L(s) = 1 | + (1.58 − 0.707i)3-s − 2.23i·5-s − 7-s + (2.00 − 2.23i)9-s − 2.23i·11-s + 4.24i·13-s + (−1.58 − 3.53i)15-s − 2.23i·17-s + (1 + 4.24i)19-s + (−1.58 + 0.707i)21-s + 4.47i·23-s + (1.58 − 4.94i)27-s + 4.24i·31-s + (−1.58 − 3.53i)33-s + 2.23i·35-s + ⋯ |
L(s) = 1 | + (0.912 − 0.408i)3-s − 0.999i·5-s − 0.377·7-s + (0.666 − 0.745i)9-s − 0.674i·11-s + 1.17i·13-s + (−0.408 − 0.912i)15-s − 0.542i·17-s + (0.229 + 0.973i)19-s + (−0.345 + 0.154i)21-s + 0.932i·23-s + (0.304 − 0.952i)27-s + 0.762i·31-s + (−0.275 − 0.615i)33-s + 0.377i·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.606 + 0.794i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 228 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.606 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.40222 - 0.693667i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.40222 - 0.693667i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.58 + 0.707i)T \) |
| 19 | \( 1 + (-1 - 4.24i)T \) |
good | 5 | \( 1 + 2.23iT - 5T^{2} \) |
| 7 | \( 1 + T + 7T^{2} \) |
| 11 | \( 1 + 2.23iT - 11T^{2} \) |
| 13 | \( 1 - 4.24iT - 13T^{2} \) |
| 17 | \( 1 + 2.23iT - 17T^{2} \) |
| 23 | \( 1 - 4.47iT - 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 4.24iT - 31T^{2} \) |
| 37 | \( 1 + 4.24iT - 37T^{2} \) |
| 41 | \( 1 - 9.48T + 41T^{2} \) |
| 43 | \( 1 + 7T + 43T^{2} \) |
| 47 | \( 1 - 11.1iT - 47T^{2} \) |
| 53 | \( 1 + 9.48T + 53T^{2} \) |
| 59 | \( 1 + 9.48T + 59T^{2} \) |
| 61 | \( 1 - 11T + 61T^{2} \) |
| 67 | \( 1 - 8.48iT - 67T^{2} \) |
| 71 | \( 1 + 9.48T + 71T^{2} \) |
| 73 | \( 1 - 5T + 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 + 8.94iT - 83T^{2} \) |
| 89 | \( 1 + 9.48T + 89T^{2} \) |
| 97 | \( 1 + 12.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.33090886343383339539003777289, −11.30967561064176197486831180209, −9.715537079226241580513690489009, −9.121930756973134315599662745561, −8.256413645644488743149093430888, −7.21172048854201565485589875521, −5.98239956767770817256545959499, −4.49012063105368663410121355418, −3.23107548140080737132588156357, −1.47855915060462285602673724242,
2.48930809001915653167932714819, 3.43449371691135284643896968006, 4.83087179585973810854288103502, 6.44685710099270129890573102673, 7.44375764756080496141996854807, 8.399486649778862251083002298731, 9.611498210121588089777678803151, 10.31518711999176003589813801455, 11.10259349654996059257444476463, 12.61290902232742326185644548774