Properties

Label 2268.2.l.m.541.3
Level $2268$
Weight $2$
Character 2268.541
Analytic conductor $18.110$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(109,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.109"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4,0,-2,0,0,0,-10,0,-3,0,0,0,2,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.310217769.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} - 2x^{5} + 15x^{4} - 4x^{3} + 5x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.3
Root \(-1.03075 - 1.78531i\) of defining polynomial
Character \(\chi\) \(=\) 2268.541
Dual form 2268.2.l.m.109.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.90305 q^{5} +(-2.64072 - 0.163054i) q^{7} +2.82619 q^{11} +(-2.41310 - 4.17961i) q^{13} +(-2.14072 - 3.70784i) q^{17} +(2.37467 - 4.11304i) q^{19} -2.46789 q^{23} -1.37839 q^{25} +(-4.32619 + 7.49319i) q^{29} +(-1.68547 + 2.91932i) q^{31} +(-5.02543 - 0.310300i) q^{35} +(-2.59225 + 4.48991i) q^{37} +(-4.10229 - 7.10538i) q^{41} +(-3.36462 + 5.82770i) q^{43} +(-0.864622 - 1.49757i) q^{47} +(6.94683 + 0.861161i) q^{49} +(-5.80983 - 10.0629i) q^{53} +5.37839 q^{55} +(6.73297 - 11.6618i) q^{59} +(-2.62063 - 4.53907i) q^{61} +(-4.59225 - 7.95401i) q^{65} +(6.35992 - 11.0157i) q^{67} -7.39848 q^{71} +(4.23297 + 7.33172i) q^{73} +(-7.46319 - 0.460822i) q^{77} +(1.97161 + 3.41494i) q^{79} +(4.72390 - 8.18204i) q^{83} +(-4.07391 - 7.05621i) q^{85} +(-4.91941 + 8.52068i) q^{89} +(5.69081 + 11.4306i) q^{91} +(4.51911 - 7.82734i) q^{95} +(-1.60699 + 2.78339i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} - 2 q^{7} - 10 q^{11} - 3 q^{13} + 2 q^{17} - 8 q^{19} - 4 q^{23} + 16 q^{25} - 2 q^{29} + 11 q^{35} + 4 q^{37} - 3 q^{41} - 5 q^{43} + 15 q^{47} + 14 q^{49} - 24 q^{53} + 16 q^{55} + 10 q^{59}+ \cdots - 19 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.90305 0.851071 0.425535 0.904942i \(-0.360086\pi\)
0.425535 + 0.904942i \(0.360086\pi\)
\(6\) 0 0
\(7\) −2.64072 0.163054i −0.998099 0.0616287i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.82619 0.852129 0.426065 0.904693i \(-0.359900\pi\)
0.426065 + 0.904693i \(0.359900\pi\)
\(12\) 0 0
\(13\) −2.41310 4.17961i −0.669272 1.15921i −0.978108 0.208098i \(-0.933273\pi\)
0.308835 0.951115i \(-0.400061\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.14072 3.70784i −0.519201 0.899283i −0.999751 0.0223156i \(-0.992896\pi\)
0.480550 0.876968i \(-0.340437\pi\)
\(18\) 0 0
\(19\) 2.37467 4.11304i 0.544786 0.943597i −0.453835 0.891086i \(-0.649944\pi\)
0.998620 0.0525107i \(-0.0167224\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.46789 −0.514590 −0.257295 0.966333i \(-0.582831\pi\)
−0.257295 + 0.966333i \(0.582831\pi\)
\(24\) 0 0
\(25\) −1.37839 −0.275678
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.32619 + 7.49319i −0.803354 + 1.39145i 0.114043 + 0.993476i \(0.463620\pi\)
−0.917397 + 0.397974i \(0.869714\pi\)
\(30\) 0 0
\(31\) −1.68547 + 2.91932i −0.302719 + 0.524325i −0.976751 0.214377i \(-0.931228\pi\)
0.674032 + 0.738703i \(0.264561\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.02543 0.310300i −0.849453 0.0524504i
\(36\) 0 0
\(37\) −2.59225 + 4.48991i −0.426163 + 0.738136i −0.996528 0.0832552i \(-0.973468\pi\)
0.570365 + 0.821391i \(0.306802\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.10229 7.10538i −0.640670 1.10967i −0.985283 0.170929i \(-0.945323\pi\)
0.344613 0.938745i \(-0.388010\pi\)
\(42\) 0 0
\(43\) −3.36462 + 5.82770i −0.513100 + 0.888715i 0.486784 + 0.873522i \(0.338170\pi\)
−0.999885 + 0.0151933i \(0.995164\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.864622 1.49757i −0.126118 0.218443i 0.796051 0.605229i \(-0.206919\pi\)
−0.922169 + 0.386786i \(0.873585\pi\)
\(48\) 0 0
\(49\) 6.94683 + 0.861161i 0.992404 + 0.123023i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.80983 10.0629i −0.798042 1.38225i −0.920890 0.389823i \(-0.872536\pi\)
0.122848 0.992425i \(-0.460797\pi\)
\(54\) 0 0
\(55\) 5.37839 0.725222
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.73297 11.6618i 0.876558 1.51824i 0.0214644 0.999770i \(-0.493167\pi\)
0.855094 0.518474i \(-0.173500\pi\)
\(60\) 0 0
\(61\) −2.62063 4.53907i −0.335538 0.581169i 0.648050 0.761598i \(-0.275585\pi\)
−0.983588 + 0.180429i \(0.942251\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.59225 7.95401i −0.569598 0.986573i
\(66\) 0 0
\(67\) 6.35992 11.0157i 0.776988 1.34578i −0.156682 0.987649i \(-0.550080\pi\)
0.933670 0.358134i \(-0.116587\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.39848 −0.878038 −0.439019 0.898478i \(-0.644674\pi\)
−0.439019 + 0.898478i \(0.644674\pi\)
\(72\) 0 0
\(73\) 4.23297 + 7.33172i 0.495432 + 0.858113i 0.999986 0.00526700i \(-0.00167654\pi\)
−0.504554 + 0.863380i \(0.668343\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.46319 0.460822i −0.850509 0.0525156i
\(78\) 0 0
\(79\) 1.97161 + 3.41494i 0.221824 + 0.384210i 0.955362 0.295438i \(-0.0954657\pi\)
−0.733538 + 0.679649i \(0.762132\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.72390 8.18204i 0.518515 0.898095i −0.481253 0.876582i \(-0.659818\pi\)
0.999769 0.0215134i \(-0.00684845\pi\)
\(84\) 0 0
\(85\) −4.07391 7.05621i −0.441877 0.765354i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.91941 + 8.52068i −0.521457 + 0.903190i 0.478232 + 0.878234i \(0.341278\pi\)
−0.999689 + 0.0249561i \(0.992055\pi\)
\(90\) 0 0
\(91\) 5.69081 + 11.4306i 0.596559 + 1.19826i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.51911 7.82734i 0.463651 0.803068i
\(96\) 0 0
\(97\) −1.60699 + 2.78339i −0.163165 + 0.282611i −0.936002 0.351994i \(-0.885504\pi\)
0.772837 + 0.634605i \(0.218837\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.532112 −0.0529471 −0.0264735 0.999650i \(-0.508428\pi\)
−0.0264735 + 0.999650i \(0.508428\pi\)
\(102\) 0 0
\(103\) −5.25391 −0.517683 −0.258841 0.965920i \(-0.583341\pi\)
−0.258841 + 0.965920i \(0.583341\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.935164 1.61975i 0.0904057 0.156587i −0.817276 0.576246i \(-0.804517\pi\)
0.907682 + 0.419659i \(0.137850\pi\)
\(108\) 0 0
\(109\) −1.99627 3.45765i −0.191208 0.331183i 0.754443 0.656366i \(-0.227907\pi\)
−0.945651 + 0.325183i \(0.894574\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.64607 11.5113i −0.625209 1.08289i −0.988500 0.151219i \(-0.951680\pi\)
0.363291 0.931676i \(-0.381653\pi\)
\(114\) 0 0
\(115\) −4.69652 −0.437953
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.04847 + 10.1404i 0.462793 + 0.929571i
\(120\) 0 0
\(121\) −3.01264 −0.273876
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.1384 −1.08569
\(126\) 0 0
\(127\) 4.73670 0.420314 0.210157 0.977668i \(-0.432603\pi\)
0.210157 + 0.977668i \(0.432603\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.7072 1.19760 0.598802 0.800897i \(-0.295644\pi\)
0.598802 + 0.800897i \(0.295644\pi\)
\(132\) 0 0
\(133\) −6.94148 + 10.4742i −0.601903 + 0.908229i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −21.0710 −1.80021 −0.900106 0.435670i \(-0.856511\pi\)
−0.900106 + 0.435670i \(0.856511\pi\)
\(138\) 0 0
\(139\) −5.39673 9.34742i −0.457745 0.792838i 0.541096 0.840961i \(-0.318009\pi\)
−0.998841 + 0.0481230i \(0.984676\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.81987 11.8124i −0.570307 0.987800i
\(144\) 0 0
\(145\) −8.23297 + 14.2599i −0.683711 + 1.18422i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.25391 0.348493 0.174247 0.984702i \(-0.444251\pi\)
0.174247 + 0.984702i \(0.444251\pi\)
\(150\) 0 0
\(151\) 17.3415 1.41123 0.705614 0.708597i \(-0.250671\pi\)
0.705614 + 0.708597i \(0.250671\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.20754 + 5.55562i −0.257636 + 0.446238i
\(156\) 0 0
\(157\) 3.38471 5.86249i 0.270129 0.467878i −0.698765 0.715351i \(-0.746267\pi\)
0.968895 + 0.247473i \(0.0796002\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.51701 + 0.402399i 0.513612 + 0.0317135i
\(162\) 0 0
\(163\) 8.46691 14.6651i 0.663180 1.14866i −0.316595 0.948561i \(-0.602540\pi\)
0.979775 0.200101i \(-0.0641269\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.120634 + 0.208945i 0.00933496 + 0.0161686i 0.870655 0.491894i \(-0.163695\pi\)
−0.861320 + 0.508063i \(0.830362\pi\)
\(168\) 0 0
\(169\) −5.14607 + 8.91325i −0.395851 + 0.685635i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.70556 + 9.88232i 0.433786 + 0.751339i 0.997196 0.0748388i \(-0.0238442\pi\)
−0.563410 + 0.826177i \(0.690511\pi\)
\(174\) 0 0
\(175\) 3.63995 + 0.224752i 0.275154 + 0.0169897i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.5592 21.7531i −0.938716 1.62590i −0.767870 0.640606i \(-0.778683\pi\)
−0.170846 0.985298i \(-0.554650\pi\)
\(180\) 0 0
\(181\) 15.3709 1.14251 0.571257 0.820772i \(-0.306456\pi\)
0.571257 + 0.820772i \(0.306456\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.93318 + 8.54453i −0.362695 + 0.628206i
\(186\) 0 0
\(187\) −6.05009 10.4791i −0.442427 0.766305i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.78679 + 10.0230i 0.418717 + 0.725240i 0.995811 0.0914385i \(-0.0291465\pi\)
−0.577093 + 0.816678i \(0.695813\pi\)
\(192\) 0 0
\(193\) −1.07488 + 1.86175i −0.0773715 + 0.134011i −0.902115 0.431495i \(-0.857986\pi\)
0.824744 + 0.565507i \(0.191319\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.649147 −0.0462498 −0.0231249 0.999733i \(-0.507362\pi\)
−0.0231249 + 0.999733i \(0.507362\pi\)
\(198\) 0 0
\(199\) −5.19454 8.99721i −0.368231 0.637795i 0.621058 0.783765i \(-0.286703\pi\)
−0.989289 + 0.145970i \(0.953370\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.6461 19.0820i 0.887580 1.33929i
\(204\) 0 0
\(205\) −7.80688 13.5219i −0.545256 0.944411i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.71126 11.6242i 0.464228 0.804066i
\(210\) 0 0
\(211\) 11.3215 + 19.6094i 0.779404 + 1.34997i 0.932286 + 0.361722i \(0.117811\pi\)
−0.152882 + 0.988244i \(0.548855\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.40305 + 11.0904i −0.436685 + 0.756360i
\(216\) 0 0
\(217\) 4.92687 7.43429i 0.334457 0.504673i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −10.3315 + 17.8947i −0.694974 + 1.20373i
\(222\) 0 0
\(223\) −13.2767 + 22.9960i −0.889077 + 1.53993i −0.0481078 + 0.998842i \(0.515319\pi\)
−0.840969 + 0.541084i \(0.818014\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.2539 −0.680576 −0.340288 0.940321i \(-0.610524\pi\)
−0.340288 + 0.940321i \(0.610524\pi\)
\(228\) 0 0
\(229\) 12.3985 0.819315 0.409657 0.912239i \(-0.365648\pi\)
0.409657 + 0.912239i \(0.365648\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.60699 6.24749i 0.236302 0.409287i −0.723348 0.690483i \(-0.757398\pi\)
0.959650 + 0.281196i \(0.0907312\pi\)
\(234\) 0 0
\(235\) −1.64542 2.84995i −0.107335 0.185910i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.55479 4.42503i −0.165256 0.286231i 0.771490 0.636241i \(-0.219512\pi\)
−0.936746 + 0.350010i \(0.886178\pi\)
\(240\) 0 0
\(241\) −13.7032 −0.882704 −0.441352 0.897334i \(-0.645501\pi\)
−0.441352 + 0.897334i \(0.645501\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 13.2202 + 1.63883i 0.844606 + 0.104701i
\(246\) 0 0
\(247\) −22.9212 −1.45844
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 26.7694 1.68967 0.844835 0.535026i \(-0.179698\pi\)
0.844835 + 0.535026i \(0.179698\pi\)
\(252\) 0 0
\(253\) −6.97473 −0.438497
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.7581 −1.29485 −0.647427 0.762128i \(-0.724155\pi\)
−0.647427 + 0.762128i \(0.724155\pi\)
\(258\) 0 0
\(259\) 7.57750 11.4339i 0.470843 0.710469i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.68316 0.288776 0.144388 0.989521i \(-0.453879\pi\)
0.144388 + 0.989521i \(0.453879\pi\)
\(264\) 0 0
\(265\) −11.0564 19.1503i −0.679190 1.17639i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.26767 + 12.5880i 0.443118 + 0.767503i 0.997919 0.0644803i \(-0.0205390\pi\)
−0.554801 + 0.831983i \(0.687206\pi\)
\(270\) 0 0
\(271\) −3.32247 + 5.75468i −0.201825 + 0.349572i −0.949117 0.314925i \(-0.898021\pi\)
0.747291 + 0.664497i \(0.231354\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.89560 −0.234914
\(276\) 0 0
\(277\) 10.0201 0.602049 0.301024 0.953616i \(-0.402671\pi\)
0.301024 + 0.953616i \(0.402671\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.87531 17.1045i 0.589112 1.02037i −0.405237 0.914211i \(-0.632811\pi\)
0.994349 0.106160i \(-0.0338555\pi\)
\(282\) 0 0
\(283\) −0.314530 + 0.544781i −0.0186969 + 0.0323839i −0.875222 0.483721i \(-0.839285\pi\)
0.856526 + 0.516105i \(0.172618\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.67445 + 19.4322i 0.571065 + 1.14705i
\(288\) 0 0
\(289\) −0.665382 + 1.15248i −0.0391401 + 0.0677927i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.54179 + 6.13457i 0.206914 + 0.358385i 0.950741 0.309987i \(-0.100325\pi\)
−0.743827 + 0.668372i \(0.766991\pi\)
\(294\) 0 0
\(295\) 12.8132 22.1931i 0.746013 1.29213i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.95525 + 10.3148i 0.344401 + 0.596520i
\(300\) 0 0
\(301\) 9.83526 14.8407i 0.566895 0.855404i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.98720 8.63809i −0.285566 0.494616i
\(306\) 0 0
\(307\) −16.9445 −0.967075 −0.483537 0.875324i \(-0.660648\pi\)
−0.483537 + 0.875324i \(0.660648\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.38831 + 7.60077i −0.248838 + 0.431000i −0.963204 0.268772i \(-0.913382\pi\)
0.714366 + 0.699773i \(0.246715\pi\)
\(312\) 0 0
\(313\) −10.1792 17.6308i −0.575360 0.996552i −0.996002 0.0893259i \(-0.971529\pi\)
0.420643 0.907226i \(-0.361805\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.7667 22.1126i −0.717049 1.24197i −0.962164 0.272472i \(-0.912159\pi\)
0.245114 0.969494i \(-0.421174\pi\)
\(318\) 0 0
\(319\) −12.2267 + 21.1772i −0.684561 + 1.18569i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −20.3340 −1.13141
\(324\) 0 0
\(325\) 3.32619 + 5.76113i 0.184504 + 0.319570i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.03904 + 4.09565i 0.112416 + 0.225800i
\(330\) 0 0
\(331\) 11.9423 + 20.6846i 0.656406 + 1.13693i 0.981539 + 0.191260i \(0.0612573\pi\)
−0.325134 + 0.945668i \(0.605409\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 12.1033 20.9635i 0.661272 1.14536i
\(336\) 0 0
\(337\) 14.1778 + 24.5567i 0.772315 + 1.33769i 0.936291 + 0.351224i \(0.114235\pi\)
−0.163976 + 0.986464i \(0.552432\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.76346 + 8.25056i −0.257956 + 0.446793i
\(342\) 0 0
\(343\) −18.2042 3.40680i −0.982936 0.183950i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.18288 + 3.78086i −0.117183 + 0.202967i −0.918650 0.395072i \(-0.870720\pi\)
0.801467 + 0.598039i \(0.204053\pi\)
\(348\) 0 0
\(349\) 7.55446 13.0847i 0.404381 0.700409i −0.589868 0.807500i \(-0.700820\pi\)
0.994249 + 0.107091i \(0.0341536\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −25.5421 −1.35947 −0.679734 0.733459i \(-0.737905\pi\)
−0.679734 + 0.733459i \(0.737905\pi\)
\(354\) 0 0
\(355\) −14.0797 −0.747273
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.70718 16.8133i 0.512325 0.887373i −0.487573 0.873082i \(-0.662118\pi\)
0.999898 0.0142909i \(-0.00454908\pi\)
\(360\) 0 0
\(361\) −1.77808 3.07972i −0.0935831 0.162091i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.05556 + 13.9526i 0.421647 + 0.730315i
\(366\) 0 0
\(367\) 13.2101 0.689561 0.344780 0.938683i \(-0.387953\pi\)
0.344780 + 0.938683i \(0.387953\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.7013 + 27.5207i 0.711338 + 1.42880i
\(372\) 0 0
\(373\) 32.3556 1.67531 0.837656 0.546199i \(-0.183926\pi\)
0.837656 + 0.546199i \(0.183926\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 41.7581 2.15065
\(378\) 0 0
\(379\) −12.9760 −0.666530 −0.333265 0.942833i \(-0.608150\pi\)
−0.333265 + 0.942833i \(0.608150\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.3015 0.628579 0.314289 0.949327i \(-0.398234\pi\)
0.314289 + 0.949327i \(0.398234\pi\)
\(384\) 0 0
\(385\) −14.2028 0.876969i −0.723844 0.0446945i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −29.2614 −1.48361 −0.741805 0.670616i \(-0.766030\pi\)
−0.741805 + 0.670616i \(0.766030\pi\)
\(390\) 0 0
\(391\) 5.28306 + 9.15053i 0.267176 + 0.462762i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.75208 + 6.49880i 0.188788 + 0.326990i
\(396\) 0 0
\(397\) −6.33089 + 10.9654i −0.317738 + 0.550339i −0.980016 0.198920i \(-0.936257\pi\)
0.662277 + 0.749259i \(0.269590\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.96850 0.248115 0.124058 0.992275i \(-0.460409\pi\)
0.124058 + 0.992275i \(0.460409\pi\)
\(402\) 0 0
\(403\) 16.2688 0.810407
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.32619 + 12.6893i −0.363146 + 0.628987i
\(408\) 0 0
\(409\) −9.43950 + 16.3497i −0.466753 + 0.808441i −0.999279 0.0379735i \(-0.987910\pi\)
0.532525 + 0.846414i \(0.321243\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −19.6814 + 29.6979i −0.968459 + 1.46134i
\(414\) 0 0
\(415\) 8.98983 15.5708i 0.441293 0.764343i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.93516 + 6.81590i 0.192245 + 0.332979i 0.945994 0.324184i \(-0.105090\pi\)
−0.753749 + 0.657163i \(0.771756\pi\)
\(420\) 0 0
\(421\) 12.6287 21.8736i 0.615487 1.06605i −0.374812 0.927101i \(-0.622293\pi\)
0.990299 0.138953i \(-0.0443738\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.95075 + 5.11086i 0.143133 + 0.247913i
\(426\) 0 0
\(427\) 6.18025 + 12.4137i 0.299083 + 0.600743i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.9729 + 27.6659i 0.769388 + 1.33262i 0.937895 + 0.346918i \(0.112772\pi\)
−0.168508 + 0.985700i \(0.553895\pi\)
\(432\) 0 0
\(433\) 37.2827 1.79169 0.895847 0.444363i \(-0.146570\pi\)
0.895847 + 0.444363i \(0.146570\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.86041 + 10.1505i −0.280341 + 0.485566i
\(438\) 0 0
\(439\) 19.5598 + 33.8786i 0.933539 + 1.61694i 0.777219 + 0.629230i \(0.216630\pi\)
0.156319 + 0.987707i \(0.450037\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.00359878 + 0.00623326i 0.000170983 + 0.000296151i 0.866111 0.499852i \(-0.166612\pi\)
−0.865940 + 0.500148i \(0.833279\pi\)
\(444\) 0 0
\(445\) −9.36190 + 16.2153i −0.443797 + 0.768679i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.6812 1.44794 0.723968 0.689834i \(-0.242316\pi\)
0.723968 + 0.689834i \(0.242316\pi\)
\(450\) 0 0
\(451\) −11.5939 20.0812i −0.545934 0.945585i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10.8299 + 21.7531i 0.507714 + 1.01980i
\(456\) 0 0
\(457\) 19.0561 + 33.0061i 0.891406 + 1.54396i 0.838191 + 0.545377i \(0.183614\pi\)
0.0532152 + 0.998583i \(0.483053\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.1250 26.1972i 0.704440 1.22013i −0.262453 0.964945i \(-0.584531\pi\)
0.966893 0.255181i \(-0.0821352\pi\)
\(462\) 0 0
\(463\) −12.3004 21.3050i −0.571650 0.990126i −0.996397 0.0848141i \(-0.972970\pi\)
0.424747 0.905312i \(-0.360363\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.26472 5.65466i 0.151073 0.261667i −0.780549 0.625095i \(-0.785060\pi\)
0.931622 + 0.363428i \(0.118394\pi\)
\(468\) 0 0
\(469\) −18.5909 + 28.0524i −0.858450 + 1.29534i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −9.50907 + 16.4702i −0.437228 + 0.757300i
\(474\) 0 0
\(475\) −3.27322 + 5.66938i −0.150186 + 0.260129i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.4523 1.25433 0.627164 0.778887i \(-0.284215\pi\)
0.627164 + 0.778887i \(0.284215\pi\)
\(480\) 0 0
\(481\) 25.0214 1.14088
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.05819 + 5.29694i −0.138865 + 0.240522i
\(486\) 0 0
\(487\) −16.0776 27.8473i −0.728547 1.26188i −0.957497 0.288442i \(-0.906863\pi\)
0.228950 0.973438i \(-0.426471\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14.8937 + 25.7966i 0.672141 + 1.16418i 0.977296 + 0.211880i \(0.0679585\pi\)
−0.305155 + 0.952303i \(0.598708\pi\)
\(492\) 0 0
\(493\) 37.0447 1.66841
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 19.5373 + 1.20635i 0.876369 + 0.0541123i
\(498\) 0 0
\(499\) −29.1751 −1.30606 −0.653028 0.757333i \(-0.726502\pi\)
−0.653028 + 0.757333i \(0.726502\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 39.1553 1.74585 0.872923 0.487857i \(-0.162221\pi\)
0.872923 + 0.487857i \(0.162221\pi\)
\(504\) 0 0
\(505\) −1.01264 −0.0450617
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.21923 −0.408635 −0.204318 0.978905i \(-0.565498\pi\)
−0.204318 + 0.978905i \(0.565498\pi\)
\(510\) 0 0
\(511\) −9.98263 20.0512i −0.441606 0.887015i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.99846 −0.440585
\(516\) 0 0
\(517\) −2.44359 4.23242i −0.107469 0.186142i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14.6973 + 25.4565i 0.643900 + 1.11527i 0.984554 + 0.175079i \(0.0560181\pi\)
−0.340654 + 0.940189i \(0.610649\pi\)
\(522\) 0 0
\(523\) −8.57488 + 14.8521i −0.374953 + 0.649438i −0.990320 0.138803i \(-0.955675\pi\)
0.615367 + 0.788241i \(0.289008\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14.4325 0.628689
\(528\) 0 0
\(529\) −16.9095 −0.735197
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −19.7985 + 34.2919i −0.857566 + 1.48535i
\(534\) 0 0
\(535\) 1.77967 3.08247i 0.0769417 0.133267i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 19.6331 + 2.43381i 0.845656 + 0.104831i
\(540\) 0 0
\(541\) −11.0775 + 19.1868i −0.476259 + 0.824905i −0.999630 0.0272000i \(-0.991341\pi\)
0.523371 + 0.852105i \(0.324674\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.79901 6.58009i −0.162732 0.281860i
\(546\) 0 0
\(547\) −3.87110 + 6.70494i −0.165516 + 0.286683i −0.936839 0.349762i \(-0.886262\pi\)
0.771322 + 0.636445i \(0.219596\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20.5465 + 35.5876i 0.875311 + 1.51608i
\(552\) 0 0
\(553\) −4.64967 9.33938i −0.197724 0.397151i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.73233 8.19663i −0.200515 0.347302i 0.748179 0.663496i \(-0.230928\pi\)
−0.948694 + 0.316194i \(0.897595\pi\)
\(558\) 0 0
\(559\) 32.4766 1.37362
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.50632 16.4654i 0.400644 0.693935i −0.593160 0.805084i \(-0.702120\pi\)
0.993804 + 0.111150i \(0.0354532\pi\)
\(564\) 0 0
\(565\) −12.6478 21.9067i −0.532097 0.921620i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.9121 32.7568i −0.792837 1.37323i −0.924203 0.381901i \(-0.875270\pi\)
0.131366 0.991334i \(-0.458064\pi\)
\(570\) 0 0
\(571\) −12.0400 + 20.8540i −0.503860 + 0.872712i 0.496130 + 0.868248i \(0.334754\pi\)
−0.999990 + 0.00446331i \(0.998579\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.40172 0.141861
\(576\) 0 0
\(577\) −15.1936 26.3160i −0.632516 1.09555i −0.987036 0.160502i \(-0.948689\pi\)
0.354519 0.935049i \(-0.384645\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.8086 + 20.8362i −0.572878 + 0.864432i
\(582\) 0 0
\(583\) −16.4197 28.4398i −0.680034 1.17785i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19.7714 34.2451i 0.816053 1.41345i −0.0925163 0.995711i \(-0.529491\pi\)
0.908569 0.417734i \(-0.137176\pi\)
\(588\) 0 0
\(589\) 8.00486 + 13.8648i 0.329834 + 0.571290i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.167128 0.289474i 0.00686313 0.0118873i −0.862573 0.505932i \(-0.831149\pi\)
0.869437 + 0.494045i \(0.164482\pi\)
\(594\) 0 0
\(595\) 9.60751 + 19.2978i 0.393869 + 0.791131i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.16166 2.01205i 0.0474640 0.0822101i −0.841317 0.540542i \(-0.818219\pi\)
0.888781 + 0.458331i \(0.151553\pi\)
\(600\) 0 0
\(601\) −8.31826 + 14.4076i −0.339309 + 0.587700i −0.984303 0.176488i \(-0.943526\pi\)
0.644994 + 0.764188i \(0.276860\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5.73320 −0.233088
\(606\) 0 0
\(607\) 23.5587 0.956217 0.478109 0.878301i \(-0.341323\pi\)
0.478109 + 0.878301i \(0.341323\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.17283 + 7.22756i −0.168815 + 0.292396i
\(612\) 0 0
\(613\) −18.4839 32.0151i −0.746559 1.29308i −0.949463 0.313879i \(-0.898371\pi\)
0.202904 0.979199i \(-0.434962\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.8625 + 30.9388i 0.719118 + 1.24555i 0.961350 + 0.275330i \(0.0887872\pi\)
−0.242232 + 0.970218i \(0.577879\pi\)
\(618\) 0 0
\(619\) 23.0214 0.925307 0.462654 0.886539i \(-0.346897\pi\)
0.462654 + 0.886539i \(0.346897\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 14.3801 21.6986i 0.576128 0.869336i
\(624\) 0 0
\(625\) −16.2081 −0.648323
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 22.1971 0.885058
\(630\) 0 0
\(631\) −33.7928 −1.34527 −0.672635 0.739974i \(-0.734838\pi\)
−0.672635 + 0.739974i \(0.734838\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.01418 0.357717
\(636\) 0 0
\(637\) −13.1640 31.1131i −0.521579 1.23274i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −24.3067 −0.960058 −0.480029 0.877253i \(-0.659374\pi\)
−0.480029 + 0.877253i \(0.659374\pi\)
\(642\) 0 0
\(643\) 8.27674 + 14.3357i 0.326403 + 0.565346i 0.981795 0.189942i \(-0.0608300\pi\)
−0.655392 + 0.755289i \(0.727497\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.5103 42.4531i −0.963600 1.66900i −0.713329 0.700829i \(-0.752814\pi\)
−0.250271 0.968176i \(-0.580520\pi\)
\(648\) 0 0
\(649\) 19.0287 32.9586i 0.746941 1.29374i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −41.4646 −1.62263 −0.811317 0.584607i \(-0.801249\pi\)
−0.811317 + 0.584607i \(0.801249\pi\)
\(654\) 0 0
\(655\) 26.0855 1.01925
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.587031 + 1.01677i −0.0228675 + 0.0396076i −0.877233 0.480065i \(-0.840613\pi\)
0.854365 + 0.519673i \(0.173946\pi\)
\(660\) 0 0
\(661\) −8.72665 + 15.1150i −0.339427 + 0.587906i −0.984325 0.176363i \(-0.943567\pi\)
0.644898 + 0.764269i \(0.276900\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −13.2100 + 19.9330i −0.512262 + 0.772967i
\(666\) 0 0
\(667\) 10.6766 18.4923i 0.413398 0.716026i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7.40642 12.8283i −0.285922 0.495231i
\(672\) 0 0
\(673\) 9.84453 17.0512i 0.379479 0.657277i −0.611508 0.791239i \(-0.709437\pi\)
0.990986 + 0.133962i \(0.0427699\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.4311 + 30.1915i 0.669931 + 1.16035i 0.977923 + 0.208965i \(0.0670095\pi\)
−0.307992 + 0.951389i \(0.599657\pi\)
\(678\) 0 0
\(679\) 4.69746 7.08814i 0.180272 0.272018i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.44793 4.23993i −0.0936673 0.162237i 0.815384 0.578920i \(-0.196526\pi\)
−0.909052 + 0.416683i \(0.863192\pi\)
\(684\) 0 0
\(685\) −40.0991 −1.53211
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −28.0394 + 48.5656i −1.06821 + 1.85020i
\(690\) 0 0
\(691\) −16.1078 27.8995i −0.612768 1.06135i −0.990772 0.135541i \(-0.956723\pi\)
0.378003 0.925804i \(-0.376611\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.2703 17.7886i −0.389573 0.674761i
\(696\) 0 0
\(697\) −17.5637 + 30.4213i −0.665274 + 1.15229i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −30.9190 −1.16779 −0.583897 0.811828i \(-0.698473\pi\)
−0.583897 + 0.811828i \(0.698473\pi\)
\(702\) 0 0
\(703\) 12.3114 + 21.3241i 0.464335 + 0.804252i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.40516 + 0.0867630i 0.0528465 + 0.00326306i
\(708\) 0 0
\(709\) −0.302506 0.523955i −0.0113608 0.0196776i 0.860289 0.509807i \(-0.170283\pi\)
−0.871650 + 0.490129i \(0.836950\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.15955 7.20456i 0.155776 0.269813i
\(714\) 0 0
\(715\) −12.9786 22.4796i −0.485371 0.840688i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −18.5635 + 32.1529i −0.692302 + 1.19910i 0.278780 + 0.960355i \(0.410070\pi\)
−0.971082 + 0.238747i \(0.923263\pi\)
\(720\) 0 0
\(721\) 13.8741 + 0.856671i 0.516699 + 0.0319041i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.96319 10.3285i 0.221467 0.383593i
\(726\) 0 0
\(727\) −9.25293 + 16.0265i −0.343172 + 0.594392i −0.985020 0.172440i \(-0.944835\pi\)
0.641848 + 0.766832i \(0.278168\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 28.8109 1.06561
\(732\) 0 0
\(733\) 33.8642 1.25080 0.625401 0.780304i \(-0.284936\pi\)
0.625401 + 0.780304i \(0.284936\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 17.9744 31.1325i 0.662094 1.14678i
\(738\) 0 0
\(739\) −2.36835 4.10210i −0.0871211 0.150898i 0.819172 0.573548i \(-0.194433\pi\)
−0.906293 + 0.422650i \(0.861100\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10.2539 17.7603i −0.376179 0.651562i 0.614323 0.789054i \(-0.289429\pi\)
−0.990503 + 0.137493i \(0.956096\pi\)
\(744\) 0 0
\(745\) 8.09540 0.296593
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.73362 + 4.12483i −0.0998841 + 0.150718i
\(750\) 0 0
\(751\) 43.5382 1.58873 0.794365 0.607440i \(-0.207804\pi\)
0.794365 + 0.607440i \(0.207804\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 33.0017 1.20105
\(756\) 0 0
\(757\) −2.62356 −0.0953547 −0.0476774 0.998863i \(-0.515182\pi\)
−0.0476774 + 0.998863i \(0.515182\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.7600 0.680050 0.340025 0.940416i \(-0.389564\pi\)
0.340025 + 0.940416i \(0.389564\pi\)
\(762\) 0 0
\(763\) 4.70782 + 9.45619i 0.170435 + 0.342337i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −64.9892 −2.34662
\(768\) 0 0
\(769\) −12.1992 21.1297i −0.439916 0.761957i 0.557767 0.829998i \(-0.311658\pi\)
−0.997683 + 0.0680412i \(0.978325\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.41582 + 5.91637i 0.122858 + 0.212797i 0.920894 0.389814i \(-0.127461\pi\)
−0.798035 + 0.602611i \(0.794127\pi\)
\(774\) 0 0
\(775\) 2.32324 4.02397i 0.0834532 0.144545i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −38.9663 −1.39611
\(780\) 0 0
\(781\) −20.9095 −0.748202
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.44128 11.1566i 0.229899 0.398197i
\(786\) 0 0
\(787\) −6.38273 + 11.0552i −0.227520 + 0.394076i −0.957072 0.289849i \(-0.906395\pi\)
0.729553 + 0.683925i \(0.239728\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.6734 + 31.4819i 0.557284 + 1.11937i
\(792\) 0 0
\(793\) −12.6477 + 21.9064i −0.449132 + 0.777920i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −12.0922 20.9444i −0.428329 0.741888i 0.568395 0.822755i \(-0.307564\pi\)
−0.996725 + 0.0808672i \(0.974231\pi\)
\(798\) 0 0
\(799\) −3.70183 + 6.41176i −0.130961 + 0.226832i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 11.9632 + 20.7209i 0.422172 + 0.731223i
\(804\) 0 0
\(805\) 12.4022 + 0.765787i 0.437120 + 0.0269904i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −21.6057 37.4221i −0.759614 1.31569i −0.943047 0.332659i \(-0.892054\pi\)
0.183433 0.983032i \(-0.441279\pi\)
\(810\) 0 0
\(811\) −6.80934 −0.239108 −0.119554 0.992828i \(-0.538147\pi\)
−0.119554 + 0.992828i \(0.538147\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16.1130 27.9085i 0.564413 0.977592i
\(816\) 0 0
\(817\) 15.9797 + 27.6777i 0.559059 + 0.968319i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16.6274 + 28.7995i 0.580300 + 1.00511i 0.995443 + 0.0953533i \(0.0303981\pi\)
−0.415143 + 0.909756i \(0.636269\pi\)
\(822\) 0 0
\(823\) −27.5340 + 47.6903i −0.959775 + 1.66238i −0.236735 + 0.971574i \(0.576077\pi\)
−0.723041 + 0.690805i \(0.757256\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.7613 0.478528 0.239264 0.970955i \(-0.423094\pi\)
0.239264 + 0.970955i \(0.423094\pi\)
\(828\) 0 0
\(829\) −2.22066 3.84630i −0.0771268 0.133588i 0.824882 0.565304i \(-0.191241\pi\)
−0.902009 + 0.431717i \(0.857908\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −11.6782 27.6012i −0.404625 0.956326i
\(834\) 0 0
\(835\) 0.229573 + 0.397633i 0.00794471 + 0.0137606i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8.03211 13.9120i 0.277299 0.480296i −0.693413 0.720540i \(-0.743894\pi\)
0.970713 + 0.240244i \(0.0772273\pi\)
\(840\) 0 0
\(841\) −22.9319 39.7192i −0.790755 1.36963i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −9.79323 + 16.9624i −0.336897 + 0.583524i
\(846\) 0 0
\(847\) 7.95554 + 0.491223i 0.273355 + 0.0168786i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.39738 11.0806i 0.219299 0.379838i
\(852\) 0 0
\(853\) −16.5865 + 28.7287i −0.567912 + 0.983653i 0.428860 + 0.903371i \(0.358915\pi\)
−0.996772 + 0.0802821i \(0.974418\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.27179 0.145922 0.0729608 0.997335i \(-0.476755\pi\)
0.0729608 + 0.997335i \(0.476755\pi\)
\(858\) 0 0
\(859\) 34.6896 1.18360 0.591798 0.806087i \(-0.298418\pi\)
0.591798 + 0.806087i \(0.298418\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.1166 27.9147i 0.548615 0.950229i −0.449755 0.893152i \(-0.648489\pi\)
0.998370 0.0570767i \(-0.0181780\pi\)
\(864\) 0 0
\(865\) 10.8580 + 18.8066i 0.369182 + 0.639442i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.57216 + 9.65127i 0.189023 + 0.327397i
\(870\) 0 0
\(871\) −61.3884 −2.08007
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 32.0542 + 1.97922i 1.08363 + 0.0669098i
\(876\) 0 0
\(877\) −21.3998 −0.722619 −0.361309 0.932446i \(-0.617670\pi\)
−0.361309 + 0.932446i \(0.617670\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 21.2279 0.715186 0.357593 0.933877i \(-0.383597\pi\)
0.357593 + 0.933877i \(0.383597\pi\)
\(882\) 0 0
\(883\) 44.9170 1.51158 0.755788 0.654816i \(-0.227254\pi\)
0.755788 + 0.654816i \(0.227254\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.75524 0.0925119 0.0462560 0.998930i \(-0.485271\pi\)
0.0462560 + 0.998930i \(0.485271\pi\)
\(888\) 0 0
\(889\) −12.5083 0.772338i −0.419515 0.0259034i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.21276 −0.274829
\(894\) 0 0
\(895\) −23.9007 41.3973i −0.798914 1.38376i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −14.5833 25.2591i −0.486382 0.842438i
\(900\) 0 0
\(901\) −24.8745 + 43.0838i −0.828689 + 1.43533i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 29.2517 0.972360
\(906\) 0 0
\(907\) 41.9934 1.39437 0.697185 0.716892i \(-0.254436\pi\)
0.697185 + 0.716892i \(0.254436\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.384944 + 0.666743i −0.0127538 + 0.0220902i −0.872332 0.488914i \(-0.837393\pi\)
0.859578 + 0.511004i \(0.170726\pi\)
\(912\) 0 0
\(913\) 13.3507 23.1240i 0.441842 0.765293i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −36.1969 2.23502i −1.19533 0.0738068i
\(918\) 0 0
\(919\) 18.0097 31.1937i 0.594086 1.02899i −0.399590 0.916694i \(-0.630847\pi\)
0.993675 0.112292i \(-0.0358193\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17.8532 + 30.9227i 0.587647 + 1.01783i
\(924\) 0 0
\(925\) 3.57313 6.18885i 0.117484 0.203488i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −24.5047 42.4433i −0.803972 1.39252i −0.916983 0.398926i \(-0.869383\pi\)
0.113011 0.993594i \(-0.463950\pi\)
\(930\) 0 0
\(931\) 20.0384 26.5276i 0.656732 0.869408i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −11.5136 19.9422i −0.376536 0.652180i
\(936\) 0 0
\(937\) 49.0435 1.60218 0.801090 0.598544i \(-0.204254\pi\)
0.801090 + 0.598544i \(0.204254\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11.7691 20.3847i 0.383661 0.664521i −0.607921 0.793997i \(-0.707996\pi\)
0.991583 + 0.129476i \(0.0413296\pi\)
\(942\) 0 0
\(943\) 10.1240 + 17.5353i 0.329683 + 0.571027i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.04896 + 12.2092i 0.229060 + 0.396744i 0.957530 0.288334i \(-0.0931013\pi\)
−0.728469 + 0.685078i \(0.759768\pi\)
\(948\) 0 0
\(949\) 20.4291 35.3843i 0.663158 1.14862i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −26.2807 −0.851316 −0.425658 0.904884i \(-0.639957\pi\)
−0.425658 + 0.904884i \(0.639957\pi\)
\(954\) 0 0
\(955\) 11.0126 + 19.0743i 0.356358 + 0.617230i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 55.6425 + 3.43571i 1.79679 + 0.110945i
\(960\) 0 0
\(961\) 9.81838 + 17.0059i 0.316722 + 0.548578i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.04555 + 3.54300i −0.0658487 + 0.114053i
\(966\) 0 0
\(967\) 9.48538 + 16.4292i 0.305029 + 0.528326i 0.977268 0.212008i \(-0.0680004\pi\)
−0.672238 + 0.740335i \(0.734667\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −29.5030 + 51.1008i −0.946797 + 1.63990i −0.194686 + 0.980866i \(0.562369\pi\)
−0.752112 + 0.659036i \(0.770965\pi\)
\(972\) 0 0
\(973\) 12.7271 + 25.5639i 0.408013 + 0.819541i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11.0850 19.1997i 0.354639 0.614253i −0.632417 0.774628i \(-0.717937\pi\)
0.987056 + 0.160375i \(0.0512704\pi\)
\(978\) 0 0
\(979\) −13.9032 + 24.0811i −0.444349 + 0.769634i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −36.5019 −1.16423 −0.582115 0.813107i \(-0.697775\pi\)
−0.582115 + 0.813107i \(0.697775\pi\)
\(984\) 0 0
\(985\) −1.23536 −0.0393619
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.30351 14.3821i 0.264036 0.457324i
\(990\) 0 0
\(991\) 5.91487 + 10.2449i 0.187892 + 0.325439i 0.944547 0.328375i \(-0.106501\pi\)
−0.756655 + 0.653814i \(0.773168\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.88548 17.1222i −0.313391 0.542809i
\(996\) 0 0
\(997\) 23.0321 0.729433 0.364716 0.931119i \(-0.381166\pi\)
0.364716 + 0.931119i \(0.381166\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.l.m.541.3 8
3.2 odd 2 2268.2.l.l.541.2 8
7.4 even 3 2268.2.i.l.865.2 8
9.2 odd 6 2268.2.k.d.1297.3 yes 8
9.4 even 3 2268.2.i.l.2053.2 8
9.5 odd 6 2268.2.i.m.2053.3 8
9.7 even 3 2268.2.k.c.1297.2 8
21.11 odd 6 2268.2.i.m.865.3 8
63.4 even 3 inner 2268.2.l.m.109.3 8
63.11 odd 6 2268.2.k.d.1621.3 yes 8
63.25 even 3 2268.2.k.c.1621.2 yes 8
63.32 odd 6 2268.2.l.l.109.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.i.l.865.2 8 7.4 even 3
2268.2.i.l.2053.2 8 9.4 even 3
2268.2.i.m.865.3 8 21.11 odd 6
2268.2.i.m.2053.3 8 9.5 odd 6
2268.2.k.c.1297.2 8 9.7 even 3
2268.2.k.c.1621.2 yes 8 63.25 even 3
2268.2.k.d.1297.3 yes 8 9.2 odd 6
2268.2.k.d.1621.3 yes 8 63.11 odd 6
2268.2.l.l.109.2 8 63.32 odd 6
2268.2.l.l.541.2 8 3.2 odd 2
2268.2.l.m.109.3 8 63.4 even 3 inner
2268.2.l.m.541.3 8 1.1 even 1 trivial