Properties

Label 2268.2.bm.a.1025.1
Level $2268$
Weight $2$
Character 2268.1025
Analytic conductor $18.110$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(593,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-6,0,1,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1025.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1025
Dual form 2268.2.bm.a.593.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{5} +(0.500000 - 2.59808i) q^{7} +5.19615i q^{11} +(1.50000 - 2.59808i) q^{17} +(1.50000 - 0.866025i) q^{19} +5.19615i q^{23} +4.00000 q^{25} +(1.50000 - 0.866025i) q^{31} +(-1.50000 + 7.79423i) q^{35} +(-3.50000 - 6.06218i) q^{37} +(3.00000 - 5.19615i) q^{41} +(-2.00000 - 3.46410i) q^{43} +(1.50000 - 2.59808i) q^{47} +(-6.50000 - 2.59808i) q^{49} +(4.50000 + 2.59808i) q^{53} -15.5885i q^{55} +(-1.50000 - 2.59808i) q^{59} +(10.5000 + 6.06218i) q^{61} +(-2.50000 - 4.33013i) q^{67} -10.3923i q^{71} +(-10.5000 - 6.06218i) q^{73} +(13.5000 + 2.59808i) q^{77} +(0.500000 - 0.866025i) q^{79} +(-6.00000 - 10.3923i) q^{83} +(-4.50000 + 7.79423i) q^{85} +(-4.50000 - 7.79423i) q^{89} +(-4.50000 + 2.59808i) q^{95} +(6.00000 - 3.46410i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} + q^{7} + 3 q^{17} + 3 q^{19} + 8 q^{25} + 3 q^{31} - 3 q^{35} - 7 q^{37} + 6 q^{41} - 4 q^{43} + 3 q^{47} - 13 q^{49} + 9 q^{53} - 3 q^{59} + 21 q^{61} - 5 q^{67} - 21 q^{73} + 27 q^{77}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 0.500000 2.59808i 0.188982 0.981981i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.19615i 1.56670i 0.621582 + 0.783349i \(0.286490\pi\)
−0.621582 + 0.783349i \(0.713510\pi\)
\(12\) 0 0
\(13\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) 1.50000 0.866025i 0.344124 0.198680i −0.317970 0.948101i \(-0.603001\pi\)
0.662094 + 0.749421i \(0.269668\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.19615i 1.08347i 0.840548 + 0.541736i \(0.182233\pi\)
−0.840548 + 0.541736i \(0.817767\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 0 0
\(31\) 1.50000 0.866025i 0.269408 0.155543i −0.359211 0.933257i \(-0.616954\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.50000 + 7.79423i −0.253546 + 1.31747i
\(36\) 0 0
\(37\) −3.50000 6.06218i −0.575396 0.996616i −0.995998 0.0893706i \(-0.971514\pi\)
0.420602 0.907245i \(-0.361819\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.00000 5.19615i 0.468521 0.811503i −0.530831 0.847477i \(-0.678120\pi\)
0.999353 + 0.0359748i \(0.0114536\pi\)
\(42\) 0 0
\(43\) −2.00000 3.46410i −0.304997 0.528271i 0.672264 0.740312i \(-0.265322\pi\)
−0.977261 + 0.212041i \(0.931989\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.50000 2.59808i 0.218797 0.378968i −0.735643 0.677369i \(-0.763120\pi\)
0.954441 + 0.298401i \(0.0964533\pi\)
\(48\) 0 0
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.50000 + 2.59808i 0.618123 + 0.356873i 0.776138 0.630563i \(-0.217176\pi\)
−0.158015 + 0.987437i \(0.550509\pi\)
\(54\) 0 0
\(55\) 15.5885i 2.10195i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.50000 2.59808i −0.195283 0.338241i 0.751710 0.659494i \(-0.229229\pi\)
−0.946993 + 0.321253i \(0.895896\pi\)
\(60\) 0 0
\(61\) 10.5000 + 6.06218i 1.34439 + 0.776182i 0.987448 0.157945i \(-0.0504869\pi\)
0.356939 + 0.934128i \(0.383820\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.50000 4.33013i −0.305424 0.529009i 0.671932 0.740613i \(-0.265465\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3923i 1.23334i −0.787222 0.616670i \(-0.788481\pi\)
0.787222 0.616670i \(-0.211519\pi\)
\(72\) 0 0
\(73\) −10.5000 6.06218i −1.22893 0.709524i −0.262126 0.965034i \(-0.584423\pi\)
−0.966807 + 0.255510i \(0.917757\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13.5000 + 2.59808i 1.53847 + 0.296078i
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.0562544 0.0974355i −0.836527 0.547926i \(-0.815418\pi\)
0.892781 + 0.450490i \(0.148751\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.00000 10.3923i −0.658586 1.14070i −0.980982 0.194099i \(-0.937822\pi\)
0.322396 0.946605i \(-0.395512\pi\)
\(84\) 0 0
\(85\) −4.50000 + 7.79423i −0.488094 + 0.845403i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.50000 7.79423i −0.476999 0.826187i 0.522654 0.852545i \(-0.324942\pi\)
−0.999653 + 0.0263586i \(0.991609\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.50000 + 2.59808i −0.461690 + 0.266557i
\(96\) 0 0
\(97\) 6.00000 3.46410i 0.609208 0.351726i −0.163448 0.986552i \(-0.552261\pi\)
0.772655 + 0.634826i \(0.218928\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 0 0
\(103\) 5.19615i 0.511992i −0.966678 0.255996i \(-0.917597\pi\)
0.966678 0.255996i \(-0.0824034\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.5000 + 7.79423i −1.30509 + 0.753497i −0.981273 0.192622i \(-0.938301\pi\)
−0.323821 + 0.946118i \(0.604968\pi\)
\(108\) 0 0
\(109\) 8.50000 14.7224i 0.814152 1.41015i −0.0957826 0.995402i \(-0.530535\pi\)
0.909935 0.414751i \(-0.136131\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18.0000 10.3923i −1.69330 0.977626i −0.951825 0.306643i \(-0.900794\pi\)
−0.741473 0.670983i \(-0.765872\pi\)
\(114\) 0 0
\(115\) 15.5885i 1.45363i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.00000 5.19615i −0.550019 0.476331i
\(120\) 0 0
\(121\) −16.0000 −1.45455
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.00000 0.786334 0.393167 0.919467i \(-0.371379\pi\)
0.393167 + 0.919467i \(0.371379\pi\)
\(132\) 0 0
\(133\) −1.50000 4.33013i −0.130066 0.375470i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.19615i 0.443937i −0.975054 0.221969i \(-0.928752\pi\)
0.975054 0.221969i \(-0.0712483\pi\)
\(138\) 0 0
\(139\) 9.00000 + 5.19615i 0.763370 + 0.440732i 0.830504 0.557012i \(-0.188052\pi\)
−0.0671344 + 0.997744i \(0.521386\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.19615i 0.425685i 0.977086 + 0.212843i \(0.0682722\pi\)
−0.977086 + 0.212843i \(0.931728\pi\)
\(150\) 0 0
\(151\) 13.0000 1.05792 0.528962 0.848645i \(-0.322581\pi\)
0.528962 + 0.848645i \(0.322581\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.50000 + 2.59808i −0.361449 + 0.208683i
\(156\) 0 0
\(157\) 4.50000 2.59808i 0.359139 0.207349i −0.309564 0.950879i \(-0.600183\pi\)
0.668703 + 0.743530i \(0.266850\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 13.5000 + 2.59808i 1.06395 + 0.204757i
\(162\) 0 0
\(163\) 0.500000 + 0.866025i 0.0391630 + 0.0678323i 0.884943 0.465700i \(-0.154198\pi\)
−0.845780 + 0.533533i \(0.820864\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 10.3923i 0.464294 0.804181i −0.534875 0.844931i \(-0.679641\pi\)
0.999169 + 0.0407502i \(0.0129748\pi\)
\(168\) 0 0
\(169\) −6.50000 11.2583i −0.500000 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.50000 + 7.79423i −0.342129 + 0.592584i −0.984828 0.173534i \(-0.944481\pi\)
0.642699 + 0.766119i \(0.277815\pi\)
\(174\) 0 0
\(175\) 2.00000 10.3923i 0.151186 0.785584i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.50000 2.59808i −0.336346 0.194189i 0.322309 0.946634i \(-0.395541\pi\)
−0.658655 + 0.752445i \(0.728874\pi\)
\(180\) 0 0
\(181\) 6.92820i 0.514969i −0.966282 0.257485i \(-0.917106\pi\)
0.966282 0.257485i \(-0.0828937\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 10.5000 + 18.1865i 0.771975 + 1.33710i
\(186\) 0 0
\(187\) 13.5000 + 7.79423i 0.987218 + 0.569970i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.5000 + 7.79423i 0.976826 + 0.563971i 0.901310 0.433174i \(-0.142606\pi\)
0.0755154 + 0.997145i \(0.475940\pi\)
\(192\) 0 0
\(193\) 2.50000 + 4.33013i 0.179954 + 0.311689i 0.941865 0.335993i \(-0.109072\pi\)
−0.761911 + 0.647682i \(0.775738\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −1.50000 0.866025i −0.106332 0.0613909i 0.445891 0.895087i \(-0.352887\pi\)
−0.552223 + 0.833696i \(0.686220\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −9.00000 + 15.5885i −0.628587 + 1.08875i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.50000 + 7.79423i 0.311272 + 0.539138i
\(210\) 0 0
\(211\) 10.0000 17.3205i 0.688428 1.19239i −0.283918 0.958849i \(-0.591634\pi\)
0.972346 0.233544i \(-0.0750324\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.00000 + 10.3923i 0.409197 + 0.708749i
\(216\) 0 0
\(217\) −1.50000 4.33013i −0.101827 0.293948i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 9.00000 5.19615i 0.602685 0.347960i −0.167412 0.985887i \(-0.553541\pi\)
0.770097 + 0.637927i \(0.220208\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.00000 −0.597351 −0.298675 0.954355i \(-0.596545\pi\)
−0.298675 + 0.954355i \(0.596545\pi\)
\(228\) 0 0
\(229\) 22.5167i 1.48794i 0.668211 + 0.743971i \(0.267060\pi\)
−0.668211 + 0.743971i \(0.732940\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.50000 2.59808i 0.294805 0.170206i −0.345302 0.938492i \(-0.612223\pi\)
0.640107 + 0.768286i \(0.278890\pi\)
\(234\) 0 0
\(235\) −4.50000 + 7.79423i −0.293548 + 0.508439i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.00000 5.19615i −0.582162 0.336111i 0.179830 0.983698i \(-0.442445\pi\)
−0.761992 + 0.647586i \(0.775778\pi\)
\(240\) 0 0
\(241\) 1.73205i 0.111571i −0.998443 0.0557856i \(-0.982234\pi\)
0.998443 0.0557856i \(-0.0177663\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 19.5000 + 7.79423i 1.24581 + 0.497955i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) 0 0
\(253\) −27.0000 −1.69748
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −27.0000 −1.68421 −0.842107 0.539311i \(-0.818685\pi\)
−0.842107 + 0.539311i \(0.818685\pi\)
\(258\) 0 0
\(259\) −17.5000 + 6.06218i −1.08740 + 0.376685i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.19615i 0.320408i 0.987084 + 0.160204i \(0.0512153\pi\)
−0.987084 + 0.160204i \(0.948785\pi\)
\(264\) 0 0
\(265\) −13.5000 7.79423i −0.829298 0.478796i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.5000 + 18.1865i −0.640196 + 1.10885i 0.345192 + 0.938532i \(0.387814\pi\)
−0.985389 + 0.170321i \(0.945520\pi\)
\(270\) 0 0
\(271\) 19.5000 11.2583i 1.18454 0.683895i 0.227480 0.973783i \(-0.426951\pi\)
0.957061 + 0.289888i \(0.0936180\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 20.7846i 1.25336i
\(276\) 0 0
\(277\) −13.0000 −0.781094 −0.390547 0.920583i \(-0.627714\pi\)
−0.390547 + 0.920583i \(0.627714\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 + 10.3923i −1.07379 + 0.619953i −0.929214 0.369541i \(-0.879515\pi\)
−0.144575 + 0.989494i \(0.546182\pi\)
\(282\) 0 0
\(283\) 7.50000 4.33013i 0.445829 0.257399i −0.260238 0.965544i \(-0.583801\pi\)
0.706067 + 0.708145i \(0.250468\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 10.3923i −0.708338 0.613438i
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.00000 5.19615i 0.175262 0.303562i −0.764990 0.644042i \(-0.777256\pi\)
0.940252 + 0.340480i \(0.110589\pi\)
\(294\) 0 0
\(295\) 4.50000 + 7.79423i 0.262000 + 0.453798i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −10.0000 + 3.46410i −0.576390 + 0.199667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −31.5000 18.1865i −1.80368 1.04136i
\(306\) 0 0
\(307\) 17.3205i 0.988534i 0.869310 + 0.494267i \(0.164563\pi\)
−0.869310 + 0.494267i \(0.835437\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.50000 12.9904i −0.425286 0.736617i 0.571161 0.820838i \(-0.306493\pi\)
−0.996447 + 0.0842210i \(0.973160\pi\)
\(312\) 0 0
\(313\) 10.5000 + 6.06218i 0.593495 + 0.342655i 0.766478 0.642270i \(-0.222007\pi\)
−0.172983 + 0.984925i \(0.555341\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −22.5000 12.9904i −1.26373 0.729612i −0.289933 0.957047i \(-0.593633\pi\)
−0.973793 + 0.227435i \(0.926966\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.19615i 0.289122i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.00000 5.19615i −0.330791 0.286473i
\(330\) 0 0
\(331\) −15.5000 + 26.8468i −0.851957 + 1.47563i 0.0274825 + 0.999622i \(0.491251\pi\)
−0.879440 + 0.476011i \(0.842082\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.50000 + 12.9904i 0.409769 + 0.709740i
\(336\) 0 0
\(337\) 1.00000 1.73205i 0.0544735 0.0943508i −0.837503 0.546433i \(-0.815985\pi\)
0.891976 + 0.452082i \(0.149319\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.50000 + 7.79423i 0.243689 + 0.422081i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −13.5000 + 7.79423i −0.724718 + 0.418416i −0.816487 0.577364i \(-0.804081\pi\)
0.0917687 + 0.995780i \(0.470748\pi\)
\(348\) 0 0
\(349\) 12.0000 6.92820i 0.642345 0.370858i −0.143172 0.989698i \(-0.545730\pi\)
0.785517 + 0.618840i \(0.212397\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3.00000 −0.159674 −0.0798369 0.996808i \(-0.525440\pi\)
−0.0798369 + 0.996808i \(0.525440\pi\)
\(354\) 0 0
\(355\) 31.1769i 1.65470i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 22.5000 12.9904i 1.18750 0.685606i 0.229766 0.973246i \(-0.426204\pi\)
0.957739 + 0.287640i \(0.0928706\pi\)
\(360\) 0 0
\(361\) −8.00000 + 13.8564i −0.421053 + 0.729285i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 31.5000 + 18.1865i 1.64879 + 0.951927i
\(366\) 0 0
\(367\) 32.9090i 1.71783i −0.512115 0.858917i \(-0.671138\pi\)
0.512115 0.858917i \(-0.328862\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.00000 10.3923i 0.467257 0.539542i
\(372\) 0 0
\(373\) −25.0000 −1.29445 −0.647225 0.762299i \(-0.724071\pi\)
−0.647225 + 0.762299i \(0.724071\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 21.0000 1.07305 0.536525 0.843884i \(-0.319737\pi\)
0.536525 + 0.843884i \(0.319737\pi\)
\(384\) 0 0
\(385\) −40.5000 7.79423i −2.06407 0.397231i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.9808i 1.31728i −0.752460 0.658638i \(-0.771133\pi\)
0.752460 0.658638i \(-0.228867\pi\)
\(390\) 0 0
\(391\) 13.5000 + 7.79423i 0.682724 + 0.394171i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.50000 + 2.59808i −0.0754732 + 0.130723i
\(396\) 0 0
\(397\) 7.50000 4.33013i 0.376414 0.217323i −0.299843 0.953989i \(-0.596934\pi\)
0.676257 + 0.736666i \(0.263601\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 36.3731i 1.81638i −0.418554 0.908192i \(-0.637463\pi\)
0.418554 0.908192i \(-0.362537\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 31.5000 18.1865i 1.56140 0.901473i
\(408\) 0 0
\(409\) 4.50000 2.59808i 0.222511 0.128467i −0.384602 0.923083i \(-0.625661\pi\)
0.607112 + 0.794616i \(0.292328\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.50000 + 2.59808i −0.369051 + 0.127843i
\(414\) 0 0
\(415\) 18.0000 + 31.1769i 0.883585 + 1.53041i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.00000 10.3923i 0.293119 0.507697i −0.681426 0.731887i \(-0.738640\pi\)
0.974546 + 0.224189i \(0.0719734\pi\)
\(420\) 0 0
\(421\) 11.0000 + 19.0526i 0.536107 + 0.928565i 0.999109 + 0.0422075i \(0.0134391\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.00000 10.3923i 0.291043 0.504101i
\(426\) 0 0
\(427\) 21.0000 24.2487i 1.01626 1.17348i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.5000 + 7.79423i 0.650272 + 0.375435i 0.788560 0.614957i \(-0.210827\pi\)
−0.138288 + 0.990392i \(0.544160\pi\)
\(432\) 0 0
\(433\) 34.6410i 1.66474i 0.554220 + 0.832370i \(0.313017\pi\)
−0.554220 + 0.832370i \(0.686983\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.50000 + 7.79423i 0.215264 + 0.372849i
\(438\) 0 0
\(439\) −13.5000 7.79423i −0.644320 0.371998i 0.141957 0.989873i \(-0.454661\pi\)
−0.786277 + 0.617875i \(0.787994\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.5000 + 7.79423i 0.641404 + 0.370315i 0.785155 0.619299i \(-0.212583\pi\)
−0.143751 + 0.989614i \(0.545916\pi\)
\(444\) 0 0
\(445\) 13.5000 + 23.3827i 0.639961 + 1.10845i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.7846i 0.980886i 0.871473 + 0.490443i \(0.163165\pi\)
−0.871473 + 0.490443i \(0.836835\pi\)
\(450\) 0 0
\(451\) 27.0000 + 15.5885i 1.27138 + 0.734032i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −15.5000 + 26.8468i −0.725059 + 1.25584i 0.233890 + 0.972263i \(0.424854\pi\)
−0.958950 + 0.283577i \(0.908479\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.0000 25.9808i −0.698620 1.21004i −0.968945 0.247276i \(-0.920465\pi\)
0.270326 0.962769i \(-0.412869\pi\)
\(462\) 0 0
\(463\) 8.00000 13.8564i 0.371792 0.643962i −0.618050 0.786139i \(-0.712077\pi\)
0.989841 + 0.142177i \(0.0454103\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.50000 7.79423i −0.208235 0.360674i 0.742923 0.669376i \(-0.233439\pi\)
−0.951159 + 0.308702i \(0.900105\pi\)
\(468\) 0 0
\(469\) −12.5000 + 4.33013i −0.577196 + 0.199947i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 18.0000 10.3923i 0.827641 0.477839i
\(474\) 0 0
\(475\) 6.00000 3.46410i 0.275299 0.158944i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −33.0000 −1.50781 −0.753904 0.656984i \(-0.771832\pi\)
−0.753904 + 0.656984i \(0.771832\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −18.0000 + 10.3923i −0.817338 + 0.471890i
\(486\) 0 0
\(487\) −0.500000 + 0.866025i −0.0226572 + 0.0392434i −0.877132 0.480250i \(-0.840546\pi\)
0.854475 + 0.519493i \(0.173879\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.00000 + 5.19615i 0.406164 + 0.234499i 0.689140 0.724628i \(-0.257988\pi\)
−0.282976 + 0.959127i \(0.591322\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −27.0000 5.19615i −1.21112 0.233079i
\(498\) 0 0
\(499\) 7.00000 0.313363 0.156682 0.987649i \(-0.449920\pi\)
0.156682 + 0.987649i \(0.449920\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) −27.0000 −1.20148
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.0000 0.930809 0.465404 0.885098i \(-0.345909\pi\)
0.465404 + 0.885098i \(0.345909\pi\)
\(510\) 0 0
\(511\) −21.0000 + 24.2487i −0.928985 + 1.07270i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.5885i 0.686909i
\(516\) 0 0
\(517\) 13.5000 + 7.79423i 0.593729 + 0.342790i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.50000 12.9904i 0.328581 0.569119i −0.653650 0.756797i \(-0.726763\pi\)
0.982231 + 0.187678i \(0.0600963\pi\)
\(522\) 0 0
\(523\) −22.5000 + 12.9904i −0.983856 + 0.568030i −0.903432 0.428731i \(-0.858961\pi\)
−0.0804241 + 0.996761i \(0.525627\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.19615i 0.226348i
\(528\) 0 0
\(529\) −4.00000 −0.173913
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 40.5000 23.3827i 1.75097 1.01092i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13.5000 33.7750i 0.581486 1.45479i
\(540\) 0 0
\(541\) 18.5000 + 32.0429i 0.795377 + 1.37763i 0.922599 + 0.385759i \(0.126061\pi\)
−0.127222 + 0.991874i \(0.540606\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −25.5000 + 44.1673i −1.09230 + 1.89192i
\(546\) 0 0
\(547\) −16.0000 27.7128i −0.684111 1.18491i −0.973715 0.227768i \(-0.926857\pi\)
0.289605 0.957146i \(-0.406476\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −2.00000 1.73205i −0.0850487 0.0736543i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.5000 + 12.9904i 0.953356 + 0.550420i 0.894122 0.447824i \(-0.147801\pi\)
0.0592339 + 0.998244i \(0.481134\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −13.5000 23.3827i −0.568957 0.985463i −0.996669 0.0815478i \(-0.974014\pi\)
0.427712 0.903915i \(-0.359320\pi\)
\(564\) 0 0
\(565\) 54.0000 + 31.1769i 2.27180 + 1.31162i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.5000 + 7.79423i 0.565949 + 0.326751i 0.755530 0.655114i \(-0.227379\pi\)
−0.189580 + 0.981865i \(0.560713\pi\)
\(570\) 0 0
\(571\) 3.50000 + 6.06218i 0.146470 + 0.253694i 0.929921 0.367760i \(-0.119875\pi\)
−0.783450 + 0.621455i \(0.786542\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 20.7846i 0.866778i
\(576\) 0 0
\(577\) −22.5000 12.9904i −0.936687 0.540797i −0.0477669 0.998859i \(-0.515210\pi\)
−0.888920 + 0.458062i \(0.848544\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −30.0000 + 10.3923i −1.24461 + 0.431145i
\(582\) 0 0
\(583\) −13.5000 + 23.3827i −0.559113 + 0.968412i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.0000 + 31.1769i 0.742940 + 1.28681i 0.951151 + 0.308725i \(0.0999023\pi\)
−0.208212 + 0.978084i \(0.566764\pi\)
\(588\) 0 0
\(589\) 1.50000 2.59808i 0.0618064 0.107052i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −10.5000 18.1865i −0.431183 0.746831i 0.565792 0.824548i \(-0.308570\pi\)
−0.996976 + 0.0777165i \(0.975237\pi\)
\(594\) 0 0
\(595\) 18.0000 + 15.5885i 0.737928 + 0.639064i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.50000 2.59808i 0.183865 0.106155i −0.405242 0.914209i \(-0.632813\pi\)
0.589107 + 0.808055i \(0.299480\pi\)
\(600\) 0 0
\(601\) −30.0000 + 17.3205i −1.22373 + 0.706518i −0.965710 0.259623i \(-0.916402\pi\)
−0.258015 + 0.966141i \(0.583069\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 48.0000 1.95148
\(606\) 0 0
\(607\) 29.4449i 1.19513i 0.801820 + 0.597565i \(0.203865\pi\)
−0.801820 + 0.597565i \(0.796135\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.500000 0.866025i 0.0201948 0.0349784i −0.855751 0.517387i \(-0.826905\pi\)
0.875946 + 0.482409i \(0.160238\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0000 10.3923i −0.724653 0.418378i 0.0918100 0.995777i \(-0.470735\pi\)
−0.816463 + 0.577398i \(0.804068\pi\)
\(618\) 0 0
\(619\) 25.9808i 1.04425i −0.852867 0.522127i \(-0.825139\pi\)
0.852867 0.522127i \(-0.174861\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −22.5000 + 7.79423i −0.901443 + 0.312269i
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −21.0000 −0.837325
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −24.0000 −0.952411
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.5885i 0.615707i 0.951434 + 0.307854i \(0.0996107\pi\)
−0.951434 + 0.307854i \(0.900389\pi\)
\(642\) 0 0
\(643\) −3.00000 1.73205i −0.118308 0.0683054i 0.439678 0.898155i \(-0.355093\pi\)
−0.557986 + 0.829850i \(0.688426\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.50000 7.79423i 0.176913 0.306423i −0.763908 0.645325i \(-0.776722\pi\)
0.940822 + 0.338902i \(0.110055\pi\)
\(648\) 0 0
\(649\) 13.5000 7.79423i 0.529921 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 15.5885i 0.610023i −0.952349 0.305012i \(-0.901340\pi\)
0.952349 0.305012i \(-0.0986604\pi\)
\(654\) 0 0
\(655\) −27.0000 −1.05498
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.00000 5.19615i 0.350590 0.202413i −0.314355 0.949306i \(-0.601788\pi\)
0.664945 + 0.746892i \(0.268455\pi\)
\(660\) 0 0
\(661\) −19.5000 + 11.2583i −0.758462 + 0.437898i −0.828743 0.559629i \(-0.810944\pi\)
0.0702812 + 0.997527i \(0.477610\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.50000 + 12.9904i 0.174503 + 0.503745i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −31.5000 + 54.5596i −1.21604 + 2.10625i
\(672\) 0 0
\(673\) −11.0000 19.0526i −0.424019 0.734422i 0.572309 0.820038i \(-0.306048\pi\)
−0.996328 + 0.0856156i \(0.972714\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22.5000 + 38.9711i −0.864745 + 1.49778i 0.00255466 + 0.999997i \(0.499187\pi\)
−0.867300 + 0.497786i \(0.834147\pi\)
\(678\) 0 0
\(679\) −6.00000 17.3205i −0.230259 0.664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 31.5000 + 18.1865i 1.20531 + 0.695888i 0.961732 0.273992i \(-0.0883442\pi\)
0.243582 + 0.969880i \(0.421677\pi\)
\(684\) 0 0
\(685\) 15.5885i 0.595604i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 28.5000 + 16.4545i 1.08419 + 0.625958i 0.932024 0.362397i \(-0.118041\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −27.0000 15.5885i −1.02417 0.591304i
\(696\) 0 0
\(697\) −9.00000 15.5885i −0.340899 0.590455i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20.7846i 0.785024i −0.919747 0.392512i \(-0.871606\pi\)
0.919747 0.392512i \(-0.128394\pi\)
\(702\) 0 0
\(703\) −10.5000 6.06218i −0.396015 0.228639i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.50000 23.3827i 0.169240 0.879396i
\(708\) 0 0
\(709\) −15.5000 + 26.8468i −0.582115 + 1.00825i 0.413114 + 0.910679i \(0.364441\pi\)
−0.995228 + 0.0975728i \(0.968892\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.50000 + 7.79423i 0.168526 + 0.291896i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.50000 + 12.9904i 0.279703 + 0.484459i 0.971311 0.237814i \(-0.0764307\pi\)
−0.691608 + 0.722273i \(0.743097\pi\)
\(720\) 0 0
\(721\) −13.5000 2.59808i −0.502766 0.0967574i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 21.0000 12.1244i 0.778847 0.449667i −0.0571746 0.998364i \(-0.518209\pi\)
0.836021 + 0.548697i \(0.184876\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.0000 −0.443836
\(732\) 0 0
\(733\) 29.4449i 1.08757i 0.839224 + 0.543785i \(0.183009\pi\)
−0.839224 + 0.543785i \(0.816991\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22.5000 12.9904i 0.828798 0.478507i
\(738\) 0 0
\(739\) −8.50000 + 14.7224i −0.312678 + 0.541573i −0.978941 0.204143i \(-0.934559\pi\)
0.666264 + 0.745716i \(0.267893\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 45.0000 + 25.9808i 1.65089 + 0.953142i 0.976707 + 0.214577i \(0.0688374\pi\)
0.674183 + 0.738564i \(0.264496\pi\)
\(744\) 0 0
\(745\) 15.5885i 0.571117i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13.5000 + 38.9711i 0.493279 + 1.42397i
\(750\) 0 0
\(751\) −29.0000 −1.05823 −0.529113 0.848552i \(-0.677475\pi\)
−0.529113 + 0.848552i \(0.677475\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −39.0000 −1.41936
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21.0000 0.761249 0.380625 0.924730i \(-0.375709\pi\)
0.380625 + 0.924730i \(0.375709\pi\)
\(762\) 0 0
\(763\) −34.0000 29.4449i −1.23088 1.06598i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 30.0000 + 17.3205i 1.08183 + 0.624593i 0.931389 0.364026i \(-0.118598\pi\)
0.150439 + 0.988619i \(0.451931\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.5000 33.7750i 0.701366 1.21480i −0.266621 0.963802i \(-0.585907\pi\)
0.967987 0.251000i \(-0.0807596\pi\)
\(774\) 0 0
\(775\) 6.00000 3.46410i 0.215526 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.3923i 0.372343i
\(780\) 0 0
\(781\) 54.0000 1.93227
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −13.5000 + 7.79423i −0.481836 + 0.278188i
\(786\) 0 0
\(787\) 1.50000 0.866025i 0.0534692 0.0308705i −0.473027 0.881048i \(-0.656839\pi\)
0.526496 + 0.850177i \(0.323505\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −36.0000 + 41.5692i −1.28001 + 1.47803i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.00000 15.5885i 0.318796 0.552171i −0.661441 0.749997i \(-0.730055\pi\)
0.980237 + 0.197826i \(0.0633881\pi\)
\(798\) 0 0
\(799\) −4.50000 7.79423i −0.159199 0.275740i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 31.5000 54.5596i 1.11161 1.92537i
\(804\) 0 0
\(805\) −40.5000 7.79423i −1.42744 0.274710i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.5000 + 12.9904i 0.791058 + 0.456717i 0.840335 0.542068i \(-0.182358\pi\)
−0.0492770 + 0.998785i \(0.515692\pi\)
\(810\) 0 0
\(811\) 51.9615i 1.82462i −0.409505 0.912308i \(-0.634299\pi\)
0.409505 0.912308i \(-0.365701\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.50000 2.59808i −0.0525427 0.0910066i
\(816\) 0 0
\(817\) −6.00000 3.46410i −0.209913 0.121194i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.50000 2.59808i −0.157051 0.0906735i 0.419415 0.907795i \(-0.362235\pi\)
−0.576466 + 0.817121i \(0.695569\pi\)
\(822\) 0 0
\(823\) 3.50000 + 6.06218i 0.122002 + 0.211314i 0.920557 0.390608i \(-0.127735\pi\)
−0.798555 + 0.601922i \(0.794402\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.3923i 0.361376i 0.983540 + 0.180688i \(0.0578324\pi\)
−0.983540 + 0.180688i \(0.942168\pi\)
\(828\) 0 0
\(829\) 1.50000 + 0.866025i 0.0520972 + 0.0300783i 0.525822 0.850594i \(-0.323758\pi\)
−0.473725 + 0.880673i \(0.657091\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −16.5000 + 12.9904i −0.571691 + 0.450090i
\(834\) 0 0
\(835\) −18.0000 + 31.1769i −0.622916 + 1.07892i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.0000 20.7846i −0.414286 0.717564i 0.581067 0.813856i \(-0.302635\pi\)
−0.995353 + 0.0962912i \(0.969302\pi\)
\(840\) 0 0
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 19.5000 + 33.7750i 0.670820 + 1.16190i
\(846\) 0 0
\(847\) −8.00000 + 41.5692i −0.274883 + 1.42834i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 31.5000 18.1865i 1.07981 0.623426i
\(852\) 0 0
\(853\) 12.0000 6.92820i 0.410872 0.237217i −0.280292 0.959915i \(-0.590431\pi\)
0.691164 + 0.722698i \(0.257098\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 33.0000 1.12726 0.563629 0.826028i \(-0.309405\pi\)
0.563629 + 0.826028i \(0.309405\pi\)
\(858\) 0 0
\(859\) 39.8372i 1.35923i −0.733571 0.679613i \(-0.762148\pi\)
0.733571 0.679613i \(-0.237852\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.50000 2.59808i 0.153182 0.0884395i −0.421450 0.906852i \(-0.638479\pi\)
0.574632 + 0.818412i \(0.305145\pi\)
\(864\) 0 0
\(865\) 13.5000 23.3827i 0.459014 0.795035i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.50000 + 2.59808i 0.152652 + 0.0881337i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.50000 7.79423i 0.0507093 0.263493i
\(876\) 0 0
\(877\) 11.0000 0.371444 0.185722 0.982602i \(-0.440538\pi\)
0.185722 + 0.982602i \(0.440538\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.00000 −0.100730 −0.0503651 0.998731i \(-0.516038\pi\)
−0.0503651 + 0.998731i \(0.516038\pi\)
\(888\) 0 0
\(889\) 4.00000 20.7846i 0.134156 0.697093i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.19615i 0.173883i
\(894\) 0 0
\(895\) 13.5000 + 7.79423i 0.451255 + 0.260532i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 13.5000 7.79423i 0.449750 0.259663i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.7846i 0.690904i
\(906\) 0 0
\(907\) 37.0000 1.22856 0.614282 0.789086i \(-0.289446\pi\)
0.614282 + 0.789086i \(0.289446\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.00000 + 5.19615i −0.298183 + 0.172156i −0.641626 0.767017i \(-0.721740\pi\)
0.343443 + 0.939173i \(0.388407\pi\)
\(912\) 0 0
\(913\) 54.0000 31.1769i 1.78714 1.03181i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.50000 23.3827i 0.148603 0.772164i
\(918\) 0 0
\(919\) −9.50000 16.4545i −0.313376 0.542783i 0.665715 0.746206i \(-0.268127\pi\)
−0.979091 + 0.203423i \(0.934793\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −14.0000 24.2487i −0.460317 0.797293i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 19.5000 33.7750i 0.639774 1.10812i −0.345708 0.938342i \(-0.612361\pi\)
0.985482 0.169779i \(-0.0543055\pi\)
\(930\) 0 0
\(931\) −12.0000 + 1.73205i −0.393284 + 0.0567657i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −40.5000 23.3827i −1.32449 0.764696i
\(936\) 0 0
\(937\) 41.5692i 1.35801i −0.734135 0.679004i \(-0.762412\pi\)
0.734135 0.679004i \(-0.237588\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.5000 18.1865i −0.342290 0.592864i 0.642567 0.766229i \(-0.277869\pi\)
−0.984858 + 0.173365i \(0.944536\pi\)
\(942\) 0 0
\(943\) 27.0000 + 15.5885i 0.879241 + 0.507630i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −40.5000 23.3827i −1.31607 0.759835i −0.332979 0.942934i \(-0.608054\pi\)
−0.983094 + 0.183099i \(0.941387\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20.7846i 0.673280i 0.941634 + 0.336640i \(0.109290\pi\)
−0.941634 + 0.336640i \(0.890710\pi\)
\(954\) 0 0
\(955\) −40.5000 23.3827i −1.31055 0.756646i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −13.5000 2.59808i −0.435938 0.0838963i
\(960\) 0 0
\(961\) −14.0000 + 24.2487i −0.451613 + 0.782216i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −7.50000 12.9904i −0.241434 0.418175i
\(966\) 0 0
\(967\) 20.0000 34.6410i 0.643157 1.11398i −0.341567 0.939857i \(-0.610958\pi\)
0.984724 0.174123i \(-0.0557089\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −28.5000 49.3634i −0.914609 1.58415i −0.807473 0.589904i \(-0.799166\pi\)
−0.107135 0.994244i \(-0.534168\pi\)
\(972\) 0 0
\(973\) 18.0000 20.7846i 0.577054 0.666324i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 31.5000 18.1865i 1.00777 0.581839i 0.0972351 0.995261i \(-0.469000\pi\)
0.910539 + 0.413423i \(0.135667\pi\)
\(978\) 0 0
\(979\) 40.5000 23.3827i 1.29439 0.747314i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.00000 0.0956851 0.0478426 0.998855i \(-0.484765\pi\)
0.0478426 + 0.998855i \(0.484765\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.0000 10.3923i 0.572367 0.330456i
\(990\) 0 0
\(991\) −12.5000 + 21.6506i −0.397076 + 0.687755i −0.993364 0.115015i \(-0.963308\pi\)
0.596288 + 0.802771i \(0.296642\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.50000 + 2.59808i 0.142660 + 0.0823646i
\(996\) 0 0
\(997\) 22.5167i 0.713110i −0.934274 0.356555i \(-0.883951\pi\)
0.934274 0.356555i \(-0.116049\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.bm.a.1025.1 2
3.2 odd 2 2268.2.bm.f.1025.1 2
7.5 odd 6 2268.2.w.a.1349.1 2
9.2 odd 6 2268.2.w.a.269.1 2
9.4 even 3 84.2.k.a.17.1 yes 2
9.5 odd 6 84.2.k.b.17.1 yes 2
9.7 even 3 2268.2.w.f.269.1 2
21.5 even 6 2268.2.w.f.1349.1 2
36.23 even 6 336.2.bc.b.17.1 2
36.31 odd 6 336.2.bc.d.17.1 2
45.4 even 6 2100.2.bi.f.101.1 2
45.13 odd 12 2100.2.bo.a.1949.1 4
45.14 odd 6 2100.2.bi.e.101.1 2
45.22 odd 12 2100.2.bo.a.1949.2 4
45.23 even 12 2100.2.bo.f.1949.2 4
45.32 even 12 2100.2.bo.f.1949.1 4
63.4 even 3 588.2.f.c.293.2 2
63.5 even 6 84.2.k.a.5.1 2
63.13 odd 6 588.2.k.d.521.1 2
63.23 odd 6 588.2.k.d.509.1 2
63.31 odd 6 588.2.f.a.293.1 2
63.32 odd 6 588.2.f.a.293.2 2
63.40 odd 6 84.2.k.b.5.1 yes 2
63.41 even 6 588.2.k.c.521.1 2
63.47 even 6 inner 2268.2.bm.a.593.1 2
63.58 even 3 588.2.k.c.509.1 2
63.59 even 6 588.2.f.c.293.1 2
63.61 odd 6 2268.2.bm.f.593.1 2
252.31 even 6 2352.2.k.d.881.2 2
252.59 odd 6 2352.2.k.a.881.2 2
252.67 odd 6 2352.2.k.a.881.1 2
252.95 even 6 2352.2.k.d.881.1 2
252.103 even 6 336.2.bc.b.257.1 2
252.131 odd 6 336.2.bc.d.257.1 2
315.68 odd 12 2100.2.bo.a.1349.2 4
315.103 even 12 2100.2.bo.f.1349.1 4
315.194 even 6 2100.2.bi.f.1601.1 2
315.229 odd 6 2100.2.bi.e.1601.1 2
315.257 odd 12 2100.2.bo.a.1349.1 4
315.292 even 12 2100.2.bo.f.1349.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.k.a.5.1 2 63.5 even 6
84.2.k.a.17.1 yes 2 9.4 even 3
84.2.k.b.5.1 yes 2 63.40 odd 6
84.2.k.b.17.1 yes 2 9.5 odd 6
336.2.bc.b.17.1 2 36.23 even 6
336.2.bc.b.257.1 2 252.103 even 6
336.2.bc.d.17.1 2 36.31 odd 6
336.2.bc.d.257.1 2 252.131 odd 6
588.2.f.a.293.1 2 63.31 odd 6
588.2.f.a.293.2 2 63.32 odd 6
588.2.f.c.293.1 2 63.59 even 6
588.2.f.c.293.2 2 63.4 even 3
588.2.k.c.509.1 2 63.58 even 3
588.2.k.c.521.1 2 63.41 even 6
588.2.k.d.509.1 2 63.23 odd 6
588.2.k.d.521.1 2 63.13 odd 6
2100.2.bi.e.101.1 2 45.14 odd 6
2100.2.bi.e.1601.1 2 315.229 odd 6
2100.2.bi.f.101.1 2 45.4 even 6
2100.2.bi.f.1601.1 2 315.194 even 6
2100.2.bo.a.1349.1 4 315.257 odd 12
2100.2.bo.a.1349.2 4 315.68 odd 12
2100.2.bo.a.1949.1 4 45.13 odd 12
2100.2.bo.a.1949.2 4 45.22 odd 12
2100.2.bo.f.1349.1 4 315.103 even 12
2100.2.bo.f.1349.2 4 315.292 even 12
2100.2.bo.f.1949.1 4 45.32 even 12
2100.2.bo.f.1949.2 4 45.23 even 12
2268.2.w.a.269.1 2 9.2 odd 6
2268.2.w.a.1349.1 2 7.5 odd 6
2268.2.w.f.269.1 2 9.7 even 3
2268.2.w.f.1349.1 2 21.5 even 6
2268.2.bm.a.593.1 2 63.47 even 6 inner
2268.2.bm.a.1025.1 2 1.1 even 1 trivial
2268.2.bm.f.593.1 2 63.61 odd 6
2268.2.bm.f.1025.1 2 3.2 odd 2
2352.2.k.a.881.1 2 252.67 odd 6
2352.2.k.a.881.2 2 252.59 odd 6
2352.2.k.d.881.1 2 252.95 even 6
2352.2.k.d.881.2 2 252.31 even 6