Properties

Label 2277.2.a.t
Level $2277$
Weight $2$
Character orbit 2277.a
Self dual yes
Analytic conductor $18.182$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2277,2,Mod(1,2277)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2277, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2277.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2277 = 3^{2} \cdot 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2277.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,10,0,0,10,6,0,12,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1819365402\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 13x^{6} - 2x^{5} + 48x^{4} + 14x^{3} - 41x^{2} - 6x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 1) q^{4} - \beta_{5} q^{5} + ( - \beta_{5} + \beta_{4} - \beta_1 + 1) q^{7} + (\beta_{6} + \beta_{5} + 2 \beta_1 + 1) q^{8} + (\beta_{5} + \beta_{4} - \beta_{3} + \cdots + 1) q^{10}+ \cdots + (\beta_{7} + 3 \beta_{5} + 2 \beta_{4} + \cdots - 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 10 q^{4} + 10 q^{7} + 6 q^{8} + 12 q^{10} + 8 q^{11} + 10 q^{13} - 14 q^{14} + 22 q^{16} + 16 q^{19} + 8 q^{20} - 8 q^{23} - 4 q^{25} + 20 q^{28} - 6 q^{29} + 4 q^{31} + 12 q^{32} - 6 q^{34} + 18 q^{35}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 13x^{6} - 2x^{5} + 48x^{4} + 14x^{3} - 41x^{2} - 6x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{7} + 3\nu^{6} + 26\nu^{5} - 26\nu^{4} - 93\nu^{3} + 44\nu^{2} + 61\nu - 21 ) / 9 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} + 3\nu^{6} - 13\nu^{5} - 41\nu^{4} + 42\nu^{3} + 149\nu^{2} + \nu - 66 ) / 9 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} + 13\nu^{5} + 2\nu^{4} - 45\nu^{3} - 14\nu^{2} + 20\nu + 3 ) / 3 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} - 13\nu^{5} - 2\nu^{4} + 48\nu^{3} + 14\nu^{2} - 38\nu - 6 ) / 3 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( \nu^{7} - 12\nu^{5} - 2\nu^{4} + 38\nu^{3} + 14\nu^{2} - 17\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + \beta_{5} + 6\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{5} - \beta_{4} + \beta_{3} + 7\beta_{2} + 17 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{7} + 7\beta_{6} + 10\beta_{5} + 39\beta _1 + 9 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{6} - 11\beta_{5} - 10\beta_{4} + 13\beta_{3} + 46\beta_{2} - \beta _1 + 108 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 13\beta_{7} + 46\beta_{6} + 80\beta_{5} - 2\beta_{4} + 2\beta_{3} + 257\beta _1 + 67 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.58988
−2.00968
−1.10130
−0.628929
0.516018
0.759065
2.40940
2.64531
−2.58988 0 4.70748 1.40075 0 4.44977 −7.01203 0 −3.62778
1.2 −2.00968 0 2.03880 −3.45828 0 1.27221 −0.0779704 0 6.95002
1.3 −1.10130 0 −0.787129 −2.64935 0 1.85760 3.06948 0 2.91774
1.4 −0.628929 0 −1.60445 1.61629 0 0.675307 2.26694 0 −1.01653
1.5 0.516018 0 −1.73373 −1.33904 0 −3.45000 −1.92667 0 −0.690966
1.6 0.759065 0 −1.42382 1.92387 0 4.69933 −2.59890 0 1.46034
1.7 2.40940 0 3.80519 2.63365 0 2.31733 4.34941 0 6.34550
1.8 2.64531 0 4.99766 −0.127899 0 −1.82156 7.92974 0 −0.338332
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2277.2.a.t yes 8
3.b odd 2 1 2277.2.a.s 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2277.2.a.s 8 3.b odd 2 1
2277.2.a.t yes 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2277))\):

\( T_{2}^{8} - 13T_{2}^{6} - 2T_{2}^{5} + 48T_{2}^{4} + 14T_{2}^{3} - 41T_{2}^{2} - 6T_{2} + 9 \) Copy content Toggle raw display
\( T_{5}^{8} - 18T_{5}^{6} + 10T_{5}^{5} + 95T_{5}^{4} - 88T_{5}^{3} - 128T_{5}^{2} + 126T_{5} + 18 \) Copy content Toggle raw display
\( T_{17}^{8} - 46T_{17}^{6} - 2T_{17}^{5} + 618T_{17}^{4} - 240T_{17}^{3} - 2480T_{17}^{2} + 3040T_{17} - 864 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 13 T^{6} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - 18 T^{6} + \cdots + 18 \) Copy content Toggle raw display
$7$ \( T^{8} - 10 T^{7} + \cdots + 486 \) Copy content Toggle raw display
$11$ \( (T - 1)^{8} \) Copy content Toggle raw display
$13$ \( T^{8} - 10 T^{7} + \cdots - 17408 \) Copy content Toggle raw display
$17$ \( T^{8} - 46 T^{6} + \cdots - 864 \) Copy content Toggle raw display
$19$ \( T^{8} - 16 T^{7} + \cdots + 512 \) Copy content Toggle raw display
$23$ \( (T + 1)^{8} \) Copy content Toggle raw display
$29$ \( T^{8} + 6 T^{7} + \cdots + 21312 \) Copy content Toggle raw display
$31$ \( T^{8} - 4 T^{7} + \cdots + 32 \) Copy content Toggle raw display
$37$ \( T^{8} - 10 T^{7} + \cdots - 6144 \) Copy content Toggle raw display
$41$ \( T^{8} - 6 T^{7} + \cdots + 60 \) Copy content Toggle raw display
$43$ \( T^{8} - 22 T^{7} + \cdots + 446 \) Copy content Toggle raw display
$47$ \( T^{8} + 12 T^{7} + \cdots + 3072 \) Copy content Toggle raw display
$53$ \( T^{8} + 2 T^{7} + \cdots - 318390 \) Copy content Toggle raw display
$59$ \( T^{8} + 24 T^{7} + \cdots - 248832 \) Copy content Toggle raw display
$61$ \( T^{8} - 28 T^{7} + \cdots - 51456 \) Copy content Toggle raw display
$67$ \( T^{8} + 2 T^{7} + \cdots + 61536 \) Copy content Toggle raw display
$71$ \( T^{8} - 16 T^{7} + \cdots + 61440 \) Copy content Toggle raw display
$73$ \( T^{8} - 24 T^{7} + \cdots - 3156992 \) Copy content Toggle raw display
$79$ \( T^{8} - 12 T^{7} + \cdots - 19169690 \) Copy content Toggle raw display
$83$ \( T^{8} + 10 T^{7} + \cdots + 236928 \) Copy content Toggle raw display
$89$ \( T^{8} - 24 T^{7} + \cdots - 143670 \) Copy content Toggle raw display
$97$ \( T^{8} - 34 T^{7} + \cdots - 4103296 \) Copy content Toggle raw display
show more
show less