Properties

Label 228.2.d.b.113.3
Level $228$
Weight $2$
Character 228.113
Analytic conductor $1.821$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [228,2,Mod(113,228)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(228, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("228.113"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 228 = 2^{2} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 228.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.82058916609\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 113.3
Root \(1.58114 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 228.113
Dual form 228.2.d.b.113.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.58114 - 0.707107i) q^{3} -2.23607i q^{5} -1.00000 q^{7} +(2.00000 - 2.23607i) q^{9} -2.23607i q^{11} +4.24264i q^{13} +(-1.58114 - 3.53553i) q^{15} -2.23607i q^{17} +(1.00000 + 4.24264i) q^{19} +(-1.58114 + 0.707107i) q^{21} +4.47214i q^{23} +(1.58114 - 4.94975i) q^{27} +4.24264i q^{31} +(-1.58114 - 3.53553i) q^{33} +2.23607i q^{35} -4.24264i q^{37} +(3.00000 + 6.70820i) q^{39} +9.48683 q^{41} -7.00000 q^{43} +(-5.00000 - 4.47214i) q^{45} +11.1803i q^{47} -6.00000 q^{49} +(-1.58114 - 3.53553i) q^{51} -9.48683 q^{53} -5.00000 q^{55} +(4.58114 + 6.00110i) q^{57} -9.48683 q^{59} +11.0000 q^{61} +(-2.00000 + 2.23607i) q^{63} +9.48683 q^{65} +8.48528i q^{67} +(3.16228 + 7.07107i) q^{69} -9.48683 q^{71} +5.00000 q^{73} +2.23607i q^{77} +(-1.00000 - 8.94427i) q^{81} -8.94427i q^{83} -5.00000 q^{85} -9.48683 q^{89} -4.24264i q^{91} +(3.00000 + 6.70820i) q^{93} +(9.48683 - 2.23607i) q^{95} -12.7279i q^{97} +(-5.00000 - 4.47214i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} + 8 q^{9} + 4 q^{19} + 12 q^{39} - 28 q^{43} - 20 q^{45} - 24 q^{49} - 20 q^{55} + 12 q^{57} + 44 q^{61} - 8 q^{63} + 20 q^{73} - 4 q^{81} - 20 q^{85} + 12 q^{93} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/228\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(97\) \(115\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.58114 0.707107i 0.912871 0.408248i
\(4\) 0 0
\(5\) 2.23607i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 2.00000 2.23607i 0.666667 0.745356i
\(10\) 0 0
\(11\) 2.23607i 0.674200i −0.941469 0.337100i \(-0.890554\pi\)
0.941469 0.337100i \(-0.109446\pi\)
\(12\) 0 0
\(13\) 4.24264i 1.17670i 0.808608 + 0.588348i \(0.200222\pi\)
−0.808608 + 0.588348i \(0.799778\pi\)
\(14\) 0 0
\(15\) −1.58114 3.53553i −0.408248 0.912871i
\(16\) 0 0
\(17\) 2.23607i 0.542326i −0.962533 0.271163i \(-0.912592\pi\)
0.962533 0.271163i \(-0.0874083\pi\)
\(18\) 0 0
\(19\) 1.00000 + 4.24264i 0.229416 + 0.973329i
\(20\) 0 0
\(21\) −1.58114 + 0.707107i −0.345033 + 0.154303i
\(22\) 0 0
\(23\) 4.47214i 0.932505i 0.884652 + 0.466252i \(0.154396\pi\)
−0.884652 + 0.466252i \(0.845604\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.58114 4.94975i 0.304290 0.952579i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 4.24264i 0.762001i 0.924575 + 0.381000i \(0.124420\pi\)
−0.924575 + 0.381000i \(0.875580\pi\)
\(32\) 0 0
\(33\) −1.58114 3.53553i −0.275241 0.615457i
\(34\) 0 0
\(35\) 2.23607i 0.377964i
\(36\) 0 0
\(37\) 4.24264i 0.697486i −0.937218 0.348743i \(-0.886609\pi\)
0.937218 0.348743i \(-0.113391\pi\)
\(38\) 0 0
\(39\) 3.00000 + 6.70820i 0.480384 + 1.07417i
\(40\) 0 0
\(41\) 9.48683 1.48159 0.740797 0.671729i \(-0.234448\pi\)
0.740797 + 0.671729i \(0.234448\pi\)
\(42\) 0 0
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) 0 0
\(45\) −5.00000 4.47214i −0.745356 0.666667i
\(46\) 0 0
\(47\) 11.1803i 1.63082i 0.578884 + 0.815410i \(0.303489\pi\)
−0.578884 + 0.815410i \(0.696511\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) −1.58114 3.53553i −0.221404 0.495074i
\(52\) 0 0
\(53\) −9.48683 −1.30312 −0.651558 0.758599i \(-0.725884\pi\)
−0.651558 + 0.758599i \(0.725884\pi\)
\(54\) 0 0
\(55\) −5.00000 −0.674200
\(56\) 0 0
\(57\) 4.58114 + 6.00110i 0.606787 + 0.794865i
\(58\) 0 0
\(59\) −9.48683 −1.23508 −0.617540 0.786539i \(-0.711871\pi\)
−0.617540 + 0.786539i \(0.711871\pi\)
\(60\) 0 0
\(61\) 11.0000 1.40841 0.704203 0.709999i \(-0.251305\pi\)
0.704203 + 0.709999i \(0.251305\pi\)
\(62\) 0 0
\(63\) −2.00000 + 2.23607i −0.251976 + 0.281718i
\(64\) 0 0
\(65\) 9.48683 1.17670
\(66\) 0 0
\(67\) 8.48528i 1.03664i 0.855186 + 0.518321i \(0.173443\pi\)
−0.855186 + 0.518321i \(0.826557\pi\)
\(68\) 0 0
\(69\) 3.16228 + 7.07107i 0.380693 + 0.851257i
\(70\) 0 0
\(71\) −9.48683 −1.12588 −0.562940 0.826498i \(-0.690330\pi\)
−0.562940 + 0.826498i \(0.690330\pi\)
\(72\) 0 0
\(73\) 5.00000 0.585206 0.292603 0.956234i \(-0.405479\pi\)
0.292603 + 0.956234i \(0.405479\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.23607i 0.254824i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −1.00000 8.94427i −0.111111 0.993808i
\(82\) 0 0
\(83\) 8.94427i 0.981761i −0.871227 0.490881i \(-0.836675\pi\)
0.871227 0.490881i \(-0.163325\pi\)
\(84\) 0 0
\(85\) −5.00000 −0.542326
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.48683 −1.00560 −0.502801 0.864402i \(-0.667697\pi\)
−0.502801 + 0.864402i \(0.667697\pi\)
\(90\) 0 0
\(91\) 4.24264i 0.444750i
\(92\) 0 0
\(93\) 3.00000 + 6.70820i 0.311086 + 0.695608i
\(94\) 0 0
\(95\) 9.48683 2.23607i 0.973329 0.229416i
\(96\) 0 0
\(97\) 12.7279i 1.29232i −0.763200 0.646162i \(-0.776373\pi\)
0.763200 0.646162i \(-0.223627\pi\)
\(98\) 0 0
\(99\) −5.00000 4.47214i −0.502519 0.449467i
\(100\) 0 0
\(101\) 8.94427i 0.889988i −0.895533 0.444994i \(-0.853206\pi\)
0.895533 0.444994i \(-0.146794\pi\)
\(102\) 0 0
\(103\) 8.48528i 0.836080i 0.908429 + 0.418040i \(0.137283\pi\)
−0.908429 + 0.418040i \(0.862717\pi\)
\(104\) 0 0
\(105\) 1.58114 + 3.53553i 0.154303 + 0.345033i
\(106\) 0 0
\(107\) 18.9737 1.83425 0.917127 0.398596i \(-0.130502\pi\)
0.917127 + 0.398596i \(0.130502\pi\)
\(108\) 0 0
\(109\) 8.48528i 0.812743i −0.913708 0.406371i \(-0.866794\pi\)
0.913708 0.406371i \(-0.133206\pi\)
\(110\) 0 0
\(111\) −3.00000 6.70820i −0.284747 0.636715i
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 10.0000 0.932505
\(116\) 0 0
\(117\) 9.48683 + 8.48528i 0.877058 + 0.784465i
\(118\) 0 0
\(119\) 2.23607i 0.204980i
\(120\) 0 0
\(121\) 6.00000 0.545455
\(122\) 0 0
\(123\) 15.0000 6.70820i 1.35250 0.604858i
\(124\) 0 0
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) 16.9706i 1.50589i −0.658081 0.752947i \(-0.728632\pi\)
0.658081 0.752947i \(-0.271368\pi\)
\(128\) 0 0
\(129\) −11.0680 + 4.94975i −0.974481 + 0.435801i
\(130\) 0 0
\(131\) 15.6525i 1.36756i −0.729687 0.683782i \(-0.760334\pi\)
0.729687 0.683782i \(-0.239666\pi\)
\(132\) 0 0
\(133\) −1.00000 4.24264i −0.0867110 0.367884i
\(134\) 0 0
\(135\) −11.0680 3.53553i −0.952579 0.304290i
\(136\) 0 0
\(137\) 11.1803i 0.955201i 0.878577 + 0.477600i \(0.158493\pi\)
−0.878577 + 0.477600i \(0.841507\pi\)
\(138\) 0 0
\(139\) 11.0000 0.933008 0.466504 0.884519i \(-0.345513\pi\)
0.466504 + 0.884519i \(0.345513\pi\)
\(140\) 0 0
\(141\) 7.90569 + 17.6777i 0.665780 + 1.48873i
\(142\) 0 0
\(143\) 9.48683 0.793329
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −9.48683 + 4.24264i −0.782461 + 0.349927i
\(148\) 0 0
\(149\) 11.1803i 0.915929i 0.888970 + 0.457965i \(0.151421\pi\)
−0.888970 + 0.457965i \(0.848579\pi\)
\(150\) 0 0
\(151\) 4.24264i 0.345261i 0.984987 + 0.172631i \(0.0552267\pi\)
−0.984987 + 0.172631i \(0.944773\pi\)
\(152\) 0 0
\(153\) −5.00000 4.47214i −0.404226 0.361551i
\(154\) 0 0
\(155\) 9.48683 0.762001
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) −15.0000 + 6.70820i −1.18958 + 0.531995i
\(160\) 0 0
\(161\) 4.47214i 0.352454i
\(162\) 0 0
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 0 0
\(165\) −7.90569 + 3.53553i −0.615457 + 0.275241i
\(166\) 0 0
\(167\) −18.9737 −1.46823 −0.734113 0.679027i \(-0.762402\pi\)
−0.734113 + 0.679027i \(0.762402\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) 0 0
\(171\) 11.4868 + 6.24921i 0.878420 + 0.477889i
\(172\) 0 0
\(173\) −18.9737 −1.44254 −0.721271 0.692653i \(-0.756442\pi\)
−0.721271 + 0.692653i \(0.756442\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −15.0000 + 6.70820i −1.12747 + 0.504219i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 25.4558i 1.89212i −0.323994 0.946059i \(-0.605026\pi\)
0.323994 0.946059i \(-0.394974\pi\)
\(182\) 0 0
\(183\) 17.3925 7.77817i 1.28569 0.574979i
\(184\) 0 0
\(185\) −9.48683 −0.697486
\(186\) 0 0
\(187\) −5.00000 −0.365636
\(188\) 0 0
\(189\) −1.58114 + 4.94975i −0.115011 + 0.360041i
\(190\) 0 0
\(191\) 2.23607i 0.161796i −0.996722 0.0808981i \(-0.974221\pi\)
0.996722 0.0808981i \(-0.0257788\pi\)
\(192\) 0 0
\(193\) 25.4558i 1.83235i 0.400776 + 0.916176i \(0.368740\pi\)
−0.400776 + 0.916176i \(0.631260\pi\)
\(194\) 0 0
\(195\) 15.0000 6.70820i 1.07417 0.480384i
\(196\) 0 0
\(197\) 17.8885i 1.27451i 0.770655 + 0.637253i \(0.219929\pi\)
−0.770655 + 0.637253i \(0.780071\pi\)
\(198\) 0 0
\(199\) −13.0000 −0.921546 −0.460773 0.887518i \(-0.652428\pi\)
−0.460773 + 0.887518i \(0.652428\pi\)
\(200\) 0 0
\(201\) 6.00000 + 13.4164i 0.423207 + 0.946320i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 21.2132i 1.48159i
\(206\) 0 0
\(207\) 10.0000 + 8.94427i 0.695048 + 0.621670i
\(208\) 0 0
\(209\) 9.48683 2.23607i 0.656218 0.154672i
\(210\) 0 0
\(211\) 4.24264i 0.292075i 0.989279 + 0.146038i \(0.0466521\pi\)
−0.989279 + 0.146038i \(0.953348\pi\)
\(212\) 0 0
\(213\) −15.0000 + 6.70820i −1.02778 + 0.459639i
\(214\) 0 0
\(215\) 15.6525i 1.06749i
\(216\) 0 0
\(217\) 4.24264i 0.288009i
\(218\) 0 0
\(219\) 7.90569 3.53553i 0.534217 0.238909i
\(220\) 0 0
\(221\) 9.48683 0.638153
\(222\) 0 0
\(223\) 4.24264i 0.284108i −0.989859 0.142054i \(-0.954629\pi\)
0.989859 0.142054i \(-0.0453707\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.48683 −0.629663 −0.314832 0.949148i \(-0.601948\pi\)
−0.314832 + 0.949148i \(0.601948\pi\)
\(228\) 0 0
\(229\) −13.0000 −0.859064 −0.429532 0.903052i \(-0.641321\pi\)
−0.429532 + 0.903052i \(0.641321\pi\)
\(230\) 0 0
\(231\) 1.58114 + 3.53553i 0.104031 + 0.232621i
\(232\) 0 0
\(233\) 24.5967i 1.61139i 0.592333 + 0.805693i \(0.298207\pi\)
−0.592333 + 0.805693i \(0.701793\pi\)
\(234\) 0 0
\(235\) 25.0000 1.63082
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.1803i 0.723196i 0.932334 + 0.361598i \(0.117769\pi\)
−0.932334 + 0.361598i \(0.882231\pi\)
\(240\) 0 0
\(241\) 4.24264i 0.273293i −0.990620 0.136646i \(-0.956368\pi\)
0.990620 0.136646i \(-0.0436324\pi\)
\(242\) 0 0
\(243\) −7.90569 13.4350i −0.507151 0.861858i
\(244\) 0 0
\(245\) 13.4164i 0.857143i
\(246\) 0 0
\(247\) −18.0000 + 4.24264i −1.14531 + 0.269953i
\(248\) 0 0
\(249\) −6.32456 14.1421i −0.400802 0.896221i
\(250\) 0 0
\(251\) 29.0689i 1.83481i −0.397953 0.917406i \(-0.630279\pi\)
0.397953 0.917406i \(-0.369721\pi\)
\(252\) 0 0
\(253\) 10.0000 0.628695
\(254\) 0 0
\(255\) −7.90569 + 3.53553i −0.495074 + 0.221404i
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 4.24264i 0.263625i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 15.6525i 0.965173i −0.875848 0.482587i \(-0.839697\pi\)
0.875848 0.482587i \(-0.160303\pi\)
\(264\) 0 0
\(265\) 21.2132i 1.30312i
\(266\) 0 0
\(267\) −15.0000 + 6.70820i −0.917985 + 0.410535i
\(268\) 0 0
\(269\) 28.4605 1.73527 0.867634 0.497204i \(-0.165640\pi\)
0.867634 + 0.497204i \(0.165640\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 0 0
\(273\) −3.00000 6.70820i −0.181568 0.405999i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.00000 −0.0600842 −0.0300421 0.999549i \(-0.509564\pi\)
−0.0300421 + 0.999549i \(0.509564\pi\)
\(278\) 0 0
\(279\) 9.48683 + 8.48528i 0.567962 + 0.508001i
\(280\) 0 0
\(281\) −18.9737 −1.13187 −0.565937 0.824448i \(-0.691485\pi\)
−0.565937 + 0.824448i \(0.691485\pi\)
\(282\) 0 0
\(283\) −13.0000 −0.772770 −0.386385 0.922338i \(-0.626276\pi\)
−0.386385 + 0.922338i \(0.626276\pi\)
\(284\) 0 0
\(285\) 13.4189 10.2437i 0.794865 0.606787i
\(286\) 0 0
\(287\) −9.48683 −0.559990
\(288\) 0 0
\(289\) 12.0000 0.705882
\(290\) 0 0
\(291\) −9.00000 20.1246i −0.527589 1.17973i
\(292\) 0 0
\(293\) 18.9737 1.10845 0.554227 0.832366i \(-0.313014\pi\)
0.554227 + 0.832366i \(0.313014\pi\)
\(294\) 0 0
\(295\) 21.2132i 1.23508i
\(296\) 0 0
\(297\) −11.0680 3.53553i −0.642229 0.205152i
\(298\) 0 0
\(299\) −18.9737 −1.09728
\(300\) 0 0
\(301\) 7.00000 0.403473
\(302\) 0 0
\(303\) −6.32456 14.1421i −0.363336 0.812444i
\(304\) 0 0
\(305\) 24.5967i 1.40841i
\(306\) 0 0
\(307\) 8.48528i 0.484281i 0.970241 + 0.242140i \(0.0778494\pi\)
−0.970241 + 0.242140i \(0.922151\pi\)
\(308\) 0 0
\(309\) 6.00000 + 13.4164i 0.341328 + 0.763233i
\(310\) 0 0
\(311\) 2.23607i 0.126796i −0.997988 0.0633979i \(-0.979806\pi\)
0.997988 0.0633979i \(-0.0201937\pi\)
\(312\) 0 0
\(313\) −28.0000 −1.58265 −0.791327 0.611393i \(-0.790609\pi\)
−0.791327 + 0.611393i \(0.790609\pi\)
\(314\) 0 0
\(315\) 5.00000 + 4.47214i 0.281718 + 0.251976i
\(316\) 0 0
\(317\) −9.48683 −0.532834 −0.266417 0.963858i \(-0.585840\pi\)
−0.266417 + 0.963858i \(0.585840\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 30.0000 13.4164i 1.67444 0.748831i
\(322\) 0 0
\(323\) 9.48683 2.23607i 0.527862 0.124418i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −6.00000 13.4164i −0.331801 0.741929i
\(328\) 0 0
\(329\) 11.1803i 0.616392i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −9.48683 8.48528i −0.519875 0.464991i
\(334\) 0 0
\(335\) 18.9737 1.03664
\(336\) 0 0
\(337\) 12.7279i 0.693334i 0.937988 + 0.346667i \(0.112687\pi\)
−0.937988 + 0.346667i \(0.887313\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9.48683 0.513741
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 15.8114 7.07107i 0.851257 0.380693i
\(346\) 0 0
\(347\) 2.23607i 0.120038i −0.998197 0.0600192i \(-0.980884\pi\)
0.998197 0.0600192i \(-0.0191162\pi\)
\(348\) 0 0
\(349\) 29.0000 1.55233 0.776167 0.630527i \(-0.217161\pi\)
0.776167 + 0.630527i \(0.217161\pi\)
\(350\) 0 0
\(351\) 21.0000 + 6.70820i 1.12090 + 0.358057i
\(352\) 0 0
\(353\) 8.94427i 0.476056i −0.971258 0.238028i \(-0.923499\pi\)
0.971258 0.238028i \(-0.0765009\pi\)
\(354\) 0 0
\(355\) 21.2132i 1.12588i
\(356\) 0 0
\(357\) 1.58114 + 3.53553i 0.0836827 + 0.187120i
\(358\) 0 0
\(359\) 11.1803i 0.590076i 0.955486 + 0.295038i \(0.0953323\pi\)
−0.955486 + 0.295038i \(0.904668\pi\)
\(360\) 0 0
\(361\) −17.0000 + 8.48528i −0.894737 + 0.446594i
\(362\) 0 0
\(363\) 9.48683 4.24264i 0.497930 0.222681i
\(364\) 0 0
\(365\) 11.1803i 0.585206i
\(366\) 0 0
\(367\) 26.0000 1.35719 0.678594 0.734513i \(-0.262589\pi\)
0.678594 + 0.734513i \(0.262589\pi\)
\(368\) 0 0
\(369\) 18.9737 21.2132i 0.987730 1.10432i
\(370\) 0 0
\(371\) 9.48683 0.492532
\(372\) 0 0
\(373\) 16.9706i 0.878702i 0.898315 + 0.439351i \(0.144792\pi\)
−0.898315 + 0.439351i \(0.855208\pi\)
\(374\) 0 0
\(375\) −7.90569 17.6777i −0.408248 0.912871i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 33.9411i 1.74344i −0.490006 0.871719i \(-0.663005\pi\)
0.490006 0.871719i \(-0.336995\pi\)
\(380\) 0 0
\(381\) −12.0000 26.8328i −0.614779 1.37469i
\(382\) 0 0
\(383\) −9.48683 −0.484755 −0.242377 0.970182i \(-0.577927\pi\)
−0.242377 + 0.970182i \(0.577927\pi\)
\(384\) 0 0
\(385\) 5.00000 0.254824
\(386\) 0 0
\(387\) −14.0000 + 15.6525i −0.711660 + 0.795660i
\(388\) 0 0
\(389\) 15.6525i 0.793612i −0.917902 0.396806i \(-0.870119\pi\)
0.917902 0.396806i \(-0.129881\pi\)
\(390\) 0 0
\(391\) 10.0000 0.505722
\(392\) 0 0
\(393\) −11.0680 24.7487i −0.558305 1.24841i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −19.0000 −0.953583 −0.476791 0.879017i \(-0.658200\pi\)
−0.476791 + 0.879017i \(0.658200\pi\)
\(398\) 0 0
\(399\) −4.58114 6.00110i −0.229344 0.300431i
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) −18.0000 −0.896644
\(404\) 0 0
\(405\) −20.0000 + 2.23607i −0.993808 + 0.111111i
\(406\) 0 0
\(407\) −9.48683 −0.470245
\(408\) 0 0
\(409\) 29.6985i 1.46850i 0.678882 + 0.734248i \(0.262465\pi\)
−0.678882 + 0.734248i \(0.737535\pi\)
\(410\) 0 0
\(411\) 7.90569 + 17.6777i 0.389959 + 0.871975i
\(412\) 0 0
\(413\) 9.48683 0.466817
\(414\) 0 0
\(415\) −20.0000 −0.981761
\(416\) 0 0
\(417\) 17.3925 7.77817i 0.851716 0.380899i
\(418\) 0 0
\(419\) 4.47214i 0.218478i 0.994016 + 0.109239i \(0.0348414\pi\)
−0.994016 + 0.109239i \(0.965159\pi\)
\(420\) 0 0
\(421\) 21.2132i 1.03387i −0.856025 0.516934i \(-0.827073\pi\)
0.856025 0.516934i \(-0.172927\pi\)
\(422\) 0 0
\(423\) 25.0000 + 22.3607i 1.21554 + 1.08721i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −11.0000 −0.532327
\(428\) 0 0
\(429\) 15.0000 6.70820i 0.724207 0.323875i
\(430\) 0 0
\(431\) 9.48683 0.456965 0.228482 0.973548i \(-0.426624\pi\)
0.228482 + 0.973548i \(0.426624\pi\)
\(432\) 0 0
\(433\) 25.4558i 1.22333i 0.791117 + 0.611665i \(0.209500\pi\)
−0.791117 + 0.611665i \(0.790500\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −18.9737 + 4.47214i −0.907634 + 0.213931i
\(438\) 0 0
\(439\) 8.48528i 0.404980i −0.979284 0.202490i \(-0.935097\pi\)
0.979284 0.202490i \(-0.0649034\pi\)
\(440\) 0 0
\(441\) −12.0000 + 13.4164i −0.571429 + 0.638877i
\(442\) 0 0
\(443\) 24.5967i 1.16863i 0.811528 + 0.584313i \(0.198636\pi\)
−0.811528 + 0.584313i \(0.801364\pi\)
\(444\) 0 0
\(445\) 21.2132i 1.00560i
\(446\) 0 0
\(447\) 7.90569 + 17.6777i 0.373927 + 0.836125i
\(448\) 0 0
\(449\) −37.9473 −1.79085 −0.895423 0.445217i \(-0.853127\pi\)
−0.895423 + 0.445217i \(0.853127\pi\)
\(450\) 0 0
\(451\) 21.2132i 0.998891i
\(452\) 0 0
\(453\) 3.00000 + 6.70820i 0.140952 + 0.315179i
\(454\) 0 0
\(455\) −9.48683 −0.444750
\(456\) 0 0
\(457\) 5.00000 0.233890 0.116945 0.993138i \(-0.462690\pi\)
0.116945 + 0.993138i \(0.462690\pi\)
\(458\) 0 0
\(459\) −11.0680 3.53553i −0.516609 0.165025i
\(460\) 0 0
\(461\) 29.0689i 1.35387i −0.736041 0.676936i \(-0.763307\pi\)
0.736041 0.676936i \(-0.236693\pi\)
\(462\) 0 0
\(463\) 5.00000 0.232370 0.116185 0.993228i \(-0.462933\pi\)
0.116185 + 0.993228i \(0.462933\pi\)
\(464\) 0 0
\(465\) 15.0000 6.70820i 0.695608 0.311086i
\(466\) 0 0
\(467\) 38.0132i 1.75904i 0.475863 + 0.879520i \(0.342136\pi\)
−0.475863 + 0.879520i \(0.657864\pi\)
\(468\) 0 0
\(469\) 8.48528i 0.391814i
\(470\) 0 0
\(471\) −6.32456 + 2.82843i −0.291420 + 0.130327i
\(472\) 0 0
\(473\) 15.6525i 0.719702i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −18.9737 + 21.2132i −0.868744 + 0.971286i
\(478\) 0 0
\(479\) 31.3050i 1.43036i 0.698940 + 0.715180i \(0.253655\pi\)
−0.698940 + 0.715180i \(0.746345\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) −3.16228 7.07107i −0.143889 0.321745i
\(484\) 0 0
\(485\) −28.4605 −1.29232
\(486\) 0 0
\(487\) 12.7279i 0.576757i 0.957516 + 0.288379i \(0.0931162\pi\)
−0.957516 + 0.288379i \(0.906884\pi\)
\(488\) 0 0
\(489\) 3.16228 1.41421i 0.143003 0.0639529i
\(490\) 0 0
\(491\) 4.47214i 0.201825i 0.994895 + 0.100912i \(0.0321762\pi\)
−0.994895 + 0.100912i \(0.967824\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −10.0000 + 11.1803i −0.449467 + 0.502519i
\(496\) 0 0
\(497\) 9.48683 0.425543
\(498\) 0 0
\(499\) −37.0000 −1.65635 −0.828174 0.560471i \(-0.810620\pi\)
−0.828174 + 0.560471i \(0.810620\pi\)
\(500\) 0 0
\(501\) −30.0000 + 13.4164i −1.34030 + 0.599401i
\(502\) 0 0
\(503\) 22.3607i 0.997013i −0.866886 0.498507i \(-0.833882\pi\)
0.866886 0.498507i \(-0.166118\pi\)
\(504\) 0 0
\(505\) −20.0000 −0.889988
\(506\) 0 0
\(507\) −7.90569 + 3.53553i −0.351104 + 0.157019i
\(508\) 0 0
\(509\) 28.4605 1.26149 0.630745 0.775990i \(-0.282750\pi\)
0.630745 + 0.775990i \(0.282750\pi\)
\(510\) 0 0
\(511\) −5.00000 −0.221187
\(512\) 0 0
\(513\) 22.5811 + 1.75846i 0.996982 + 0.0776377i
\(514\) 0 0
\(515\) 18.9737 0.836080
\(516\) 0 0
\(517\) 25.0000 1.09950
\(518\) 0 0
\(519\) −30.0000 + 13.4164i −1.31685 + 0.588915i
\(520\) 0 0
\(521\) 18.9737 0.831251 0.415626 0.909536i \(-0.363563\pi\)
0.415626 + 0.909536i \(0.363563\pi\)
\(522\) 0 0
\(523\) 16.9706i 0.742071i −0.928619 0.371035i \(-0.879003\pi\)
0.928619 0.371035i \(-0.120997\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.48683 0.413253
\(528\) 0 0
\(529\) 3.00000 0.130435
\(530\) 0 0
\(531\) −18.9737 + 21.2132i −0.823387 + 0.920575i
\(532\) 0 0
\(533\) 40.2492i 1.74339i
\(534\) 0 0
\(535\) 42.4264i 1.83425i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13.4164i 0.577886i
\(540\) 0 0
\(541\) −1.00000 −0.0429934 −0.0214967 0.999769i \(-0.506843\pi\)
−0.0214967 + 0.999769i \(0.506843\pi\)
\(542\) 0 0
\(543\) −18.0000 40.2492i −0.772454 1.72726i
\(544\) 0 0
\(545\) −18.9737 −0.812743
\(546\) 0 0
\(547\) 4.24264i 0.181402i −0.995878 0.0907011i \(-0.971089\pi\)
0.995878 0.0907011i \(-0.0289108\pi\)
\(548\) 0 0
\(549\) 22.0000 24.5967i 0.938937 1.04976i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −15.0000 + 6.70820i −0.636715 + 0.284747i
\(556\) 0 0
\(557\) 15.6525i 0.663217i −0.943417 0.331608i \(-0.892409\pi\)
0.943417 0.331608i \(-0.107591\pi\)
\(558\) 0 0
\(559\) 29.6985i 1.25611i
\(560\) 0 0
\(561\) −7.90569 + 3.53553i −0.333779 + 0.149270i
\(562\) 0 0
\(563\) 9.48683 0.399822 0.199911 0.979814i \(-0.435935\pi\)
0.199911 + 0.979814i \(0.435935\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.00000 + 8.94427i 0.0419961 + 0.375624i
\(568\) 0 0
\(569\) 28.4605 1.19313 0.596563 0.802566i \(-0.296533\pi\)
0.596563 + 0.802566i \(0.296533\pi\)
\(570\) 0 0
\(571\) 14.0000 0.585882 0.292941 0.956131i \(-0.405366\pi\)
0.292941 + 0.956131i \(0.405366\pi\)
\(572\) 0 0
\(573\) −1.58114 3.53553i −0.0660530 0.147699i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 0 0
\(579\) 18.0000 + 40.2492i 0.748054 + 1.67270i
\(580\) 0 0
\(581\) 8.94427i 0.371071i
\(582\) 0 0
\(583\) 21.2132i 0.878561i
\(584\) 0 0
\(585\) 18.9737 21.2132i 0.784465 0.877058i
\(586\) 0 0
\(587\) 15.6525i 0.646047i −0.946391 0.323023i \(-0.895301\pi\)
0.946391 0.323023i \(-0.104699\pi\)
\(588\) 0 0
\(589\) −18.0000 + 4.24264i −0.741677 + 0.174815i
\(590\) 0 0
\(591\) 12.6491 + 28.2843i 0.520315 + 1.16346i
\(592\) 0 0
\(593\) 22.3607i 0.918243i −0.888373 0.459122i \(-0.848164\pi\)
0.888373 0.459122i \(-0.151836\pi\)
\(594\) 0 0
\(595\) 5.00000 0.204980
\(596\) 0 0
\(597\) −20.5548 + 9.19239i −0.841252 + 0.376219i
\(598\) 0 0
\(599\) 18.9737 0.775243 0.387621 0.921819i \(-0.373297\pi\)
0.387621 + 0.921819i \(0.373297\pi\)
\(600\) 0 0
\(601\) 38.1838i 1.55755i −0.627304 0.778774i \(-0.715842\pi\)
0.627304 0.778774i \(-0.284158\pi\)
\(602\) 0 0
\(603\) 18.9737 + 16.9706i 0.772667 + 0.691095i
\(604\) 0 0
\(605\) 13.4164i 0.545455i
\(606\) 0 0
\(607\) 4.24264i 0.172203i −0.996286 0.0861017i \(-0.972559\pi\)
0.996286 0.0861017i \(-0.0274410\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −47.4342 −1.91898
\(612\) 0 0
\(613\) 5.00000 0.201948 0.100974 0.994889i \(-0.467804\pi\)
0.100974 + 0.994889i \(0.467804\pi\)
\(614\) 0 0
\(615\) −15.0000 33.5410i −0.604858 1.35250i
\(616\) 0 0
\(617\) 11.1803i 0.450104i 0.974347 + 0.225052i \(0.0722551\pi\)
−0.974347 + 0.225052i \(0.927745\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) 0 0
\(621\) 22.1359 + 7.07107i 0.888285 + 0.283752i
\(622\) 0 0
\(623\) 9.48683 0.380082
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) 0 0
\(627\) 13.4189 10.2437i 0.535898 0.409095i
\(628\) 0 0
\(629\) −9.48683 −0.378265
\(630\) 0 0
\(631\) 41.0000 1.63218 0.816092 0.577922i \(-0.196136\pi\)
0.816092 + 0.577922i \(0.196136\pi\)
\(632\) 0 0
\(633\) 3.00000 + 6.70820i 0.119239 + 0.266627i
\(634\) 0 0
\(635\) −37.9473 −1.50589
\(636\) 0 0
\(637\) 25.4558i 1.00860i
\(638\) 0 0
\(639\) −18.9737 + 21.2132i −0.750587 + 0.839181i
\(640\) 0 0
\(641\) 28.4605 1.12412 0.562061 0.827096i \(-0.310009\pi\)
0.562061 + 0.827096i \(0.310009\pi\)
\(642\) 0 0
\(643\) 35.0000 1.38027 0.690133 0.723683i \(-0.257552\pi\)
0.690133 + 0.723683i \(0.257552\pi\)
\(644\) 0 0
\(645\) 11.0680 + 24.7487i 0.435801 + 0.974481i
\(646\) 0 0
\(647\) 15.6525i 0.615362i −0.951490 0.307681i \(-0.900447\pi\)
0.951490 0.307681i \(-0.0995530\pi\)
\(648\) 0 0
\(649\) 21.2132i 0.832691i
\(650\) 0 0
\(651\) −3.00000 6.70820i −0.117579 0.262915i
\(652\) 0 0
\(653\) 29.0689i 1.13755i −0.822492 0.568777i \(-0.807417\pi\)
0.822492 0.568777i \(-0.192583\pi\)
\(654\) 0 0
\(655\) −35.0000 −1.36756
\(656\) 0 0
\(657\) 10.0000 11.1803i 0.390137 0.436187i
\(658\) 0 0
\(659\) 18.9737 0.739109 0.369555 0.929209i \(-0.379510\pi\)
0.369555 + 0.929209i \(0.379510\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 15.0000 6.70820i 0.582552 0.260525i
\(664\) 0 0
\(665\) −9.48683 + 2.23607i −0.367884 + 0.0867110i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −3.00000 6.70820i −0.115987 0.259354i
\(670\) 0 0
\(671\) 24.5967i 0.949547i
\(672\) 0 0
\(673\) 12.7279i 0.490625i 0.969444 + 0.245313i \(0.0788906\pi\)
−0.969444 + 0.245313i \(0.921109\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.9737 −0.729217 −0.364609 0.931161i \(-0.618797\pi\)
−0.364609 + 0.931161i \(0.618797\pi\)
\(678\) 0 0
\(679\) 12.7279i 0.488453i
\(680\) 0 0
\(681\) −15.0000 + 6.70820i −0.574801 + 0.257059i
\(682\) 0 0
\(683\) −28.4605 −1.08901 −0.544505 0.838757i \(-0.683283\pi\)
−0.544505 + 0.838757i \(0.683283\pi\)
\(684\) 0 0
\(685\) 25.0000 0.955201
\(686\) 0 0
\(687\) −20.5548 + 9.19239i −0.784215 + 0.350711i
\(688\) 0 0
\(689\) 40.2492i 1.53337i
\(690\) 0 0
\(691\) 23.0000 0.874961 0.437481 0.899228i \(-0.355871\pi\)
0.437481 + 0.899228i \(0.355871\pi\)
\(692\) 0 0
\(693\) 5.00000 + 4.47214i 0.189934 + 0.169882i
\(694\) 0 0
\(695\) 24.5967i 0.933008i
\(696\) 0 0
\(697\) 21.2132i 0.803507i
\(698\) 0 0
\(699\) 17.3925 + 38.8909i 0.657846 + 1.47099i
\(700\) 0 0
\(701\) 17.8885i 0.675641i 0.941211 + 0.337820i \(0.109690\pi\)
−0.941211 + 0.337820i \(0.890310\pi\)
\(702\) 0 0
\(703\) 18.0000 4.24264i 0.678883 0.160014i
\(704\) 0 0
\(705\) 39.5285 17.6777i 1.48873 0.665780i
\(706\) 0 0
\(707\) 8.94427i 0.336384i
\(708\) 0 0
\(709\) 8.00000 0.300446 0.150223 0.988652i \(-0.452001\pi\)
0.150223 + 0.988652i \(0.452001\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −18.9737 −0.710569
\(714\) 0 0
\(715\) 21.2132i 0.793329i
\(716\) 0 0
\(717\) 7.90569 + 17.6777i 0.295244 + 0.660185i
\(718\) 0 0
\(719\) 29.0689i 1.08409i −0.840351 0.542043i \(-0.817651\pi\)
0.840351 0.542043i \(-0.182349\pi\)
\(720\) 0 0
\(721\) 8.48528i 0.316008i
\(722\) 0 0
\(723\) −3.00000 6.70820i −0.111571 0.249481i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −31.0000 −1.14973 −0.574863 0.818250i \(-0.694945\pi\)
−0.574863 + 0.818250i \(0.694945\pi\)
\(728\) 0 0
\(729\) −22.0000 15.6525i −0.814815 0.579721i
\(730\) 0 0
\(731\) 15.6525i 0.578928i
\(732\) 0 0
\(733\) −40.0000 −1.47743 −0.738717 0.674016i \(-0.764568\pi\)
−0.738717 + 0.674016i \(0.764568\pi\)
\(734\) 0 0
\(735\) 9.48683 + 21.2132i 0.349927 + 0.782461i
\(736\) 0 0
\(737\) 18.9737 0.698904
\(738\) 0 0
\(739\) −19.0000 −0.698926 −0.349463 0.936950i \(-0.613636\pi\)
−0.349463 + 0.936950i \(0.613636\pi\)
\(740\) 0 0
\(741\) −25.4605 + 19.4361i −0.935315 + 0.714004i
\(742\) 0 0
\(743\) 37.9473 1.39215 0.696076 0.717968i \(-0.254928\pi\)
0.696076 + 0.717968i \(0.254928\pi\)
\(744\) 0 0
\(745\) 25.0000 0.915929
\(746\) 0 0
\(747\) −20.0000 17.8885i −0.731762 0.654508i
\(748\) 0 0
\(749\) −18.9737 −0.693283
\(750\) 0 0
\(751\) 42.4264i 1.54816i −0.633087 0.774081i \(-0.718212\pi\)
0.633087 0.774081i \(-0.281788\pi\)
\(752\) 0 0
\(753\) −20.5548 45.9619i −0.749059 1.67495i
\(754\) 0 0
\(755\) 9.48683 0.345261
\(756\) 0 0
\(757\) −1.00000 −0.0363456 −0.0181728 0.999835i \(-0.505785\pi\)
−0.0181728 + 0.999835i \(0.505785\pi\)
\(758\) 0 0
\(759\) 15.8114 7.07107i 0.573917 0.256664i
\(760\) 0 0
\(761\) 38.0132i 1.37798i 0.724773 + 0.688988i \(0.241945\pi\)
−0.724773 + 0.688988i \(0.758055\pi\)
\(762\) 0 0
\(763\) 8.48528i 0.307188i
\(764\) 0 0
\(765\) −10.0000 + 11.1803i −0.361551 + 0.404226i
\(766\) 0 0
\(767\) 40.2492i 1.45332i
\(768\) 0 0
\(769\) 23.0000 0.829401 0.414701 0.909958i \(-0.363886\pi\)
0.414701 + 0.909958i \(0.363886\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 28.4605 1.02365 0.511826 0.859089i \(-0.328969\pi\)
0.511826 + 0.859089i \(0.328969\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.00000 + 6.70820i 0.107624 + 0.240655i
\(778\) 0 0
\(779\) 9.48683 + 40.2492i 0.339901 + 1.44208i
\(780\) 0 0
\(781\) 21.2132i 0.759068i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.94427i 0.319235i
\(786\) 0 0
\(787\) 33.9411i 1.20987i −0.796275 0.604935i \(-0.793199\pi\)
0.796275 0.604935i \(-0.206801\pi\)
\(788\) 0 0
\(789\) −11.0680 24.7487i −0.394030 0.881078i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 46.6690i 1.65727i
\(794\) 0 0
\(795\) 15.0000 + 33.5410i 0.531995 + 1.18958i
\(796\) 0 0
\(797\) 18.9737 0.672082 0.336041 0.941847i \(-0.390912\pi\)
0.336041 + 0.941847i \(0.390912\pi\)
\(798\) 0 0
\(799\) 25.0000 0.884436
\(800\) 0 0
\(801\) −18.9737 + 21.2132i −0.670402 + 0.749532i
\(802\) 0 0
\(803\) 11.1803i 0.394546i
\(804\) 0 0
\(805\) −10.0000 −0.352454
\(806\) 0 0
\(807\) 45.0000 20.1246i 1.58408 0.708420i
\(808\) 0 0
\(809\) 11.1803i 0.393080i 0.980496 + 0.196540i \(0.0629705\pi\)
−0.980496 + 0.196540i \(0.937029\pi\)
\(810\) 0 0
\(811\) 4.24264i 0.148979i 0.997222 + 0.0744896i \(0.0237328\pi\)
−0.997222 + 0.0744896i \(0.976267\pi\)
\(812\) 0 0
\(813\) 3.16228 1.41421i 0.110906 0.0495986i
\(814\) 0 0
\(815\) 4.47214i 0.156652i
\(816\) 0 0
\(817\) −7.00000 29.6985i −0.244899 1.03902i
\(818\) 0 0
\(819\) −9.48683 8.48528i −0.331497 0.296500i
\(820\) 0 0
\(821\) 38.0132i 1.32667i 0.748323 + 0.663334i \(0.230859\pi\)
−0.748323 + 0.663334i \(0.769141\pi\)
\(822\) 0 0
\(823\) 47.0000 1.63832 0.819159 0.573567i \(-0.194441\pi\)
0.819159 + 0.573567i \(0.194441\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.9737 0.659779 0.329890 0.944020i \(-0.392989\pi\)
0.329890 + 0.944020i \(0.392989\pi\)
\(828\) 0 0
\(829\) 42.4264i 1.47353i −0.676149 0.736765i \(-0.736352\pi\)
0.676149 0.736765i \(-0.263648\pi\)
\(830\) 0 0
\(831\) −1.58114 + 0.707107i −0.0548491 + 0.0245293i
\(832\) 0 0
\(833\) 13.4164i 0.464851i
\(834\) 0 0
\(835\) 42.4264i 1.46823i
\(836\) 0 0
\(837\) 21.0000 + 6.70820i 0.725866 + 0.231869i
\(838\) 0 0
\(839\) −56.9210 −1.96513 −0.982566 0.185917i \(-0.940475\pi\)
−0.982566 + 0.185917i \(0.940475\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) −30.0000 + 13.4164i −1.03325 + 0.462086i
\(844\) 0 0
\(845\) 11.1803i 0.384615i
\(846\) 0 0
\(847\) −6.00000 −0.206162
\(848\) 0 0
\(849\) −20.5548 + 9.19239i −0.705439 + 0.315482i
\(850\) 0 0
\(851\) 18.9737 0.650409
\(852\) 0 0
\(853\) −28.0000 −0.958702 −0.479351 0.877623i \(-0.659128\pi\)
−0.479351 + 0.877623i \(0.659128\pi\)
\(854\) 0 0
\(855\) 13.9737 25.6853i 0.477889 0.878420i
\(856\) 0 0
\(857\) 47.4342 1.62032 0.810160 0.586209i \(-0.199380\pi\)
0.810160 + 0.586209i \(0.199380\pi\)
\(858\) 0 0
\(859\) −1.00000 −0.0341196 −0.0170598 0.999854i \(-0.505431\pi\)
−0.0170598 + 0.999854i \(0.505431\pi\)
\(860\) 0 0
\(861\) −15.0000 + 6.70820i −0.511199 + 0.228615i
\(862\) 0 0
\(863\) −28.4605 −0.968807 −0.484403 0.874845i \(-0.660963\pi\)
−0.484403 + 0.874845i \(0.660963\pi\)
\(864\) 0 0
\(865\) 42.4264i 1.44254i
\(866\) 0 0
\(867\) 18.9737 8.48528i 0.644379 0.288175i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −36.0000 −1.21981
\(872\) 0 0
\(873\) −28.4605 25.4558i −0.963242 0.861550i
\(874\) 0 0
\(875\) 11.1803i 0.377964i
\(876\) 0 0
\(877\) 8.48528i 0.286528i 0.989685 + 0.143264i \(0.0457597\pi\)
−0.989685 + 0.143264i \(0.954240\pi\)
\(878\) 0 0
\(879\) 30.0000 13.4164i 1.01187 0.452524i
\(880\) 0 0
\(881\) 38.0132i 1.28070i 0.768085 + 0.640348i \(0.221210\pi\)
−0.768085 + 0.640348i \(0.778790\pi\)
\(882\) 0 0
\(883\) −43.0000 −1.44707 −0.723533 0.690290i \(-0.757483\pi\)
−0.723533 + 0.690290i \(0.757483\pi\)
\(884\) 0 0
\(885\) 15.0000 + 33.5410i 0.504219 + 1.12747i
\(886\) 0 0
\(887\) 28.4605 0.955610 0.477805 0.878466i \(-0.341433\pi\)
0.477805 + 0.878466i \(0.341433\pi\)
\(888\) 0 0
\(889\) 16.9706i 0.569174i
\(890\) 0 0
\(891\) −20.0000 + 2.23607i −0.670025 + 0.0749111i
\(892\) 0 0
\(893\) −47.4342 + 11.1803i −1.58732 + 0.374136i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −30.0000 + 13.4164i −1.00167 + 0.447961i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 21.2132i 0.706714i
\(902\) 0 0
\(903\) 11.0680 4.94975i 0.368319 0.164717i
\(904\) 0 0
\(905\) −56.9210 −1.89212
\(906\) 0 0
\(907\) 4.24264i 0.140875i 0.997516 + 0.0704373i \(0.0224395\pi\)
−0.997516 + 0.0704373i \(0.977561\pi\)
\(908\) 0 0
\(909\) −20.0000 17.8885i −0.663358 0.593326i
\(910\) 0 0
\(911\) −18.9737 −0.628626 −0.314313 0.949319i \(-0.601774\pi\)
−0.314313 + 0.949319i \(0.601774\pi\)
\(912\) 0 0
\(913\) −20.0000 −0.661903
\(914\) 0 0
\(915\) −17.3925 38.8909i −0.574979 1.28569i
\(916\) 0 0
\(917\) 15.6525i 0.516890i
\(918\) 0 0
\(919\) 2.00000 0.0659739 0.0329870 0.999456i \(-0.489498\pi\)
0.0329870 + 0.999456i \(0.489498\pi\)
\(920\) 0 0
\(921\) 6.00000 + 13.4164i 0.197707 + 0.442086i
\(922\) 0 0
\(923\) 40.2492i 1.32482i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 18.9737 + 16.9706i 0.623177 + 0.557386i
\(928\) 0 0
\(929\) 8.94427i 0.293452i −0.989177 0.146726i \(-0.953126\pi\)
0.989177 0.146726i \(-0.0468736\pi\)
\(930\) 0 0
\(931\) −6.00000 25.4558i −0.196642 0.834282i
\(932\) 0 0
\(933\) −1.58114 3.53553i −0.0517642 0.115748i
\(934\) 0 0
\(935\) 11.1803i 0.365636i
\(936\) 0 0
\(937\) −19.0000 −0.620703 −0.310351 0.950622i \(-0.600447\pi\)
−0.310351 + 0.950622i \(0.600447\pi\)
\(938\) 0 0
\(939\) −44.2719 + 19.7990i −1.44476 + 0.646116i
\(940\) 0 0
\(941\) −37.9473 −1.23705 −0.618524 0.785766i \(-0.712269\pi\)
−0.618524 + 0.785766i \(0.712269\pi\)
\(942\) 0 0
\(943\) 42.4264i 1.38159i
\(944\) 0 0
\(945\) 11.0680 + 3.53553i 0.360041 + 0.115011i
\(946\) 0 0
\(947\) 31.3050i 1.01727i 0.860981 + 0.508637i \(0.169851\pi\)
−0.860981 + 0.508637i \(0.830149\pi\)
\(948\) 0 0
\(949\) 21.2132i 0.688610i
\(950\) 0 0
\(951\) −15.0000 + 6.70820i −0.486408 + 0.217528i
\(952\) 0 0
\(953\) −18.9737 −0.614617 −0.307309 0.951610i \(-0.599428\pi\)
−0.307309 + 0.951610i \(0.599428\pi\)
\(954\) 0 0
\(955\) −5.00000 −0.161796
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 11.1803i 0.361032i
\(960\) 0 0
\(961\) 13.0000 0.419355
\(962\) 0 0
\(963\) 37.9473 42.4264i 1.22284 1.36717i
\(964\) 0 0
\(965\) 56.9210 1.83235
\(966\) 0 0
\(967\) 50.0000 1.60789 0.803946 0.594703i \(-0.202730\pi\)
0.803946 + 0.594703i \(0.202730\pi\)
\(968\) 0 0
\(969\) 13.4189 10.2437i 0.431076 0.329076i
\(970\) 0 0
\(971\) 37.9473 1.21779 0.608894 0.793252i \(-0.291614\pi\)
0.608894 + 0.793252i \(0.291614\pi\)
\(972\) 0 0
\(973\) −11.0000 −0.352644
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.48683 0.303511 0.151755 0.988418i \(-0.451507\pi\)
0.151755 + 0.988418i \(0.451507\pi\)
\(978\) 0 0
\(979\) 21.2132i 0.677977i
\(980\) 0 0
\(981\) −18.9737 16.9706i −0.605783 0.541828i
\(982\) 0 0
\(983\) 18.9737 0.605166 0.302583 0.953123i \(-0.402151\pi\)
0.302583 + 0.953123i \(0.402151\pi\)
\(984\) 0 0
\(985\) 40.0000 1.27451
\(986\) 0 0
\(987\) −7.90569 17.6777i −0.251641 0.562686i
\(988\) 0 0
\(989\) 31.3050i 0.995440i
\(990\) 0 0
\(991\) 4.24264i 0.134772i −0.997727 0.0673860i \(-0.978534\pi\)
0.997727 0.0673860i \(-0.0214659\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 29.0689i 0.921546i
\(996\) 0 0
\(997\) 5.00000 0.158352 0.0791758 0.996861i \(-0.474771\pi\)
0.0791758 + 0.996861i \(0.474771\pi\)
\(998\) 0 0
\(999\) −21.0000 6.70820i −0.664411 0.212238i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 228.2.d.b.113.3 yes 4
3.2 odd 2 inner 228.2.d.b.113.1 4
4.3 odd 2 912.2.f.g.113.2 4
12.11 even 2 912.2.f.g.113.4 4
19.18 odd 2 inner 228.2.d.b.113.2 yes 4
57.56 even 2 inner 228.2.d.b.113.4 yes 4
76.75 even 2 912.2.f.g.113.3 4
228.227 odd 2 912.2.f.g.113.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.d.b.113.1 4 3.2 odd 2 inner
228.2.d.b.113.2 yes 4 19.18 odd 2 inner
228.2.d.b.113.3 yes 4 1.1 even 1 trivial
228.2.d.b.113.4 yes 4 57.56 even 2 inner
912.2.f.g.113.1 4 228.227 odd 2
912.2.f.g.113.2 4 4.3 odd 2
912.2.f.g.113.3 4 76.75 even 2
912.2.f.g.113.4 4 12.11 even 2