Properties

Label 2268.2.w.a.1349.1
Level $2268$
Weight $2$
Character 2268.1349
Analytic conductor $18.110$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(269,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.269"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-3,0,-5,0,0,0,-9,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1349.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1349
Dual form 2268.2.w.a.269.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 2.59808i) q^{5} +(-2.50000 - 0.866025i) q^{7} +(-4.50000 - 2.59808i) q^{11} +(-1.50000 - 2.59808i) q^{17} +(1.50000 + 0.866025i) q^{19} +(4.50000 - 2.59808i) q^{23} +(-2.00000 + 3.46410i) q^{25} -1.73205i q^{31} +(1.50000 + 7.79423i) q^{35} +(-3.50000 + 6.06218i) q^{37} +(-3.00000 + 5.19615i) q^{41} +(-2.00000 - 3.46410i) q^{43} +3.00000 q^{47} +(5.50000 + 4.33013i) q^{49} +(-4.50000 + 2.59808i) q^{53} +15.5885i q^{55} -3.00000 q^{59} +12.1244i q^{61} +5.00000 q^{67} -10.3923i q^{71} +(-10.5000 + 6.06218i) q^{73} +(9.00000 + 10.3923i) q^{77} -1.00000 q^{79} +(6.00000 + 10.3923i) q^{83} +(-4.50000 + 7.79423i) q^{85} +(4.50000 - 7.79423i) q^{89} -5.19615i q^{95} +(-6.00000 + 3.46410i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} - 5 q^{7} - 9 q^{11} - 3 q^{17} + 3 q^{19} + 9 q^{23} - 4 q^{25} + 3 q^{35} - 7 q^{37} - 6 q^{41} - 4 q^{43} + 6 q^{47} + 11 q^{49} - 9 q^{53} - 6 q^{59} + 10 q^{67} - 21 q^{73} + 18 q^{77}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.50000 2.59808i −0.670820 1.16190i −0.977672 0.210138i \(-0.932609\pi\)
0.306851 0.951757i \(-0.400725\pi\)
\(6\) 0 0
\(7\) −2.50000 0.866025i −0.944911 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.50000 2.59808i −1.35680 0.783349i −0.367610 0.929980i \(-0.619824\pi\)
−0.989191 + 0.146631i \(0.953157\pi\)
\(12\) 0 0
\(13\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.50000 2.59808i −0.363803 0.630126i 0.624780 0.780801i \(-0.285189\pi\)
−0.988583 + 0.150675i \(0.951855\pi\)
\(18\) 0 0
\(19\) 1.50000 + 0.866025i 0.344124 + 0.198680i 0.662094 0.749421i \(-0.269668\pi\)
−0.317970 + 0.948101i \(0.603001\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.50000 2.59808i 0.938315 0.541736i 0.0488832 0.998805i \(-0.484434\pi\)
0.889432 + 0.457068i \(0.151100\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 0 0
\(31\) 1.73205i 0.311086i −0.987829 0.155543i \(-0.950287\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.50000 + 7.79423i 0.253546 + 1.31747i
\(36\) 0 0
\(37\) −3.50000 + 6.06218i −0.575396 + 0.996616i 0.420602 + 0.907245i \(0.361819\pi\)
−0.995998 + 0.0893706i \(0.971514\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 + 5.19615i −0.468521 + 0.811503i −0.999353 0.0359748i \(-0.988546\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) 0 0
\(43\) −2.00000 3.46410i −0.304997 0.528271i 0.672264 0.740312i \(-0.265322\pi\)
−0.977261 + 0.212041i \(0.931989\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 0 0
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.50000 + 2.59808i −0.618123 + 0.356873i −0.776138 0.630563i \(-0.782824\pi\)
0.158015 + 0.987437i \(0.449491\pi\)
\(54\) 0 0
\(55\) 15.5885i 2.10195i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.00000 −0.390567 −0.195283 0.980747i \(-0.562563\pi\)
−0.195283 + 0.980747i \(0.562563\pi\)
\(60\) 0 0
\(61\) 12.1244i 1.55236i 0.630509 + 0.776182i \(0.282846\pi\)
−0.630509 + 0.776182i \(0.717154\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.00000 0.610847 0.305424 0.952217i \(-0.401202\pi\)
0.305424 + 0.952217i \(0.401202\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3923i 1.23334i −0.787222 0.616670i \(-0.788481\pi\)
0.787222 0.616670i \(-0.211519\pi\)
\(72\) 0 0
\(73\) −10.5000 + 6.06218i −1.22893 + 0.709524i −0.966807 0.255510i \(-0.917757\pi\)
−0.262126 + 0.965034i \(0.584423\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.00000 + 10.3923i 1.02565 + 1.18431i
\(78\) 0 0
\(79\) −1.00000 −0.112509 −0.0562544 0.998416i \(-0.517916\pi\)
−0.0562544 + 0.998416i \(0.517916\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.00000 + 10.3923i 0.658586 + 1.14070i 0.980982 + 0.194099i \(0.0621783\pi\)
−0.322396 + 0.946605i \(0.604488\pi\)
\(84\) 0 0
\(85\) −4.50000 + 7.79423i −0.488094 + 0.845403i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.50000 7.79423i 0.476999 0.826187i −0.522654 0.852545i \(-0.675058\pi\)
0.999653 + 0.0263586i \(0.00839118\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.19615i 0.533114i
\(96\) 0 0
\(97\) −6.00000 + 3.46410i −0.609208 + 0.351726i −0.772655 0.634826i \(-0.781072\pi\)
0.163448 + 0.986552i \(0.447739\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.50000 7.79423i 0.447767 0.775555i −0.550474 0.834853i \(-0.685553\pi\)
0.998240 + 0.0592978i \(0.0188862\pi\)
\(102\) 0 0
\(103\) 4.50000 2.59808i 0.443398 0.255996i −0.261640 0.965166i \(-0.584263\pi\)
0.705038 + 0.709170i \(0.250930\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.5000 + 7.79423i 1.30509 + 0.753497i 0.981273 0.192622i \(-0.0616990\pi\)
0.323821 + 0.946118i \(0.395032\pi\)
\(108\) 0 0
\(109\) 8.50000 + 14.7224i 0.814152 + 1.41015i 0.909935 + 0.414751i \(0.136131\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18.0000 10.3923i −1.69330 0.977626i −0.951825 0.306643i \(-0.900794\pi\)
−0.741473 0.670983i \(-0.765872\pi\)
\(114\) 0 0
\(115\) −13.5000 7.79423i −1.25888 0.726816i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.50000 + 7.79423i 0.137505 + 0.714496i
\(120\) 0 0
\(121\) 8.00000 + 13.8564i 0.727273 + 1.25967i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.50000 + 7.79423i 0.393167 + 0.680985i 0.992865 0.119241i \(-0.0380462\pi\)
−0.599699 + 0.800226i \(0.704713\pi\)
\(132\) 0 0
\(133\) −3.00000 3.46410i −0.260133 0.300376i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.50000 + 2.59808i 0.384461 + 0.221969i 0.679757 0.733437i \(-0.262085\pi\)
−0.295296 + 0.955406i \(0.595418\pi\)
\(138\) 0 0
\(139\) −9.00000 5.19615i −0.763370 0.440732i 0.0671344 0.997744i \(-0.478614\pi\)
−0.830504 + 0.557012i \(0.811948\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.50000 2.59808i 0.368654 0.212843i −0.304216 0.952603i \(-0.598394\pi\)
0.672870 + 0.739760i \(0.265061\pi\)
\(150\) 0 0
\(151\) −6.50000 + 11.2583i −0.528962 + 0.916190i 0.470467 + 0.882418i \(0.344085\pi\)
−0.999430 + 0.0337724i \(0.989248\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.50000 + 2.59808i −0.361449 + 0.208683i
\(156\) 0 0
\(157\) 5.19615i 0.414698i −0.978267 0.207349i \(-0.933516\pi\)
0.978267 0.207349i \(-0.0664836\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −13.5000 + 2.59808i −1.06395 + 0.204757i
\(162\) 0 0
\(163\) 0.500000 0.866025i 0.0391630 0.0678323i −0.845780 0.533533i \(-0.820864\pi\)
0.884943 + 0.465700i \(0.154198\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.00000 + 10.3923i −0.464294 + 0.804181i −0.999169 0.0407502i \(-0.987025\pi\)
0.534875 + 0.844931i \(0.320359\pi\)
\(168\) 0 0
\(169\) −6.50000 11.2583i −0.500000 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.00000 −0.684257 −0.342129 0.939653i \(-0.611148\pi\)
−0.342129 + 0.939653i \(0.611148\pi\)
\(174\) 0 0
\(175\) 8.00000 6.92820i 0.604743 0.523723i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.50000 2.59808i 0.336346 0.194189i −0.322309 0.946634i \(-0.604459\pi\)
0.658655 + 0.752445i \(0.271126\pi\)
\(180\) 0 0
\(181\) 6.92820i 0.514969i 0.966282 + 0.257485i \(0.0828937\pi\)
−0.966282 + 0.257485i \(0.917106\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 21.0000 1.54395
\(186\) 0 0
\(187\) 15.5885i 1.13994i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.5885i 1.12794i −0.825795 0.563971i \(-0.809273\pi\)
0.825795 0.563971i \(-0.190727\pi\)
\(192\) 0 0
\(193\) −5.00000 −0.359908 −0.179954 0.983675i \(-0.557595\pi\)
−0.179954 + 0.983675i \(0.557595\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −1.50000 + 0.866025i −0.106332 + 0.0613909i −0.552223 0.833696i \(-0.686220\pi\)
0.445891 + 0.895087i \(0.352887\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 18.0000 1.25717
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.50000 7.79423i −0.311272 0.539138i
\(210\) 0 0
\(211\) 10.0000 17.3205i 0.688428 1.19239i −0.283918 0.958849i \(-0.591634\pi\)
0.972346 0.233544i \(-0.0750324\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.00000 + 10.3923i −0.409197 + 0.708749i
\(216\) 0 0
\(217\) −1.50000 + 4.33013i −0.101827 + 0.293948i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −9.00000 + 5.19615i −0.602685 + 0.347960i −0.770097 0.637927i \(-0.779792\pi\)
0.167412 + 0.985887i \(0.446459\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.50000 + 7.79423i −0.298675 + 0.517321i −0.975833 0.218517i \(-0.929878\pi\)
0.677158 + 0.735838i \(0.263211\pi\)
\(228\) 0 0
\(229\) −19.5000 + 11.2583i −1.28860 + 0.743971i −0.978404 0.206702i \(-0.933727\pi\)
−0.310192 + 0.950674i \(0.600393\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.50000 2.59808i −0.294805 0.170206i 0.345302 0.938492i \(-0.387777\pi\)
−0.640107 + 0.768286i \(0.721110\pi\)
\(234\) 0 0
\(235\) −4.50000 7.79423i −0.293548 0.508439i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.00000 5.19615i −0.582162 0.336111i 0.179830 0.983698i \(-0.442445\pi\)
−0.761992 + 0.647586i \(0.775778\pi\)
\(240\) 0 0
\(241\) −1.50000 0.866025i −0.0966235 0.0557856i 0.450910 0.892570i \(-0.351100\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.00000 20.7846i 0.191663 1.32788i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.0000 −1.51487 −0.757433 0.652913i \(-0.773547\pi\)
−0.757433 + 0.652913i \(0.773547\pi\)
\(252\) 0 0
\(253\) −27.0000 −1.69748
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.5000 23.3827i −0.842107 1.45857i −0.888110 0.459631i \(-0.847982\pi\)
0.0460033 0.998941i \(-0.485352\pi\)
\(258\) 0 0
\(259\) 14.0000 12.1244i 0.869918 0.753371i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.50000 2.59808i −0.277482 0.160204i 0.354801 0.934942i \(-0.384549\pi\)
−0.632283 + 0.774738i \(0.717882\pi\)
\(264\) 0 0
\(265\) 13.5000 + 7.79423i 0.829298 + 0.478796i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.5000 + 18.1865i 0.640196 + 1.10885i 0.985389 + 0.170321i \(0.0544803\pi\)
−0.345192 + 0.938532i \(0.612186\pi\)
\(270\) 0 0
\(271\) 19.5000 + 11.2583i 1.18454 + 0.683895i 0.957061 0.289888i \(-0.0936180\pi\)
0.227480 + 0.973783i \(0.426951\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.0000 10.3923i 1.08544 0.626680i
\(276\) 0 0
\(277\) 6.50000 11.2583i 0.390547 0.676448i −0.601975 0.798515i \(-0.705619\pi\)
0.992522 + 0.122068i \(0.0389525\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 + 10.3923i −1.07379 + 0.619953i −0.929214 0.369541i \(-0.879515\pi\)
−0.144575 + 0.989494i \(0.546182\pi\)
\(282\) 0 0
\(283\) 8.66025i 0.514799i −0.966305 0.257399i \(-0.917134\pi\)
0.966305 0.257399i \(-0.0828656\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000 10.3923i 0.708338 0.613438i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.00000 + 5.19615i −0.175262 + 0.303562i −0.940252 0.340480i \(-0.889411\pi\)
0.764990 + 0.644042i \(0.222744\pi\)
\(294\) 0 0
\(295\) 4.50000 + 7.79423i 0.262000 + 0.453798i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 2.00000 + 10.3923i 0.115278 + 0.599002i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 31.5000 18.1865i 1.80368 1.04136i
\(306\) 0 0
\(307\) 17.3205i 0.988534i −0.869310 0.494267i \(-0.835437\pi\)
0.869310 0.494267i \(-0.164563\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.0000 −0.850572 −0.425286 0.905059i \(-0.639826\pi\)
−0.425286 + 0.905059i \(0.639826\pi\)
\(312\) 0 0
\(313\) 12.1244i 0.685309i 0.939461 + 0.342655i \(0.111326\pi\)
−0.939461 + 0.342655i \(0.888674\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.9808i 1.45922i 0.683861 + 0.729612i \(0.260300\pi\)
−0.683861 + 0.729612i \(0.739700\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.19615i 0.289122i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.50000 2.59808i −0.413488 0.143237i
\(330\) 0 0
\(331\) 31.0000 1.70391 0.851957 0.523612i \(-0.175416\pi\)
0.851957 + 0.523612i \(0.175416\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −7.50000 12.9904i −0.409769 0.709740i
\(336\) 0 0
\(337\) 1.00000 1.73205i 0.0544735 0.0943508i −0.837503 0.546433i \(-0.815985\pi\)
0.891976 + 0.452082i \(0.149319\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.50000 + 7.79423i −0.243689 + 0.422081i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.5885i 0.836832i −0.908255 0.418416i \(-0.862585\pi\)
0.908255 0.418416i \(-0.137415\pi\)
\(348\) 0 0
\(349\) −12.0000 + 6.92820i −0.642345 + 0.370858i −0.785517 0.618840i \(-0.787603\pi\)
0.143172 + 0.989698i \(0.454270\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.50000 + 2.59808i −0.0798369 + 0.138282i −0.903179 0.429263i \(-0.858773\pi\)
0.823343 + 0.567545i \(0.192107\pi\)
\(354\) 0 0
\(355\) −27.0000 + 15.5885i −1.43301 + 0.827349i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −22.5000 12.9904i −1.18750 0.685606i −0.229766 0.973246i \(-0.573796\pi\)
−0.957739 + 0.287640i \(0.907129\pi\)
\(360\) 0 0
\(361\) −8.00000 13.8564i −0.421053 0.729285i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 31.5000 + 18.1865i 1.64879 + 0.951927i
\(366\) 0 0
\(367\) −28.5000 16.4545i −1.48769 0.858917i −0.487787 0.872963i \(-0.662196\pi\)
−0.999901 + 0.0140459i \(0.995529\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.5000 2.59808i 0.700885 0.134885i
\(372\) 0 0
\(373\) 12.5000 + 21.6506i 0.647225 + 1.12103i 0.983783 + 0.179364i \(0.0574041\pi\)
−0.336557 + 0.941663i \(0.609263\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.5000 + 18.1865i 0.536525 + 0.929288i 0.999088 + 0.0427020i \(0.0135966\pi\)
−0.462563 + 0.886586i \(0.653070\pi\)
\(384\) 0 0
\(385\) 13.5000 38.9711i 0.688024 1.98615i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 22.5000 + 12.9904i 1.14080 + 0.658638i 0.946627 0.322330i \(-0.104466\pi\)
0.194168 + 0.980968i \(0.437799\pi\)
\(390\) 0 0
\(391\) −13.5000 7.79423i −0.682724 0.394171i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.50000 + 2.59808i 0.0754732 + 0.130723i
\(396\) 0 0
\(397\) 7.50000 + 4.33013i 0.376414 + 0.217323i 0.676257 0.736666i \(-0.263601\pi\)
−0.299843 + 0.953989i \(0.596934\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −31.5000 + 18.1865i −1.57303 + 0.908192i −0.577241 + 0.816574i \(0.695871\pi\)
−0.995794 + 0.0916181i \(0.970796\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 31.5000 18.1865i 1.56140 0.901473i
\(408\) 0 0
\(409\) 5.19615i 0.256933i −0.991714 0.128467i \(-0.958994\pi\)
0.991714 0.128467i \(-0.0410055\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.50000 + 2.59808i 0.369051 + 0.127843i
\(414\) 0 0
\(415\) 18.0000 31.1769i 0.883585 1.53041i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.00000 + 10.3923i −0.293119 + 0.507697i −0.974546 0.224189i \(-0.928027\pi\)
0.681426 + 0.731887i \(0.261360\pi\)
\(420\) 0 0
\(421\) 11.0000 + 19.0526i 0.536107 + 0.928565i 0.999109 + 0.0422075i \(0.0134391\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) 10.5000 30.3109i 0.508131 1.46685i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13.5000 + 7.79423i −0.650272 + 0.375435i −0.788560 0.614957i \(-0.789173\pi\)
0.138288 + 0.990392i \(0.455840\pi\)
\(432\) 0 0
\(433\) 34.6410i 1.66474i −0.554220 0.832370i \(-0.686983\pi\)
0.554220 0.832370i \(-0.313017\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9.00000 0.430528
\(438\) 0 0
\(439\) 15.5885i 0.743996i −0.928233 0.371998i \(-0.878673\pi\)
0.928233 0.371998i \(-0.121327\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.5885i 0.740630i −0.928906 0.370315i \(-0.879250\pi\)
0.928906 0.370315i \(-0.120750\pi\)
\(444\) 0 0
\(445\) −27.0000 −1.27992
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.7846i 0.980886i 0.871473 + 0.490443i \(0.163165\pi\)
−0.871473 + 0.490443i \(0.836835\pi\)
\(450\) 0 0
\(451\) 27.0000 15.5885i 1.27138 0.734032i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 31.0000 1.45012 0.725059 0.688686i \(-0.241812\pi\)
0.725059 + 0.688686i \(0.241812\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.0000 + 25.9808i 0.698620 + 1.21004i 0.968945 + 0.247276i \(0.0795353\pi\)
−0.270326 + 0.962769i \(0.587131\pi\)
\(462\) 0 0
\(463\) 8.00000 13.8564i 0.371792 0.643962i −0.618050 0.786139i \(-0.712077\pi\)
0.989841 + 0.142177i \(0.0454103\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.50000 7.79423i 0.208235 0.360674i −0.742923 0.669376i \(-0.766561\pi\)
0.951159 + 0.308702i \(0.0998947\pi\)
\(468\) 0 0
\(469\) −12.5000 4.33013i −0.577196 0.199947i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20.7846i 0.955677i
\(474\) 0 0
\(475\) −6.00000 + 3.46410i −0.275299 + 0.158944i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.5000 + 28.5788i −0.753904 + 1.30580i 0.192013 + 0.981392i \(0.438498\pi\)
−0.945917 + 0.324408i \(0.894835\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 18.0000 + 10.3923i 0.817338 + 0.471890i
\(486\) 0 0
\(487\) −0.500000 0.866025i −0.0226572 0.0392434i 0.854475 0.519493i \(-0.173879\pi\)
−0.877132 + 0.480250i \(0.840546\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.00000 + 5.19615i 0.406164 + 0.234499i 0.689140 0.724628i \(-0.257988\pi\)
−0.282976 + 0.959127i \(0.591322\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.00000 + 25.9808i −0.403705 + 1.16540i
\(498\) 0 0
\(499\) −3.50000 6.06218i −0.156682 0.271380i 0.776989 0.629515i \(-0.216746\pi\)
−0.933670 + 0.358134i \(0.883413\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) −27.0000 −1.20148
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.5000 + 18.1865i 0.465404 + 0.806104i 0.999220 0.0394971i \(-0.0125756\pi\)
−0.533815 + 0.845601i \(0.679242\pi\)
\(510\) 0 0
\(511\) 31.5000 6.06218i 1.39348 0.268175i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −13.5000 7.79423i −0.594881 0.343455i
\(516\) 0 0
\(517\) −13.5000 7.79423i −0.593729 0.342790i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.50000 12.9904i −0.328581 0.569119i 0.653650 0.756797i \(-0.273237\pi\)
−0.982231 + 0.187678i \(0.939904\pi\)
\(522\) 0 0
\(523\) −22.5000 12.9904i −0.983856 0.568030i −0.0804241 0.996761i \(-0.525627\pi\)
−0.903432 + 0.428731i \(0.858961\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.50000 + 2.59808i −0.196023 + 0.113174i
\(528\) 0 0
\(529\) 2.00000 3.46410i 0.0869565 0.150613i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 46.7654i 2.02184i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −13.5000 33.7750i −0.581486 1.45479i
\(540\) 0 0
\(541\) 18.5000 32.0429i 0.795377 1.37763i −0.127222 0.991874i \(-0.540606\pi\)
0.922599 0.385759i \(-0.126061\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 25.5000 44.1673i 1.09230 1.89192i
\(546\) 0 0
\(547\) −16.0000 27.7128i −0.684111 1.18491i −0.973715 0.227768i \(-0.926857\pi\)
0.289605 0.957146i \(-0.406476\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 2.50000 + 0.866025i 0.106311 + 0.0368271i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.5000 + 12.9904i −0.953356 + 0.550420i −0.894122 0.447824i \(-0.852199\pi\)
−0.0592339 + 0.998244i \(0.518866\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −27.0000 −1.13791 −0.568957 0.822367i \(-0.692653\pi\)
−0.568957 + 0.822367i \(0.692653\pi\)
\(564\) 0 0
\(565\) 62.3538i 2.62325i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.5885i 0.653502i −0.945110 0.326751i \(-0.894046\pi\)
0.945110 0.326751i \(-0.105954\pi\)
\(570\) 0 0
\(571\) −7.00000 −0.292941 −0.146470 0.989215i \(-0.546791\pi\)
−0.146470 + 0.989215i \(0.546791\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 20.7846i 0.866778i
\(576\) 0 0
\(577\) −22.5000 + 12.9904i −0.936687 + 0.540797i −0.888920 0.458062i \(-0.848544\pi\)
−0.0477669 + 0.998859i \(0.515210\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.00000 31.1769i −0.248922 1.29344i
\(582\) 0 0
\(583\) 27.0000 1.11823
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.0000 31.1769i −0.742940 1.28681i −0.951151 0.308725i \(-0.900098\pi\)
0.208212 0.978084i \(-0.433236\pi\)
\(588\) 0 0
\(589\) 1.50000 2.59808i 0.0618064 0.107052i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10.5000 18.1865i 0.431183 0.746831i −0.565792 0.824548i \(-0.691430\pi\)
0.996976 + 0.0777165i \(0.0247629\pi\)
\(594\) 0 0
\(595\) 18.0000 15.5885i 0.737928 0.639064i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.19615i 0.212309i 0.994350 + 0.106155i \(0.0338538\pi\)
−0.994350 + 0.106155i \(0.966146\pi\)
\(600\) 0 0
\(601\) 30.0000 17.3205i 1.22373 0.706518i 0.258015 0.966141i \(-0.416931\pi\)
0.965710 + 0.259623i \(0.0835982\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.0000 41.5692i 0.975739 1.69003i
\(606\) 0 0
\(607\) −25.5000 + 14.7224i −1.03501 + 0.597565i −0.918417 0.395614i \(-0.870532\pi\)
−0.116596 + 0.993179i \(0.537198\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.500000 + 0.866025i 0.0201948 + 0.0349784i 0.875946 0.482409i \(-0.160238\pi\)
−0.855751 + 0.517387i \(0.826905\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0000 10.3923i −0.724653 0.418378i 0.0918100 0.995777i \(-0.470735\pi\)
−0.816463 + 0.577398i \(0.804068\pi\)
\(618\) 0 0
\(619\) −22.5000 12.9904i −0.904351 0.522127i −0.0257420 0.999669i \(-0.508195\pi\)
−0.878609 + 0.477541i \(0.841528\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −18.0000 + 15.5885i −0.721155 + 0.624538i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 21.0000 0.837325
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12.0000 20.7846i −0.476205 0.824812i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −13.5000 7.79423i −0.533218 0.307854i 0.209108 0.977893i \(-0.432944\pi\)
−0.742326 + 0.670039i \(0.766277\pi\)
\(642\) 0 0
\(643\) 3.00000 + 1.73205i 0.118308 + 0.0683054i 0.557986 0.829850i \(-0.311574\pi\)
−0.439678 + 0.898155i \(0.644907\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.50000 7.79423i −0.176913 0.306423i 0.763908 0.645325i \(-0.223278\pi\)
−0.940822 + 0.338902i \(0.889945\pi\)
\(648\) 0 0
\(649\) 13.5000 + 7.79423i 0.529921 + 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −13.5000 + 7.79423i −0.528296 + 0.305012i −0.740322 0.672252i \(-0.765327\pi\)
0.212026 + 0.977264i \(0.431994\pi\)
\(654\) 0 0
\(655\) 13.5000 23.3827i 0.527489 0.913637i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.00000 5.19615i 0.350590 0.202413i −0.314355 0.949306i \(-0.601788\pi\)
0.664945 + 0.746892i \(0.268455\pi\)
\(660\) 0 0
\(661\) 22.5167i 0.875797i 0.899025 + 0.437898i \(0.144277\pi\)
−0.899025 + 0.437898i \(0.855723\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.50000 + 12.9904i −0.174503 + 0.503745i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 31.5000 54.5596i 1.21604 2.10625i
\(672\) 0 0
\(673\) −11.0000 19.0526i −0.424019 0.734422i 0.572309 0.820038i \(-0.306048\pi\)
−0.996328 + 0.0856156i \(0.972714\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −45.0000 −1.72949 −0.864745 0.502211i \(-0.832520\pi\)
−0.864745 + 0.502211i \(0.832520\pi\)
\(678\) 0 0
\(679\) 18.0000 3.46410i 0.690777 0.132940i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −31.5000 + 18.1865i −1.20531 + 0.695888i −0.961732 0.273992i \(-0.911656\pi\)
−0.243582 + 0.969880i \(0.578323\pi\)
\(684\) 0 0
\(685\) 15.5885i 0.595604i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 32.9090i 1.25192i 0.779857 + 0.625958i \(0.215292\pi\)
−0.779857 + 0.625958i \(0.784708\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 31.1769i 1.18261i
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20.7846i 0.785024i −0.919747 0.392512i \(-0.871606\pi\)
0.919747 0.392512i \(-0.128394\pi\)
\(702\) 0 0
\(703\) −10.5000 + 6.06218i −0.396015 + 0.228639i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −18.0000 + 15.5885i −0.676960 + 0.586264i
\(708\) 0 0
\(709\) 31.0000 1.16423 0.582115 0.813107i \(-0.302225\pi\)
0.582115 + 0.813107i \(0.302225\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.50000 7.79423i −0.168526 0.291896i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7.50000 + 12.9904i −0.279703 + 0.484459i −0.971311 0.237814i \(-0.923569\pi\)
0.691608 + 0.722273i \(0.256903\pi\)
\(720\) 0 0
\(721\) −13.5000 + 2.59808i −0.502766 + 0.0967574i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −21.0000 + 12.1244i −0.778847 + 0.449667i −0.836021 0.548697i \(-0.815124\pi\)
0.0571746 + 0.998364i \(0.481791\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.00000 + 10.3923i −0.221918 + 0.384373i
\(732\) 0 0
\(733\) −25.5000 + 14.7224i −0.941864 + 0.543785i −0.890544 0.454897i \(-0.849676\pi\)
−0.0513199 + 0.998682i \(0.516343\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −22.5000 12.9904i −0.828798 0.478507i
\(738\) 0 0
\(739\) −8.50000 14.7224i −0.312678 0.541573i 0.666264 0.745716i \(-0.267893\pi\)
−0.978941 + 0.204143i \(0.934559\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 45.0000 + 25.9808i 1.65089 + 0.953142i 0.976707 + 0.214577i \(0.0688374\pi\)
0.674183 + 0.738564i \(0.264496\pi\)
\(744\) 0 0
\(745\) −13.5000 7.79423i −0.494602 0.285558i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −27.0000 31.1769i −0.986559 1.13918i
\(750\) 0 0
\(751\) 14.5000 + 25.1147i 0.529113 + 0.916450i 0.999424 + 0.0339490i \(0.0108084\pi\)
−0.470311 + 0.882501i \(0.655858\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 39.0000 1.41936
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.5000 + 18.1865i 0.380625 + 0.659261i 0.991152 0.132734i \(-0.0423756\pi\)
−0.610527 + 0.791995i \(0.709042\pi\)
\(762\) 0 0
\(763\) −8.50000 44.1673i −0.307721 1.59896i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −30.0000 17.3205i −1.08183 0.624593i −0.150439 0.988619i \(-0.548069\pi\)
−0.931389 + 0.364026i \(0.881402\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.5000 33.7750i −0.701366 1.21480i −0.967987 0.251000i \(-0.919240\pi\)
0.266621 0.963802i \(-0.414093\pi\)
\(774\) 0 0
\(775\) 6.00000 + 3.46410i 0.215526 + 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.00000 + 5.19615i −0.322458 + 0.186171i
\(780\) 0 0
\(781\) −27.0000 + 46.7654i −0.966136 + 1.67340i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −13.5000 + 7.79423i −0.481836 + 0.278188i
\(786\) 0 0
\(787\) 1.73205i 0.0617409i −0.999523 0.0308705i \(-0.990172\pi\)
0.999523 0.0308705i \(-0.00982794\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 36.0000 + 41.5692i 1.28001 + 1.47803i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.00000 + 15.5885i −0.318796 + 0.552171i −0.980237 0.197826i \(-0.936612\pi\)
0.661441 + 0.749997i \(0.269945\pi\)
\(798\) 0 0
\(799\) −4.50000 7.79423i −0.159199 0.275740i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 63.0000 2.22322
\(804\) 0 0
\(805\) 27.0000 + 31.1769i 0.951625 + 1.09884i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.5000 + 12.9904i −0.791058 + 0.456717i −0.840335 0.542068i \(-0.817642\pi\)
0.0492770 + 0.998785i \(0.484308\pi\)
\(810\) 0 0
\(811\) 51.9615i 1.82462i 0.409505 + 0.912308i \(0.365701\pi\)
−0.409505 + 0.912308i \(0.634299\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.00000 −0.105085
\(816\) 0 0
\(817\) 6.92820i 0.242387i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.19615i 0.181347i 0.995881 + 0.0906735i \(0.0289020\pi\)
−0.995881 + 0.0906735i \(0.971098\pi\)
\(822\) 0 0
\(823\) −7.00000 −0.244005 −0.122002 0.992530i \(-0.538932\pi\)
−0.122002 + 0.992530i \(0.538932\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.3923i 0.361376i 0.983540 + 0.180688i \(0.0578324\pi\)
−0.983540 + 0.180688i \(0.942168\pi\)
\(828\) 0 0
\(829\) 1.50000 0.866025i 0.0520972 0.0300783i −0.473725 0.880673i \(-0.657091\pi\)
0.525822 + 0.850594i \(0.323758\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.00000 20.7846i 0.103944 0.720144i
\(834\) 0 0
\(835\) 36.0000 1.24583
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.0000 + 20.7846i 0.414286 + 0.717564i 0.995353 0.0962912i \(-0.0306980\pi\)
−0.581067 + 0.813856i \(0.697365\pi\)
\(840\) 0 0
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −19.5000 + 33.7750i −0.670820 + 1.16190i
\(846\) 0 0
\(847\) −8.00000 41.5692i −0.274883 1.42834i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 36.3731i 1.24685i
\(852\) 0 0
\(853\) −12.0000 + 6.92820i −0.410872 + 0.237217i −0.691164 0.722698i \(-0.742902\pi\)
0.280292 + 0.959915i \(0.409569\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16.5000 28.5788i 0.563629 0.976235i −0.433546 0.901131i \(-0.642738\pi\)
0.997176 0.0751033i \(-0.0239287\pi\)
\(858\) 0 0
\(859\) 34.5000 19.9186i 1.17712 0.679613i 0.221777 0.975097i \(-0.428814\pi\)
0.955348 + 0.295484i \(0.0954809\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.50000 2.59808i −0.153182 0.0884395i 0.421450 0.906852i \(-0.361521\pi\)
−0.574632 + 0.818412i \(0.694855\pi\)
\(864\) 0 0
\(865\) 13.5000 + 23.3827i 0.459014 + 0.795035i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.50000 + 2.59808i 0.152652 + 0.0881337i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 7.50000 + 2.59808i 0.253546 + 0.0878310i
\(876\) 0 0
\(877\) −5.50000 9.52628i −0.185722 0.321680i 0.758098 0.652141i \(-0.226129\pi\)
−0.943820 + 0.330461i \(0.892796\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.50000 2.59808i −0.0503651 0.0872349i 0.839744 0.542983i \(-0.182705\pi\)
−0.890109 + 0.455748i \(0.849372\pi\)
\(888\) 0 0
\(889\) −20.0000 6.92820i −0.670778 0.232364i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.50000 + 2.59808i 0.150587 + 0.0869413i
\(894\) 0 0
\(895\) −13.5000 7.79423i −0.451255 0.260532i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 13.5000 + 7.79423i 0.449750 + 0.259663i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 18.0000 10.3923i 0.598340 0.345452i
\(906\) 0 0
\(907\) −18.5000 + 32.0429i −0.614282 + 1.06397i 0.376228 + 0.926527i \(0.377221\pi\)
−0.990510 + 0.137441i \(0.956112\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.00000 + 5.19615i −0.298183 + 0.172156i −0.641626 0.767017i \(-0.721740\pi\)
0.343443 + 0.939173i \(0.388407\pi\)
\(912\) 0 0
\(913\) 62.3538i 2.06361i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.50000 23.3827i −0.148603 0.772164i
\(918\) 0 0
\(919\) −9.50000 + 16.4545i −0.313376 + 0.542783i −0.979091 0.203423i \(-0.934793\pi\)
0.665715 + 0.746206i \(0.268127\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −14.0000 24.2487i −0.460317 0.797293i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 39.0000 1.27955 0.639774 0.768563i \(-0.279028\pi\)
0.639774 + 0.768563i \(0.279028\pi\)
\(930\) 0 0
\(931\) 4.50000 + 11.2583i 0.147482 + 0.368977i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 40.5000 23.3827i 1.32449 0.764696i
\(936\) 0 0
\(937\) 41.5692i 1.35801i 0.734135 + 0.679004i \(0.237588\pi\)
−0.734135 + 0.679004i \(0.762412\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −21.0000 −0.684580 −0.342290 0.939594i \(-0.611203\pi\)
−0.342290 + 0.939594i \(0.611203\pi\)
\(942\) 0 0
\(943\) 31.1769i 1.01526i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 46.7654i 1.51967i 0.650116 + 0.759835i \(0.274720\pi\)
−0.650116 + 0.759835i \(0.725280\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20.7846i 0.673280i 0.941634 + 0.336640i \(0.109290\pi\)
−0.941634 + 0.336640i \(0.890710\pi\)
\(954\) 0 0
\(955\) −40.5000 + 23.3827i −1.31055 + 0.756646i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.00000 10.3923i −0.290625 0.335585i
\(960\) 0 0
\(961\) 28.0000 0.903226
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.50000 + 12.9904i 0.241434 + 0.418175i
\(966\) 0 0
\(967\) 20.0000 34.6410i 0.643157 1.11398i −0.341567 0.939857i \(-0.610958\pi\)
0.984724 0.174123i \(-0.0557089\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.5000 49.3634i 0.914609 1.58415i 0.107135 0.994244i \(-0.465832\pi\)
0.807473 0.589904i \(-0.200834\pi\)
\(972\) 0 0
\(973\) 18.0000 + 20.7846i 0.577054 + 0.666324i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36.3731i 1.16368i 0.813304 + 0.581839i \(0.197667\pi\)
−0.813304 + 0.581839i \(0.802333\pi\)
\(978\) 0 0
\(979\) −40.5000 + 23.3827i −1.29439 + 0.747314i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.50000 2.59808i 0.0478426 0.0828658i −0.841112 0.540860i \(-0.818099\pi\)
0.888955 + 0.457995i \(0.151432\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −18.0000 10.3923i −0.572367 0.330456i
\(990\) 0 0
\(991\) −12.5000 21.6506i −0.397076 0.687755i 0.596288 0.802771i \(-0.296642\pi\)
−0.993364 + 0.115015i \(0.963308\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.50000 + 2.59808i 0.142660 + 0.0823646i
\(996\) 0 0
\(997\) −19.5000 11.2583i −0.617571 0.356555i 0.158352 0.987383i \(-0.449382\pi\)
−0.775923 + 0.630828i \(0.782715\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.w.a.1349.1 2
3.2 odd 2 2268.2.w.f.1349.1 2
7.3 odd 6 2268.2.bm.a.1025.1 2
9.2 odd 6 2268.2.bm.a.593.1 2
9.4 even 3 84.2.k.b.5.1 yes 2
9.5 odd 6 84.2.k.a.5.1 2
9.7 even 3 2268.2.bm.f.593.1 2
21.17 even 6 2268.2.bm.f.1025.1 2
36.23 even 6 336.2.bc.d.257.1 2
36.31 odd 6 336.2.bc.b.257.1 2
45.4 even 6 2100.2.bi.e.1601.1 2
45.13 odd 12 2100.2.bo.f.1349.1 4
45.14 odd 6 2100.2.bi.f.1601.1 2
45.22 odd 12 2100.2.bo.f.1349.2 4
45.23 even 12 2100.2.bo.a.1349.2 4
45.32 even 12 2100.2.bo.a.1349.1 4
63.4 even 3 588.2.k.d.521.1 2
63.5 even 6 588.2.f.a.293.2 2
63.13 odd 6 588.2.k.c.509.1 2
63.23 odd 6 588.2.f.c.293.1 2
63.31 odd 6 84.2.k.a.17.1 yes 2
63.32 odd 6 588.2.k.c.521.1 2
63.38 even 6 inner 2268.2.w.a.269.1 2
63.40 odd 6 588.2.f.c.293.2 2
63.41 even 6 588.2.k.d.509.1 2
63.52 odd 6 2268.2.w.f.269.1 2
63.58 even 3 588.2.f.a.293.1 2
63.59 even 6 84.2.k.b.17.1 yes 2
252.23 even 6 2352.2.k.a.881.2 2
252.31 even 6 336.2.bc.d.17.1 2
252.59 odd 6 336.2.bc.b.17.1 2
252.103 even 6 2352.2.k.a.881.1 2
252.131 odd 6 2352.2.k.d.881.1 2
252.247 odd 6 2352.2.k.d.881.2 2
315.59 even 6 2100.2.bi.e.101.1 2
315.94 odd 6 2100.2.bi.f.101.1 2
315.122 odd 12 2100.2.bo.f.1949.1 4
315.157 even 12 2100.2.bo.a.1949.2 4
315.248 odd 12 2100.2.bo.f.1949.2 4
315.283 even 12 2100.2.bo.a.1949.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.k.a.5.1 2 9.5 odd 6
84.2.k.a.17.1 yes 2 63.31 odd 6
84.2.k.b.5.1 yes 2 9.4 even 3
84.2.k.b.17.1 yes 2 63.59 even 6
336.2.bc.b.17.1 2 252.59 odd 6
336.2.bc.b.257.1 2 36.31 odd 6
336.2.bc.d.17.1 2 252.31 even 6
336.2.bc.d.257.1 2 36.23 even 6
588.2.f.a.293.1 2 63.58 even 3
588.2.f.a.293.2 2 63.5 even 6
588.2.f.c.293.1 2 63.23 odd 6
588.2.f.c.293.2 2 63.40 odd 6
588.2.k.c.509.1 2 63.13 odd 6
588.2.k.c.521.1 2 63.32 odd 6
588.2.k.d.509.1 2 63.41 even 6
588.2.k.d.521.1 2 63.4 even 3
2100.2.bi.e.101.1 2 315.59 even 6
2100.2.bi.e.1601.1 2 45.4 even 6
2100.2.bi.f.101.1 2 315.94 odd 6
2100.2.bi.f.1601.1 2 45.14 odd 6
2100.2.bo.a.1349.1 4 45.32 even 12
2100.2.bo.a.1349.2 4 45.23 even 12
2100.2.bo.a.1949.1 4 315.283 even 12
2100.2.bo.a.1949.2 4 315.157 even 12
2100.2.bo.f.1349.1 4 45.13 odd 12
2100.2.bo.f.1349.2 4 45.22 odd 12
2100.2.bo.f.1949.1 4 315.122 odd 12
2100.2.bo.f.1949.2 4 315.248 odd 12
2268.2.w.a.269.1 2 63.38 even 6 inner
2268.2.w.a.1349.1 2 1.1 even 1 trivial
2268.2.w.f.269.1 2 63.52 odd 6
2268.2.w.f.1349.1 2 3.2 odd 2
2268.2.bm.a.593.1 2 9.2 odd 6
2268.2.bm.a.1025.1 2 7.3 odd 6
2268.2.bm.f.593.1 2 9.7 even 3
2268.2.bm.f.1025.1 2 21.17 even 6
2352.2.k.a.881.1 2 252.103 even 6
2352.2.k.a.881.2 2 252.23 even 6
2352.2.k.d.881.1 2 252.131 odd 6
2352.2.k.d.881.2 2 252.247 odd 6