744i −0.419180 + 0.726041i −0.995857 0.0909309i \(-0.971016\pi\)
0.576677 + 0.816972i \(0.304349\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) −3.55051 −0.217288
\(268\) 0 0
\(269\) −5.57321 + 9.65309i −0.339805 + 0.588559i −0.984396 0.175968i \(-0.943694\pi\)
0.644591 + 0.764528i \(0.277028\pi\)
\(270\) 0 0
\(271\) 2.00000 3.46410i 0.121491 0.210429i −0.798865 0.601511i \(-0.794566\pi\)
0.920356 + 0.391082i \(0.127899\pi\)
\(272\) 0 0
\(273\) 3.44949 0.208773
\(274\) 0 0
\(275\) 1.22474 + 2.12132i 0.0738549 + 0.127920i
\(276\) 0 0
\(277\) −30.6969 −1.84440 −0.922200 0.386713i \(-0.873610\pi\)
−0.922200 + 0.386713i \(0.873610\pi\)
\(278\) 0 0
\(279\) 4.72474 + 8.18350i 0.282863 + 0.489933i
\(280\) 0 0
\(281\) −12.1237 20.9989i −0.723241 1.25269i −0.959694 0.281047i \(-0.909318\pi\)
0.236453 0.971643i \(-0.424015\pi\)
\(282\) 0 0
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) 0 0
\(285\) −10.2247 + 3.07483i −0.605662 + 0.182137i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −3.50000 6.06218i −0.205882 0.356599i
\(290\) 0 0
\(291\) −5.34847 9.26382i −0.313533 0.543055i
\(292\) 0 0
\(293\) −3.79796 −0.221879 −0.110940 0.993827i \(-0.535386\pi\)
−0.110940 + 0.993827i \(0.535386\pi\)
\(294\) 0 0
\(295\) 9.00000 + 15.5885i 0.524000 + 0.907595i
\(296\) 0 0
\(297\) −2.44949 −0.142134
\(298\) 0 0
\(299\) −4.22474 + 7.31747i −0.244323 + 0.423180i
\(300\) 0 0
\(301\) −5.94949 + 10.3048i −0.342923 + 0.593960i
\(302\) 0 0
\(303\) 10.8990 0.626130
\(304\) 0 0
\(305\) −5.14643 −0.294684
\(306\) 0 0
\(307\) −1.00000 + 1.73205i −0.0570730 + 0.0988534i −0.893150 0.449758i \(-0.851510\pi\)
0.836077 + 0.548612i \(0.184843\pi\)
\(308\) 0 0
\(309\) −6.72474 + 11.6476i −0.382557 + 0.662609i
\(310\) 0 0
\(311\) −29.1464 −1.65274 −0.826371 0.563126i \(-0.809599\pi\)
−0.826371 + 0.563126i \(0.809599\pi\)
\(312\) 0 0
\(313\) 2.00000 + 3.46410i 0.113047 + 0.195803i 0.916997 0.398894i \(-0.130606\pi\)
−0.803951 + 0.594696i \(0.797272\pi\)
\(314\) 0 0
\(315\) −8.44949 −0.476075
\(316\) 0 0
\(317\) 14.5732 + 25.2415i 0.818513 + 1.41771i 0.906778 + 0.421609i \(0.138535\pi\)
−0.0882643 + 0.996097i \(0.528132\pi\)
\(318\) 0 0
\(319\) −6.00000 10.3923i −0.335936 0.581857i
\(320\) 0 0
\(321\) −1.89898 + 3.28913i −0.105991 + 0.183581i
\(322\) 0 0
\(323\) 15.5505 + 14.6349i 0.865254 + 0.814310i
\(324\) 0 0
\(325\) 0.500000 0.866025i 0.0277350 0.0480384i
\(326\) 0 0
\(327\) −4.00000 6.92820i −0.221201 0.383131i
\(328\) 0 0
\(329\) 1.89898 + 3.28913i 0.104694 + 0.181336i
\(330\) 0 0
\(331\) −11.0454 −0.607111 −0.303555 0.952814i \(-0.598174\pi\)
−0.303555 + 0.952814i \(0.598174\pi\)
\(332\) 0 0
\(333\) −4.39898 7.61926i −0.241063 0.417533i
\(334\) 0 0
\(335\) −11.1464 −0.608994
\(336\) 0 0
\(337\) −0.601021 + 1.04100i −0.0327397 + 0.0567068i −0.881931 0.471379i \(-0.843757\pi\)
0.849191 + 0.528085i \(0.177090\pi\)
\(338\) 0 0
\(339\) 9.12372 15.8028i 0.495533 0.858288i
\(340\) 0 0
\(341\) 23.1464 1.25345
\(342\) 0 0
\(343\) 7.24745 0.391325
\(344\) 0 0
\(345\) 10.3485 17.9241i 0.557143 0.965000i
\(346\) 0 0
\(347\) −8.02270 + 13.8957i −0.430681 + 0.745962i −0.996932 0.0782711i \(-0.975060\pi\)
0.566251 + 0.824233i \(0.308393\pi\)
\(348\) 0 0
\(349\) −2.59592 −0.138956 −0.0694782 0.997583i \(-0.522133\pi\)
−0.0694782 + 0.997583i \(0.522133\pi\)
\(350\) 0 0
\(351\) 0.500000 + 0.866025i 0.0266880 + 0.0462250i
\(352\) 0 0
\(353\) 4.65153 0.247576 0.123788 0.992309i \(-0.460496\pi\)
0.123788 + 0.992309i \(0.460496\pi\)
\(354\) 0 0
\(355\) −7.34847 12.7279i −0.390016 0.675528i
\(356\) 0 0
\(357\) 8.44949 + 14.6349i 0.447194 + 0.774563i
\(358\) 0 0
\(359\) −16.8990 + 29.2699i −0.891894 + 1.54481i −0.0542918 + 0.998525i \(0.517290\pi\)
−0.837602 + 0.546281i \(0.816043\pi\)
\(360\) 0 0
\(361\) −17.0000 8.48528i −0.894737 0.446594i
\(362\) 0 0
\(363\) 2.50000 4.33013i 0.131216 0.227273i
\(364\) 0 0
\(365\) 14.5732 + 25.2415i 0.762797 + 1.32120i
\(366\) 0 0
\(367\) 1.72474 + 2.98735i 0.0900309 + 0.155938i 0.907524 0.420000i \(-0.137970\pi\)
−0.817493 + 0.575939i \(0.804637\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.22474 7.31747i −0.219338 0.379904i
\(372\) 0 0
\(373\) 10.6969 0.553866 0.276933 0.960889i \(-0.410682\pi\)
0.276933 + 0.960889i \(0.410682\pi\)
\(374\) 0 0
\(375\) 4.89898 8.48528i 0.252982 0.438178i
\(376\) 0 0
\(377\) −2.44949 + 4.24264i −0.126155 + 0.218507i
\(378\) 0 0
\(379\) 35.2474 1.81054 0.905270 0.424837i \(-0.139669\pi\)
0.905270 + 0.424837i \(0.139669\pi\)
\(380\) 0 0
\(381\) −18.6969 −0.957873
\(382\) 0 0
\(383\) −11.0227 + 19.0919i −0.563234 + 0.975550i 0.433978 + 0.900924i \(0.357110\pi\)
−0.997212 + 0.0746261i \(0.976224\pi\)
\(384\) 0 0
\(385\) −10.3485 + 17.9241i −0.527407 + 0.913495i
\(386\) 0 0
\(387\) −3.44949 −0.175347
\(388\) 0 0
\(389\) 7.47219 + 12.9422i 0.378855 + 0.656197i 0.990896 0.134630i \(-0.0429845\pi\)
−0.612041 + 0.790826i \(0.709651\pi\)
\(390\) 0 0
\(391\) −41.3939 −2.09338
\(392\) 0 0
\(393\) 1.89898 + 3.28913i 0.0957908 + 0.165915i
\(394\) 0 0
\(395\) −15.1237 26.1951i −0.760957 1.31802i
\(396\) 0 0
\(397\) 14.3990 24.9398i 0.722664 1.25169i −0.237264 0.971445i \(-0.576251\pi\)
0.959928 0.280246i \(-0.0904159\pi\)
\(398\) 0 0
\(399\) −10.9495 10.3048i −0.548160 0.515886i
\(400\) 0 0
\(401\) −7.77526 + 13.4671i −0.388278 + 0.672517i −0.992218 0.124513i \(-0.960263\pi\)
0.603940 + 0.797030i \(0.293597\pi\)
\(402\) 0 0
\(403\) −4.72474 8.18350i −0.235356 0.407649i
\(404\) 0 0
\(405\) −1.22474 2.12132i −0.0608581 0.105409i
\(406\) 0 0
\(407\) −21.5505 −1.06822
\(408\) 0 0
\(409\) 16.6969 + 28.9199i 0.825610 + 1.43000i 0.901452 + 0.432879i \(0.142502\pi\)
−0.0758414 + 0.997120i \(0.524164\pi\)
\(410\) 0 0
\(411\) −13.1010 −0.646226
\(412\) 0 0
\(413\) −12.6742 + 21.9524i −0.623658 + 1.08021i
\(414\) 0 0
\(415\) 20.6969 35.8481i 1.01597 1.75972i
\(416\) 0 0
\(417\) −9.44949 −0.462744
\(418\) 0 0
\(419\) −0.247449 −0.0120887 −0.00604433 0.999982i \(-0.501924\pi\)
−0.00604433 + 0.999982i \(0.501924\pi\)
\(420\) 0 0
\(421\) 8.00000 13.8564i 0.389896 0.675320i −0.602539 0.798089i \(-0.705844\pi\)
0.992435 + 0.122769i \(0.0391776\pi\)
\(422\) 0 0
\(423\) −0.550510 + 0.953512i −0.0267667 + 0.0463613i
\(424\) 0 0
\(425\) 4.89898 0.237635
\(426\) 0 0
\(427\) −3.62372 6.27647i −0.175364 0.303740i
\(428\) 0 0
\(429\) 2.44949 0.118262
\(430\) 0 0
\(431\) −11.4495 19.8311i −0.551503 0.955230i −0.998166 0.0605286i \(-0.980721\pi\)
0.446664 0.894702i \(-0.352612\pi\)
\(432\) 0 0
\(433\) 14.3990 + 24.9398i 0.691971 + 1.19853i 0.971191 + 0.238302i \(0.0765907\pi\)
−0.279220 + 0.960227i \(0.590076\pi\)
\(434\) 0 0
\(435\) 6.00000 10.3923i 0.287678 0.498273i
\(436\) 0 0
\(437\) 35.2702 10.6066i 1.68720 0.507383i
\(438\) 0 0
\(439\) 14.5227 25.1541i 0.693131 1.20054i −0.277676 0.960675i \(-0.589564\pi\)
0.970807 0.239863i \(-0.0771025\pi\)
\(440\) 0 0
\(441\) −2.44949 4.24264i −0.116642 0.202031i
\(442\) 0 0
\(443\) 8.44949 + 14.6349i 0.401447 + 0.695327i 0.993901 0.110277i \(-0.0351739\pi\)
−0.592453 + 0.805605i \(0.701841\pi\)
\(444\) 0 0
\(445\) −8.69694 −0.412274
\(446\) 0 0
\(447\) 10.2247 + 17.7098i 0.483614 + 0.837644i
\(448\) 0 0
\(449\) 28.8990 1.36383 0.681914 0.731433i \(-0.261148\pi\)
0.681914 + 0.731433i \(0.261148\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 3.34847 5.79972i 0.157325 0.272495i
\(454\) 0 0
\(455\) 8.44949 0.396118
\(456\) 0 0
\(457\) −3.20204 −0.149785 −0.0748926 0.997192i \(-0.523861\pi\)
−0.0748926 + 0.997192i \(0.523861\pi\)
\(458\) 0 0
\(459\) −2.44949 + 4.24264i −0.114332 + 0.198030i
\(460\) 0 0
\(461\) 20.0227 34.6803i 0.932550 1.61522i 0.153605 0.988132i \(-0.450912\pi\)
0.778945 0.627092i \(-0.215755\pi\)
\(462\) 0 0
\(463\) 0.348469 0.0161947 0.00809737 0.999967i \(-0.497422\pi\)
0.00809737 + 0.999967i \(0.497422\pi\)
\(464\) 0 0
\(465\) 11.5732 + 20.0454i 0.536695 + 0.929583i
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −7.84847 13.5939i −0.362409 0.627710i
\(470\) 0 0
\(471\) −1.94949 3.37662i −0.0898277 0.155586i
\(472\) 0 0
\(473\) −4.22474 + 7.31747i −0.194254 + 0.336458i
\(474\) 0 0
\(475\) −4.17423 + 1.25529i −0.191527 + 0.0575969i
\(476\) 0 0
\(477\) 1.22474 2.12132i 0.0560772 0.0971286i
\(478\) 0 0
\(479\) −11.6969 20.2597i −0.534447 0.925689i −0.999190 0.0402434i \(-0.987187\pi\)
0.464743 0.885446i \(-0.346147\pi\)
\(480\) 0 0
\(481\) 4.39898 + 7.61926i 0.200576 + 0.347408i
\(482\) 0 0
\(483\) 29.1464 1.32621
\(484\) 0 0
\(485\) −13.1010 22.6916i −0.594887 1.03037i
\(486\) 0 0
\(487\) 22.6969 1.02850 0.514248 0.857641i \(-0.328071\pi\)
0.514248 + 0.857641i \(0.328071\pi\)
\(488\) 0 0
\(489\) −5.07321 + 8.78706i −0.229419 + 0.397365i
\(490\) 0 0
\(491\) 6.79796 11.7744i 0.306788 0.531372i −0.670870 0.741575i \(-0.734079\pi\)
0.977658 + 0.210203i \(0.0674125\pi\)
\(492\) 0 0
\(493\) −24.0000 −1.08091
\(494\) 0 0
\(495\) −6.00000 −0.269680
\(496\) 0 0
\(497\) 10.3485 17.9241i 0.464192 0.804005i
\(498\) 0 0
\(499\) 5.52270 9.56560i 0.247230 0.428215i −0.715526 0.698586i \(-0.753813\pi\)
0.962756 + 0.270371i \(0.0871463\pi\)
\(500\) 0 0
\(501\) 4.65153 0.207815
\(502\) 0 0
\(503\) 3.55051 + 6.14966i 0.158309 + 0.274200i 0.934259 0.356595i \(-0.116062\pi\)
−0.775950 + 0.630795i \(0.782729\pi\)
\(504\) 0 0
\(505\) 26.6969 1.18800
\(506\) 0 0
\(507\) 6.00000 + 10.3923i 0.266469 + 0.461538i
\(508\) 0 0
\(509\) 1.89898 + 3.28913i 0.0841708 + 0.145788i 0.905038 0.425332i \(-0.139843\pi\)
−0.820867 + 0.571120i \(0.806509\pi\)
\(510\) 0 0
\(511\) −20.5227 + 35.5464i −0.907871 + 1.57248i
\(512\) 0 0
\(513\) 1.00000 4.24264i 0.0441511 0.187317i
\(514\) 0 0
\(515\) −16.4722 + 28.5307i −0.725852 + 1.25721i
\(516\) 0 0
\(517\) 1.34847 + 2.33562i 0.0593056 + 0.102720i
\(518\) 0 0
\(519\) −8.44949 14.6349i −0.370891 0.642403i
\(520\) 0 0
\(521\) 8.94439 0.391861 0.195930 0.980618i \(-0.437227\pi\)
0.195930 + 0.980618i \(0.437227\pi\)
\(522\) 0 0
\(523\) 9.07321 + 15.7153i 0.396744 + 0.687181i 0.993322 0.115374i \(-0.0368068\pi\)
−0.596578 + 0.802555i \(0.703473\pi\)
\(524\) 0 0
\(525\) −3.44949 −0.150548
\(526\) 0 0
\(527\) 23.1464 40.0908i 1.00827 1.74638i
\(528\) 0 0
\(529\) −24.1969 + 41.9103i −1.05204 + 1.82219i
\(530\) 0 0
\(531\) −7.34847 −0.318896
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −4.65153 + 8.05669i −0.201103 + 0.348321i
\(536\) 0 0
\(537\) 1.77526 3.07483i 0.0766079 0.132689i
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) −6.05051 10.4798i −0.260132 0.450561i 0.706145 0.708067i \(-0.250433\pi\)
−0.966277 + 0.257506i \(0.917099\pi\)
\(542\) 0 0
\(543\) 10.6969 0.459050
\(544\) 0 0
\(545\) −9.79796 16.9706i −0.419698 0.726939i
\(546\) 0 0
\(547\) 1.72474 + 2.98735i 0.0737448 + 0.127730i 0.900540 0.434774i \(-0.143172\pi\)
−0.826795 + 0.562503i \(0.809838\pi\)
\(548\) 0 0
\(549\) 1.05051 1.81954i 0.0448347 0.0776560i
\(550\) 0 0
\(551\) 20.4495 6.14966i 0.871178 0.261985i
\(552\) 0 0
\(553\) 21.2980 36.8891i 0.905681 1.56869i
\(554\) 0 0
\(555\) −10.7753 18.6633i −0.457384 0.792213i
\(556\) 0 0
\(557\) −6.55051 11.3458i −0.277554 0.480738i 0.693222 0.720724i \(-0.256190\pi\)
−0.970776 + 0.239986i \(0.922857\pi\)
\(558\) 0 0
\(559\) 3.44949 0.145898
\(560\) 0 0
\(561\) 6.00000 + 10.3923i 0.253320 + 0.438763i
\(562\) 0 0
\(563\) −1.59592 −0.0672599 −0.0336300 0.999434i \(-0.510707\pi\)
−0.0336300 + 0.999434i \(0.510707\pi\)
\(564\) 0 0
\(565\) 22.3485 38.7087i 0.940207 1.62849i
\(566\) 0 0
\(567\) 1.72474 2.98735i 0.0724325 0.125457i
\(568\) 0 0
\(569\) −14.2020 −0.595381 −0.297690 0.954663i \(-0.596216\pi\)
−0.297690 + 0.954663i \(0.596216\pi\)
\(570\) 0 0
\(571\) −10.5505 −0.441525 −0.220763 0.975328i \(-0.570855\pi\)
−0.220763 + 0.975328i \(0.570855\pi\)
\(572\) 0 0
\(573\) −9.12372 + 15.8028i −0.381149 + 0.660170i
\(574\) 0 0
\(575\) 4.22474 7.31747i 0.176184 0.305160i
\(576\) 0 0
\(577\) −21.3939 −0.890639 −0.445319 0.895372i \(-0.646910\pi\)
−0.445319 + 0.895372i \(0.646910\pi\)
\(578\) 0 0
\(579\) 5.94949 + 10.3048i 0.247252 + 0.428254i
\(580\) 0 0
\(581\) 58.2929 2.41840
\(582\) 0 0
\(583\) −3.00000 5.19615i −0.124247 0.215203i
\(584\) 0 0
\(585\) 1.22474 + 2.12132i 0.0506370 + 0.0877058i
\(586\) 0 0
\(587\) −10.7753 + 18.6633i −0.444742 + 0.770316i −0.998034 0.0626711i \(-0.980038\pi\)
0.553292 + 0.832987i \(0.313371\pi\)
\(588\) 0 0
\(589\) −9.44949 + 40.0908i −0.389359 + 1.65191i
\(590\) 0 0
\(591\) −5.57321 + 9.65309i −0.229251 + 0.397075i
\(592\) 0 0
\(593\) 0.426786 + 0.739215i 0.0175260 + 0.0303559i 0.874655 0.484745i \(-0.161088\pi\)
−0.857129 + 0.515101i \(0.827754\pi\)
\(594\) 0 0
\(595\) 20.6969 + 35.8481i 0.848492 + 1.46963i
\(596\) 0 0
\(597\) −2.34847 −0.0961164
\(598\) 0 0
\(599\) 2.32577 + 4.02834i 0.0950282 + 0.164594i 0.909620 0.415440i \(-0.136373\pi\)
−0.814592 + 0.580034i \(0.803039\pi\)
\(600\) 0 0
\(601\) −4.79796 −0.195713 −0.0978564 0.995201i \(-0.531199\pi\)
−0.0978564 + 0.995201i \(0.531199\pi\)
\(602\) 0 0
\(603\) 2.27526 3.94086i 0.0926556 0.160484i
\(604\) 0 0
\(605\) 6.12372 10.6066i 0.248965 0.431220i
\(606\) 0 0
\(607\) −12.1464 −0.493008 −0.246504 0.969142i \(-0.579282\pi\)
−0.246504 + 0.969142i \(0.579282\pi\)
\(608\) 0 0
\(609\) 16.8990 0.684781
\(610\) 0 0
\(611\) 0.550510 0.953512i 0.0222713 0.0385750i
\(612\) 0 0
\(613\) −2.65153 + 4.59259i −0.107094 + 0.185493i −0.914592 0.404378i \(-0.867488\pi\)
0.807498 + 0.589871i \(0.200821\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8.02270 13.8957i −0.322982 0.559421i 0.658120 0.752913i \(-0.271352\pi\)
−0.981102 + 0.193492i \(0.938019\pi\)
\(618\) 0 0
\(619\) 5.85357 0.235275 0.117637 0.993057i \(-0.462468\pi\)
0.117637 + 0.993057i \(0.462468\pi\)
\(620\) 0 0
\(621\) 4.22474 + 7.31747i 0.169533 + 0.293640i
\(622\) 0 0
\(623\) −6.12372 10.6066i −0.245342 0.424945i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 0 0
\(627\) −7.77526 7.31747i −0.310514 0.292232i
\(628\) 0 0
\(629\) −21.5505 + 37.3266i −0.859275 + 1.48831i
\(630\) 0 0
\(631\) −20.0732 34.7678i −0.799102 1.38409i −0.920202 0.391445i \(-0.871975\pi\)
0.121099 0.992640i \(-0.461358\pi\)
\(632\) 0 0
\(633\) 7.17423 + 12.4261i 0.285150 + 0.493895i
\(634\) 0 0
\(635\) −45.7980 −1.81744
\(636\) 0 0
\(637\) 2.44949 + 4.24264i 0.0970523 + 0.168100i
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) −17.6969 + 30.6520i −0.698987 + 1.21068i 0.269831 + 0.962908i \(0.413032\pi\)
−0.968818 + 0.247773i \(0.920301\pi\)
\(642\) 0 0
\(643\) −17.8712 + 30.9538i −0.704770 + 1.22070i 0.262004 + 0.965067i \(0.415617\pi\)
−0.966774 + 0.255631i \(0.917717\pi\)
\(644\) 0 0
\(645\) −8.44949 −0.332698
\(646\) 0 0
\(647\) −4.89898 −0.192599 −0.0962994 0.995352i \(-0.530701\pi\)
−0.0962994 + 0.995352i \(0.530701\pi\)
\(648\) 0 0
\(649\) −9.00000 + 15.5885i −0.353281 + 0.611900i
\(650\) 0 0
\(651\) −16.2980 + 28.2289i −0.638767 + 1.10638i
\(652\) 0 0
\(653\) 13.1010 0.512683 0.256341 0.966586i \(-0.417483\pi\)
0.256341 + 0.966586i \(0.417483\pi\)
\(654\) 0 0
\(655\) 4.65153 + 8.05669i 0.181750 + 0.314801i
\(656\) 0 0
\(657\) −11.8990 −0.464223
\(658\) 0 0
\(659\) −19.2247 33.2982i −0.748890 1.29712i −0.948355 0.317210i \(-0.897254\pi\)
0.199466 0.979905i \(-0.436079\pi\)
\(660\) 0 0
\(661\) 17.0000 + 29.4449i 0.661223 + 1.14527i 0.980294 + 0.197542i \(0.0632958\pi\)
−0.319071 + 0.947731i \(0.603371\pi\)
\(662\) 0 0
\(663\) 2.44949 4.24264i 0.0951303 0.164771i
\(664\) 0 0
\(665\) −26.8207 25.2415i −1.04006 0.978825i
\(666\) 0 0
\(667\) −20.6969 + 35.8481i −0.801389 + 1.38805i
\(668\) 0 0
\(669\) −8.62372 14.9367i −0.333412 0.577487i
\(670\) 0 0
\(671\) −2.57321 4.45694i −0.0993378 0.172058i
\(672\) 0 0
\(673\) 5.00000 0.192736 0.0963679 0.995346i \(-0.469277\pi\)
0.0963679 + 0.995346i \(0.469277\pi\)
\(674\) 0 0
\(675\) −0.500000 0.866025i −0.0192450 0.0333333i
\(676\) 0 0
\(677\) 37.5959 1.44493 0.722464 0.691408i \(-0.243009\pi\)
0.722464 + 0.691408i \(0.243009\pi\)
\(678\) 0 0
\(679\) 18.4495 31.9555i 0.708026 1.22634i
\(680\) 0 0
\(681\) −12.6742 + 21.9524i −0.485678 + 0.841218i
\(682\) 0 0
\(683\) −23.1464 −0.885673 −0.442837 0.896602i \(-0.646028\pi\)
−0.442837 + 0.896602i \(0.646028\pi\)
\(684\) 0 0
\(685\) −32.0908 −1.22613
\(686\) 0 0
\(687\) −10.3990 + 18.0116i −0.396746 + 0.687184i
\(688\) 0 0
\(689\) −1.22474 + 2.12132i −0.0466591 + 0.0808159i
\(690\) 0 0
\(691\) 37.3939 1.42253 0.711265 0.702924i \(-0.248123\pi\)
0.711265 + 0.702924i \(0.248123\pi\)
\(692\) 0 0
\(693\) −4.22474 7.31747i −0.160485 0.277968i
\(694\) 0 0
\(695\) −23.1464 −0.877994
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 11.4495 + 19.8311i 0.433059 + 0.750081i
\(700\) 0 0
\(701\) 9.92168 17.1849i 0.374737 0.649063i −0.615551 0.788097i \(-0.711066\pi\)
0.990288 + 0.139034i \(0.0443997\pi\)
\(702\) 0 0
\(703\) 8.79796 37.3266i 0.331821 1.40780i
\(704\) 0 0
\(705\) −1.34847 + 2.33562i −0.0507863 + 0.0879644i
\(706\) 0 0
\(707\) 18.7980 + 32.5590i 0.706970 + 1.22451i
\(708\) 0 0
\(709\) −6.84847 11.8619i −0.257200 0.445483i 0.708291 0.705921i \(-0.249466\pi\)
−0.965491 + 0.260438i \(0.916133\pi\)
\(710\) 0 0
\(711\) 12.3485 0.463104
\(712\) 0 0
\(713\) −39.9217 69.1464i −1.49508 2.58955i
\(714\) 0 0
\(715\) 6.00000 0.224387
\(716\) 0 0
\(717\) −5.57321 + 9.65309i −0.208135 + 0.360501i
\(718\) 0 0
\(719\) 6.67423 11.5601i 0.248907 0.431119i −0.714316 0.699823i \(-0.753262\pi\)
0.963223 + 0.268704i \(0.0865953\pi\)
\(720\) 0 0
\(721\) −46.3939 −1.72780
\(722\) 0 0
\(723\) −14.1010 −0.524423
\(724\) 0 0
\(725\) 2.44949 4.24264i 0.0909718 0.157568i
\(726\) 0 0
\(727\) −6.17423 + 10.6941i −0.228990 + 0.396622i −0.957509 0.288404i \(-0.906876\pi\)
0.728519 + 0.685025i \(0.240209\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.44949 + 14.6349i 0.312516 + 0.541293i
\(732\) 0 0
\(733\) −30.6969 −1.13382 −0.566909 0.823781i \(-0.691861\pi\)
−0.566909 + 0.823781i \(0.691861\pi\)
\(734\) 0 0
\(735\) −6.00000 10.3923i −0.221313 0.383326i
\(736\) 0 0
\(737\) −5.57321 9.65309i −0.205292 0.355576i
\(738\) 0 0
\(739\) 2.27526 3.94086i 0.0836966 0.144967i −0.821138 0.570729i \(-0.806661\pi\)
0.904835 + 0.425762i \(0.139994\pi\)
\(740\) 0 0
\(741\) −1.00000 + 4.24264i −0.0367359 + 0.155857i
\(742\) 0 0
\(743\) 2.32577 4.02834i 0.0853241 0.147786i −0.820205 0.572069i \(-0.806141\pi\)
0.905529 + 0.424284i \(0.139474\pi\)
\(744\) 0 0
\(745\) 25.0454 + 43.3799i 0.917593 + 1.58932i
\(746\) 0 0
\(747\) 8.44949 + 14.6349i 0.309151 + 0.535465i
\(748\) 0 0
\(749\) −13.1010 −0.478701
\(750\) 0 0
\(751\) 11.2753 + 19.5293i 0.411440 + 0.712635i 0.995047 0.0994010i \(-0.0316927\pi\)
−0.583608 + 0.812036i \(0.698359\pi\)
\(752\) 0 0
\(753\) −22.8990 −0.834485
\(754\) 0 0
\(755\) 8.20204 14.2064i 0.298503 0.517022i
\(756\) 0 0
\(757\) −19.9495 + 34.5535i −0.725077 + 1.25587i 0.233866 + 0.972269i \(0.424862\pi\)
−0.958943 + 0.283601i \(0.908471\pi\)
\(758\) 0 0
\(759\) 20.6969 0.751251
\(760\) 0 0
\(761\) 16.0454 0.581646 0.290823 0.956777i \(-0.406071\pi\)
0.290823 + 0.956777i \(0.406071\pi\)
\(762\) 0 0
\(763\) 13.7980 23.8988i 0.499520 0.865193i
\(764\) 0 0
\(765\) −6.00000 + 10.3923i −0.216930 + 0.375735i
\(766\) 0 0
\(767\) 7.34847 0.265338
\(768\) 0 0
\(769\) 6.50000 + 11.2583i 0.234396 + 0.405986i 0.959097 0.283078i \(-0.0913554\pi\)
−0.724701 + 0.689063i \(0.758022\pi\)
\(770\) 0 0
\(771\) 26.4495 0.952555
\(772\) 0 0
\(773\) 6.79796 + 11.7744i 0.244506 + 0.423496i 0.961992 0.273076i \(-0.0880410\pi\)
−0.717487 + 0.696572i \(0.754708\pi\)
\(774\) 0 0
\(775\) 4.72474 + 8.18350i 0.169718 + 0.293960i
\(776\) 0 0
\(777\) 15.1742 26.2825i 0.544373 0.942881i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 7.34847 12.7279i 0.262949 0.455441i
\(782\) 0 0
\(783\) 2.44949 + 4.24264i 0.0875376 + 0.151620i
\(784\) 0 0
\(785\) −4.77526 8.27098i −0.170436 0.295204i
\(786\) 0 0
\(787\) −42.1464 −1.50236 −0.751179 0.660099i \(-0.770514\pi\)
−0.751179 + 0.660099i \(0.770514\pi\)
\(788\) 0 0
\(789\) −6.79796 11.7744i −0.242014 0.419180i
\(790\) 0 0
\(791\) 62.9444 2.23804
\(792\) 0 0
\(793\) −1.05051 + 1.81954i −0.0373047 + 0.0646137i
\(794\) 0 0
\(795\) 3.00000 5.19615i 0.106399 0.184289i
\(796\) 0 0
\(797\) −40.2929 −1.42725 −0.713623 0.700530i \(-0.752947\pi\)
−0.713623 + 0.700530i \(0.752947\pi\)
\(798\) 0 0
\(799\) 5.39388 0.190822
\(800\) 0 0
\(801\) 1.77526 3.07483i 0.0627256 0.108644i
\(802\) 0 0
\(803\) −14.5732 + 25.2415i −0.514278 + 0.890755i
\(804\) 0 0
\(805\) 71.3939 2.51630
\(806\) 0 0
\(807\) −5.57321 9.65309i −0.196186 0.339805i
\(808\) 0 0
\(809\) 50.4495 1.77371 0.886855 0.462048i \(-0.152885\pi\)
0.886855 + 0.462048i \(0.152885\pi\)
\(810\) 0 0
\(811\) 18.0454 + 31.2556i 0.633660 + 1.09753i 0.986797 + 0.161960i \(0.0517815\pi\)
−0.353137 + 0.935571i \(0.614885\pi\)
\(812\) 0 0
\(813\) 2.00000 + 3.46410i 0.0701431 + 0.121491i
\(814\) 0 0
\(815\) −12.4268 + 21.5238i −0.435291 + 0.753947i
\(816\) 0 0
\(817\) −10.9495 10.3048i −0.383074 0.360520i
\(818\) 0 0
\(819\) −1.72474 + 2.98735i −0.0602675 + 0.104386i
\(820\) 0 0
\(821\) −13.3485 23.1202i −0.465865 0.806901i 0.533375 0.845879i \(-0.320923\pi\)
−0.999240 + 0.0389772i \(0.987590\pi\)
\(822\) 0 0
\(823\) −17.3485 30.0484i −0.604730 1.04742i −0.992094 0.125496i \(-0.959948\pi\)
0.387365 0.921927i \(-0.373385\pi\)
\(824\) 0 0
\(825\) −2.44949 −0.0852803
\(826\) 0 0
\(827\) −2.44949 4.24264i −0.0851771 0.147531i 0.820290 0.571948i \(-0.193812\pi\)
−0.905467 + 0.424417i \(0.860479\pi\)
\(828\) 0 0
\(829\) −15.6969 −0.545177 −0.272589 0.962131i \(-0.587880\pi\)
−0.272589 + 0.962131i \(0.587880\pi\)
\(830\) 0 0
\(831\) 15.3485 26.5843i 0.532432 0.922200i
\(832\) 0 0
\(833\) −12.0000 + 20.7846i −0.415775 + 0.720144i
\(834\) 0 0
\(835\) 11.3939 0.394301
\(836\) 0 0
\(837\) −9.44949 −0.326622
\(838\) 0 0
\(839\) −0.426786 + 0.739215i −0.0147343 + 0.0255205i −0.873299 0.487185i \(-0.838024\pi\)
0.858564 + 0.512706i \(0.171357\pi\)
\(840\) 0 0
\(841\) 2.50000 4.33013i 0.0862069 0.149315i
\(842\) 0 0
\(843\) 24.2474 0.835126
\(844\) 0 0
\(845\) 14.6969 + 25.4558i 0.505590 + 0.875708i
\(846\) 0 0
\(847\) 17.2474 0.592629
\(848\) 0 0
\(849\) 2.00000 + 3.46410i 0.0686398 + 0.118888i
\(850\) 0 0
\(851\) 37.1691 + 64.3788i 1.27414 + 2.20688i
\(852\) 0 0
\(853\) 4.29796 7.44428i 0.147159 0.254887i −0.783017 0.622000i \(-0.786320\pi\)
0.930176 + 0.367113i \(0.119654\pi\)
\(854\) 0 0
\(855\) 2.44949 10.3923i 0.0837708 0.355409i
\(856\) 0 0
\(857\) 22.5959 39.1373i 0.771862 1.33690i −0.164680 0.986347i \(-0.552659\pi\)
0.936541 0.350557i \(-0.114008\pi\)
\(858\) 0 0
\(859\) −15.7247 27.2361i −0.536521 0.929282i −0.999088 0.0426978i \(-0.986405\pi\)
0.462567 0.886585i \(-0.346929\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22.8990 −0.779490 −0.389745 0.920923i \(-0.627437\pi\)
−0.389745 + 0.920923i \(0.627437\pi\)
\(864\) 0 0
\(865\) −20.6969 35.8481i −0.703717 1.21887i
\(866\) 0 0
\(867\) 7.00000 0.237732
\(868\) 0 0
\(869\) 15.1237 26.1951i 0.513037 0.888607i
\(870\) 0 0
\(871\) −2.27526 + 3.94086i −0.0770941 + 0.133531i
\(872\) 0 0
\(873\) 10.6969 0.362037
\(874\) 0 0
\(875\) 33.7980 1.14258
\(876\) 0 0
\(877\) −4.39898 + 7.61926i −0.148543 + 0.257284i −0.930689 0.365811i \(-0.880792\pi\)
0.782146 + 0.623095i \(0.214125\pi\)
\(878\) 0 0
\(879\) 1.89898 3.28913i 0.0640510 0.110940i
\(880\) 0 0
\(881\) −2.44949 −0.0825254 −0.0412627 0.999148i \(-0.513138\pi\)
−0.0412627 + 0.999148i \(0.513138\pi\)
\(882\) 0 0
\(883\) 14.8258 + 25.6790i 0.498927 + 0.864166i 0.999999 0.00123886i \(-0.000394342\pi\)
−0.501073 + 0.865405i \(0.667061\pi\)
\(884\) 0 0
\(885\) −18.0000 −0.605063
\(886\) 0 0
\(887\) 9.92168 + 17.1849i 0.333138 + 0.577011i 0.983125 0.182934i \(-0.0585593\pi\)
−0.649988 + 0.759945i \(0.725226\pi\)
\(888\) 0 0
\(889\) −32.2474 55.8542i −1.08154 1.87329i
\(890\) 0 0
\(891\) 1.22474 2.12132i 0.0410305 0.0710669i
\(892\) 0 0
\(893\) −4.59592 + 1.38211i −0.153797 + 0.0462504i
\(894\) 0 0
\(895\) 4.34847 7.53177i 0.145353 0.251759i
\(896\) 0 0
\(897\) −4.22474 7.31747i −0.141060 0.244323i
\(898\) 0 0
\(899\) −23.1464 40.0908i −0.771977 1.33710i
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) −5.94949 10.3048i −0.197987 0.342923i
\(904\) 0 0
\(905\) 26.2020 0.870985
\(906\) 0 0
\(907\) 20.0000 34.6410i 0.664089 1.15024i −0.315442 0.948945i \(-0.602153\pi\)
0.979531 0.201291i \(-0.0645138\pi\)
\(908\) 0 0
\(909\) −5.44949 + 9.43879i −0.180748 + 0.313065i
\(910\) 0 0
\(911\) 17.3939 0.576285 0.288142 0.957588i \(-0.406962\pi\)
0.288142 + 0.957588i \(0.406962\pi\)
\(912\) 0 0
\(913\) 41.3939 1.36994
\(914\) 0 0
\(915\) 2.57321 4.45694i 0.0850678 0.147342i
\(916\) 0 0
\(917\) −6.55051 + 11.3458i −0.216317 + 0.374672i
\(918\) 0 0
\(919\) 0.348469 0.0114949 0.00574747 0.999983i \(-0.498171\pi\)
0.00574747 + 0.999983i \(0.498171\pi\)
\(920\) 0 0
\(921\) −1.00000 1.73205i −0.0329511 0.0570730i
\(922\) 0 0
\(923\) −6.00000 −0.197492
\(924\) 0 0
\(925\) −4.39898 7.61926i −0.144638 0.250520i
\(926\) 0 0
\(927\) −6.72474 11.6476i −0.220870 0.382557i
\(928\) 0 0
\(929\) −29.2702 + 50.6974i −0.960323 + 1.66333i −0.238634 + 0.971110i \(0.576700\pi\)
−0.721689 + 0.692218i \(0.756634\pi\)
\(930\) 0 0
\(931\) 4.89898 20.7846i 0.160558 0.681188i
\(932\) 0 0
\(933\) 14.5732 25.2415i 0.477106 0.826371i
\(934\) 0 0
\(935\) 14.6969 + 25.4558i 0.480641 + 0.832495i
\(936\) 0 0
\(937\) −8.74745 15.1510i −0.285767 0.494962i 0.687028 0.726631i \(-0.258915\pi\)
−0.972795 + 0.231668i \(0.925582\pi\)
\(938\) 0 0
\(939\) −4.00000 −0.130535
\(940\) 0 0
\(941\) −8.20204 14.2064i −0.267379 0.463114i 0.700805 0.713353i \(-0.252824\pi\)
−0.968184 + 0.250239i \(0.919491\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 4.22474 7.31747i 0.137431 0.238037i
\(946\) 0 0
\(947\) −7.89898 + 13.6814i −0.256682 + 0.444587i −0.965351 0.260954i \(-0.915963\pi\)
0.708669 + 0.705541i \(0.249296\pi\)
\(948\) 0 0
\(949\) 11.8990 0.386257
\(950\) 0 0
\(951\) −29.1464 −0.945138
\(952\) 0 0
\(953\) −12.6742 + 21.9524i −0.410559 + 0.711109i −0.994951 0.100363i \(-0.968000\pi\)
0.584392 + 0.811471i \(0.301333\pi\)
\(954\) 0 0
\(955\) −22.3485 + 38.7087i −0.723179 + 1.25258i
\(956\) 0 0
\(957\) 12.0000 0.387905
\(958\) 0 0
\(959\) −22.5959 39.1373i −0.729660 1.26381i
\(960\) 0 0
\(961\) 58.2929 1.88041
\(962\) 0 0
\(963\) −1.89898 3.28913i −0.0611938 0.105991i
\(964\) 0 0
\(965\) 14.5732 + 25.2415i 0.469128 + 0.812554i
\(966\) 0 0
\(967\) 13.9722 24.2005i 0.449315 0.778237i −0.549026 0.835805i \(-0.685001\pi\)
0.998342 + 0.0575680i \(0.0183346\pi\)
\(968\) 0 0
\(969\) −20.4495 + 6.14966i −0.656932 + 0.197556i
\(970\) 0 0
\(971\) 6.55051 11.3458i 0.210216 0.364105i −0.741566 0.670880i \(-0.765917\pi\)
0.951782 + 0.306775i \(0.0992500\pi\)
\(972\) 0 0
\(973\) −16.2980 28.2289i −0.522489 0.904977i
\(974\) 0 0
\(975\) 0.500000 + 0.866025i 0.0160128 + 0.0277350i
\(976\) 0 0
\(977\) −37.5959 −1.20280 −0.601400 0.798948i \(-0.705390\pi\)
−0.601400 + 0.798948i \(0.705390\pi\)
\(978\) 0 0
\(979\) −4.34847 7.53177i −0.138978 0.240716i
\(980\) 0 0
\(981\) 8.00000 0.255420
\(982\) 0 0
\(983\) −14.5732 + 25.2415i −0.464813 + 0.805080i −0.999193 0.0401642i \(-0.987212\pi\)
0.534380 + 0.845245i \(0.320545\pi\)
\(984\) 0 0
\(985\) −13.6515 + 23.6451i −0.434974 + 0.753397i
\(986\) 0 0
\(987\) −3.79796 −0.120890
\(988\) 0 0
\(989\) 29.1464 0.926802
\(990\) 0 0
\(991\) −18.9722 + 32.8608i −0.602672 + 1.04386i 0.389743 + 0.920924i \(0.372564\pi\)
−0.992415 + 0.122934i \(0.960770\pi\)
\(992\) 0 0
\(993\) 5.52270 9.56560i 0.175258 0.303555i
\(994\) 0 0
\(995\) −5.75255 −0.182368
\(996\) 0 0
\(997\) 1.84847 + 3.20164i 0.0585416 + 0.101397i 0.893811 0.448444i \(-0.148022\pi\)
−0.835269 + 0.549841i \(0.814688\pi\)
\(998\) 0 0
\(999\) 8.79796 0.278355
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 228.2.i.a.49.1 4
3.2 odd 2 684.2.k.f.505.2 4
4.3 odd 2 912.2.q.i.49.1 4
12.11 even 2 2736.2.s.t.1873.2 4
19.7 even 3 inner 228.2.i.a.121.1 yes 4
19.8 odd 6 4332.2.a.g.1.2 2
19.11 even 3 4332.2.a.l.1.2 2
57.26 odd 6 684.2.k.f.577.2 4
76.7 odd 6 912.2.q.i.577.1 4
228.83 even 6 2736.2.s.t.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.i.a.49.1 4 1.1 even 1 trivial
228.2.i.a.121.1 yes 4 19.7 even 3 inner
684.2.k.f.505.2 4 3.2 odd 2
684.2.k.f.577.2 4 57.26 odd 6
912.2.q.i.49.1 4 4.3 odd 2
912.2.q.i.577.1 4 76.7 odd 6
2736.2.s.t.577.2 4 228.83 even 6
2736.2.s.t.1873.2 4 12.11 even 2
4332.2.a.g.1.2 2 19.8 odd 6
4332.2.a.l.1.2 2 19.11 even 3