L(s) = 1 | + 1.90·5-s + (−2.64 − 0.163i)7-s + 2.82·11-s + (−2.41 − 4.17i)13-s + (−2.14 − 3.70i)17-s + (2.37 − 4.11i)19-s − 2.46·23-s − 1.37·25-s + (−4.32 + 7.49i)29-s + (−1.68 + 2.91i)31-s + (−5.02 − 0.310i)35-s + (−2.59 + 4.48i)37-s + (−4.10 − 7.10i)41-s + (−3.36 + 5.82i)43-s + (−0.864 − 1.49i)47-s + ⋯ |
L(s) = 1 | + 0.851·5-s + (−0.998 − 0.0616i)7-s + 0.852·11-s + (−0.669 − 1.15i)13-s + (−0.519 − 0.899i)17-s + (0.544 − 0.943i)19-s − 0.514·23-s − 0.275·25-s + (−0.803 + 1.39i)29-s + (−0.302 + 0.524i)31-s + (−0.849 − 0.0524i)35-s + (−0.426 + 0.738i)37-s + (−0.640 − 1.10i)41-s + (−0.513 + 0.888i)43-s + (−0.126 − 0.218i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.641 + 0.767i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.641 + 0.767i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9723190088\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9723190088\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.64 + 0.163i)T \) |
good | 5 | \( 1 - 1.90T + 5T^{2} \) |
| 11 | \( 1 - 2.82T + 11T^{2} \) |
| 13 | \( 1 + (2.41 + 4.17i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.14 + 3.70i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.37 + 4.11i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 2.46T + 23T^{2} \) |
| 29 | \( 1 + (4.32 - 7.49i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.68 - 2.91i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.59 - 4.48i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (4.10 + 7.10i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.36 - 5.82i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.864 + 1.49i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.80 + 10.0i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.73 + 11.6i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.62 + 4.53i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.35 + 11.0i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 7.39T + 71T^{2} \) |
| 73 | \( 1 + (-4.23 - 7.33i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.97 - 3.41i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.72 + 8.18i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (4.91 - 8.52i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.60 - 2.78i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.015434373218387421457082458963, −7.969206895097090107954853508756, −6.84617458443832269382333315240, −6.67568181173955084707773638993, −5.46176456762967182313565139827, −5.01919146650536885735870208917, −3.60192095558514537246364466014, −2.93255701287329089807610305851, −1.81153302748960951270946843841, −0.30806769887984025941281036622,
1.61560065563005053085442857019, 2.38307150792236887834903185601, 3.72669291621433518608319042742, 4.27273225738102731416520736617, 5.68752569388346702977579744962, 6.11101315265118574913916337643, 6.82881681296656166151268685342, 7.67068406773877140818887379218, 8.764447039741412217412391173022, 9.463676879113321240072752654791