Properties

Label 2268.2.k.g.1621.4
Level $2268$
Weight $2$
Character 2268.1621
Analytic conductor $18.110$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(1297,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.1297"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 9x^{14} + 31x^{12} - 282x^{10} + 1695x^{8} - 3318x^{6} + 4606x^{4} - 4116x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1621.4
Root \(1.30887 + 2.01944i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1621
Dual form 2268.2.k.g.1297.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.171869 - 0.297685i) q^{5} +(-2.41508 + 1.08045i) q^{7} +(-2.45988 + 4.26064i) q^{11} -1.94832 q^{13} +(2.07359 - 3.59156i) q^{17} +(0.202315 + 0.350420i) q^{19} +(-1.37943 - 2.38925i) q^{23} +(2.44092 - 4.22780i) q^{25} -3.27721 q^{29} +(1.64324 - 2.84617i) q^{31} +(0.736710 + 0.533240i) q^{35} +(-3.38925 - 5.87035i) q^{37} +5.62500 q^{41} +9.92590 q^{43} +(6.60038 + 11.4322i) q^{47} +(4.66527 - 5.21874i) q^{49} +(1.38163 - 2.39306i) q^{53} +1.69110 q^{55} +(4.22560 - 7.31896i) q^{59} +(-5.37804 - 9.31503i) q^{61} +(0.334856 + 0.579987i) q^{65} +(4.21277 - 7.29673i) q^{67} -5.08888 q^{71} +(4.58416 - 7.94000i) q^{73} +(1.33742 - 12.9476i) q^{77} +(-2.24601 - 3.89020i) q^{79} -9.25931 q^{83} -1.42554 q^{85} +(3.54253 + 6.13584i) q^{89} +(4.70537 - 2.10506i) q^{91} +(0.0695431 - 0.120452i) q^{95} +2.62462 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{7} - 20 q^{13} + 8 q^{19} - 8 q^{31} - 4 q^{37} + 20 q^{43} + 10 q^{49} - 32 q^{55} + 28 q^{61} + 18 q^{67} - 20 q^{79} + 76 q^{85} - 2 q^{91} - 84 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.171869 0.297685i −0.0768620 0.133129i 0.825032 0.565085i \(-0.191157\pi\)
−0.901894 + 0.431956i \(0.857823\pi\)
\(6\) 0 0
\(7\) −2.41508 + 1.08045i −0.912816 + 0.408371i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.45988 + 4.26064i −0.741682 + 1.28463i 0.210048 + 0.977691i \(0.432638\pi\)
−0.951729 + 0.306939i \(0.900695\pi\)
\(12\) 0 0
\(13\) −1.94832 −0.540368 −0.270184 0.962809i \(-0.587085\pi\)
−0.270184 + 0.962809i \(0.587085\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.07359 3.59156i 0.502919 0.871082i −0.497075 0.867708i \(-0.665593\pi\)
0.999994 0.00337409i \(-0.00107401\pi\)
\(18\) 0 0
\(19\) 0.202315 + 0.350420i 0.0464142 + 0.0803918i 0.888299 0.459265i \(-0.151887\pi\)
−0.841885 + 0.539657i \(0.818554\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.37943 2.38925i −0.287631 0.498192i 0.685612 0.727967i \(-0.259535\pi\)
−0.973244 + 0.229774i \(0.926201\pi\)
\(24\) 0 0
\(25\) 2.44092 4.22780i 0.488184 0.845560i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.27721 −0.608563 −0.304282 0.952582i \(-0.598416\pi\)
−0.304282 + 0.952582i \(0.598416\pi\)
\(30\) 0 0
\(31\) 1.64324 2.84617i 0.295134 0.511187i −0.679882 0.733322i \(-0.737969\pi\)
0.975016 + 0.222134i \(0.0713023\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.736710 + 0.533240i 0.124527 + 0.0901340i
\(36\) 0 0
\(37\) −3.38925 5.87035i −0.557189 0.965079i −0.997730 0.0673466i \(-0.978547\pi\)
0.440541 0.897733i \(-0.354787\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.62500 0.878477 0.439238 0.898371i \(-0.355248\pi\)
0.439238 + 0.898371i \(0.355248\pi\)
\(42\) 0 0
\(43\) 9.92590 1.51369 0.756843 0.653597i \(-0.226741\pi\)
0.756843 + 0.653597i \(0.226741\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.60038 + 11.4322i 0.962764 + 1.66756i 0.715507 + 0.698606i \(0.246196\pi\)
0.247257 + 0.968950i \(0.420471\pi\)
\(48\) 0 0
\(49\) 4.66527 5.21874i 0.666467 0.745535i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.38163 2.39306i 0.189782 0.328711i −0.755396 0.655269i \(-0.772555\pi\)
0.945177 + 0.326557i \(0.105889\pi\)
\(54\) 0 0
\(55\) 1.69110 0.228028
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.22560 7.31896i 0.550127 0.952847i −0.448138 0.893964i \(-0.647913\pi\)
0.998265 0.0588830i \(-0.0187539\pi\)
\(60\) 0 0
\(61\) −5.37804 9.31503i −0.688587 1.19267i −0.972295 0.233757i \(-0.924898\pi\)
0.283708 0.958911i \(-0.408435\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.334856 + 0.579987i 0.0415337 + 0.0719386i
\(66\) 0 0
\(67\) 4.21277 7.29673i 0.514672 0.891438i −0.485183 0.874412i \(-0.661247\pi\)
0.999855 0.0170251i \(-0.00541953\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.08888 −0.603939 −0.301970 0.953318i \(-0.597644\pi\)
−0.301970 + 0.953318i \(0.597644\pi\)
\(72\) 0 0
\(73\) 4.58416 7.94000i 0.536535 0.929306i −0.462552 0.886592i \(-0.653066\pi\)
0.999087 0.0427143i \(-0.0136005\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.33742 12.9476i 0.152414 1.47551i
\(78\) 0 0
\(79\) −2.24601 3.89020i −0.252696 0.437682i 0.711571 0.702614i \(-0.247984\pi\)
−0.964267 + 0.264932i \(0.914651\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.25931 −1.01634 −0.508171 0.861256i \(-0.669678\pi\)
−0.508171 + 0.861256i \(0.669678\pi\)
\(84\) 0 0
\(85\) −1.42554 −0.154621
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.54253 + 6.13584i 0.375507 + 0.650397i 0.990403 0.138211i \(-0.0441353\pi\)
−0.614896 + 0.788608i \(0.710802\pi\)
\(90\) 0 0
\(91\) 4.70537 2.10506i 0.493257 0.220670i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.0695431 0.120452i 0.00713498 0.0123581i
\(96\) 0 0
\(97\) 2.62462 0.266490 0.133245 0.991083i \(-0.457460\pi\)
0.133245 + 0.991083i \(0.457460\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.85269 + 13.6013i −0.781372 + 1.35338i 0.149771 + 0.988721i \(0.452146\pi\)
−0.931143 + 0.364655i \(0.881187\pi\)
\(102\) 0 0
\(103\) 3.87139 + 6.70544i 0.381459 + 0.660707i 0.991271 0.131839i \(-0.0420883\pi\)
−0.609812 + 0.792546i \(0.708755\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.12952 10.6166i −0.592563 1.02635i −0.993886 0.110413i \(-0.964783\pi\)
0.401323 0.915937i \(-0.368551\pi\)
\(108\) 0 0
\(109\) 4.89342 8.47565i 0.468705 0.811820i −0.530656 0.847588i \(-0.678054\pi\)
0.999360 + 0.0357675i \(0.0113876\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.09328 −0.479136 −0.239568 0.970880i \(-0.577006\pi\)
−0.239568 + 0.970880i \(0.577006\pi\)
\(114\) 0 0
\(115\) −0.474162 + 0.821273i −0.0442158 + 0.0765841i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.12740 + 10.9143i −0.103348 + 1.00051i
\(120\) 0 0
\(121\) −6.60202 11.4350i −0.600183 1.03955i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.39676 −0.303815
\(126\) 0 0
\(127\) 2.24242 0.198982 0.0994911 0.995038i \(-0.468279\pi\)
0.0994911 + 0.995038i \(0.468279\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.72722 6.45573i −0.325648 0.564039i 0.655995 0.754765i \(-0.272249\pi\)
−0.981643 + 0.190726i \(0.938916\pi\)
\(132\) 0 0
\(133\) −0.867218 0.627702i −0.0751973 0.0544287i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.22340 + 7.31515i −0.360830 + 0.624975i −0.988098 0.153828i \(-0.950840\pi\)
0.627268 + 0.778804i \(0.284173\pi\)
\(138\) 0 0
\(139\) −3.64705 −0.309338 −0.154669 0.987966i \(-0.549431\pi\)
−0.154669 + 0.987966i \(0.549431\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.79264 8.30110i 0.400781 0.694173i
\(144\) 0 0
\(145\) 0.563250 + 0.975578i 0.0467754 + 0.0810173i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.147078 + 0.254746i 0.0120491 + 0.0208696i 0.871987 0.489529i \(-0.162831\pi\)
−0.859938 + 0.510399i \(0.829498\pi\)
\(150\) 0 0
\(151\) 9.60202 16.6312i 0.781401 1.35343i −0.149725 0.988728i \(-0.547839\pi\)
0.931126 0.364699i \(-0.118828\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.12968 −0.0907384
\(156\) 0 0
\(157\) 6.55832 11.3593i 0.523411 0.906575i −0.476218 0.879327i \(-0.657993\pi\)
0.999629 0.0272471i \(-0.00867410\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.91290 + 4.27983i 0.466002 + 0.337298i
\(162\) 0 0
\(163\) 0.496191 + 0.859428i 0.0388647 + 0.0673156i 0.884803 0.465964i \(-0.154293\pi\)
−0.845939 + 0.533280i \(0.820959\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.8608 1.07258 0.536291 0.844033i \(-0.319825\pi\)
0.536291 + 0.844033i \(0.319825\pi\)
\(168\) 0 0
\(169\) −9.20403 −0.708003
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.50243 4.33434i −0.190256 0.329534i 0.755079 0.655634i \(-0.227599\pi\)
−0.945335 + 0.326100i \(0.894265\pi\)
\(174\) 0 0
\(175\) −1.32712 + 12.8478i −0.100321 + 0.971201i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.8101 18.7236i 0.807982 1.39947i −0.106277 0.994337i \(-0.533893\pi\)
0.914259 0.405130i \(-0.132774\pi\)
\(180\) 0 0
\(181\) −26.0342 −1.93511 −0.967553 0.252666i \(-0.918693\pi\)
−0.967553 + 0.252666i \(0.918693\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.16501 + 2.01786i −0.0856532 + 0.148356i
\(186\) 0 0
\(187\) 10.2016 + 17.6696i 0.746012 + 1.29213i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.85252 + 15.3330i 0.640546 + 1.10946i 0.985311 + 0.170769i \(0.0546251\pi\)
−0.344766 + 0.938689i \(0.612042\pi\)
\(192\) 0 0
\(193\) 1.48214 2.56715i 0.106687 0.184787i −0.807739 0.589540i \(-0.799309\pi\)
0.914426 + 0.404753i \(0.132642\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.2357 1.29924 0.649618 0.760260i \(-0.274929\pi\)
0.649618 + 0.760260i \(0.274929\pi\)
\(198\) 0 0
\(199\) 1.61323 2.79419i 0.114359 0.198075i −0.803165 0.595757i \(-0.796852\pi\)
0.917523 + 0.397682i \(0.130185\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.91475 3.54086i 0.555506 0.248519i
\(204\) 0 0
\(205\) −0.966760 1.67448i −0.0675215 0.116951i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.99068 −0.137698
\(210\) 0 0
\(211\) 9.45479 0.650895 0.325447 0.945560i \(-0.394485\pi\)
0.325447 + 0.945560i \(0.394485\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.70595 2.95479i −0.116345 0.201515i
\(216\) 0 0
\(217\) −0.893419 + 8.64917i −0.0606492 + 0.587144i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.04002 + 6.99753i −0.271761 + 0.470705i
\(222\) 0 0
\(223\) −19.2641 −1.29002 −0.645008 0.764176i \(-0.723146\pi\)
−0.645008 + 0.764176i \(0.723146\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.08878 1.88583i 0.0722652 0.125167i −0.827629 0.561276i \(-0.810311\pi\)
0.899894 + 0.436109i \(0.143644\pi\)
\(228\) 0 0
\(229\) −3.10619 5.38008i −0.205263 0.355525i 0.744954 0.667116i \(-0.232472\pi\)
−0.950216 + 0.311591i \(0.899138\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.76391 + 11.7154i 0.443118 + 0.767503i 0.997919 0.0644799i \(-0.0205388\pi\)
−0.554801 + 0.831983i \(0.687206\pi\)
\(234\) 0 0
\(235\) 2.26879 3.92967i 0.148000 0.256343i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.42797 −0.286422 −0.143211 0.989692i \(-0.545743\pi\)
−0.143211 + 0.989692i \(0.545743\pi\)
\(240\) 0 0
\(241\) 11.0545 19.1470i 0.712084 1.23337i −0.251990 0.967730i \(-0.581085\pi\)
0.964074 0.265635i \(-0.0855817\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.35536 0.491842i −0.150478 0.0314226i
\(246\) 0 0
\(247\) −0.394175 0.682731i −0.0250808 0.0434411i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −29.4679 −1.86000 −0.929998 0.367564i \(-0.880192\pi\)
−0.929998 + 0.367564i \(0.880192\pi\)
\(252\) 0 0
\(253\) 13.5729 0.853324
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.6027 27.0247i −0.973270 1.68575i −0.685528 0.728046i \(-0.740429\pi\)
−0.287742 0.957708i \(-0.592905\pi\)
\(258\) 0 0
\(259\) 14.5279 + 10.5155i 0.902721 + 0.653400i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.4058 19.7555i 0.703314 1.21818i −0.263982 0.964528i \(-0.585036\pi\)
0.967296 0.253648i \(-0.0816306\pi\)
\(264\) 0 0
\(265\) −0.949836 −0.0583480
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.7838 + 20.4101i −0.718471 + 1.24443i 0.243135 + 0.969992i \(0.421824\pi\)
−0.961606 + 0.274435i \(0.911509\pi\)
\(270\) 0 0
\(271\) 0.0112106 + 0.0194174i 0.000680998 + 0.00117952i 0.866366 0.499410i \(-0.166450\pi\)
−0.865685 + 0.500590i \(0.833117\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 12.0088 + 20.7998i 0.724155 + 1.25427i
\(276\) 0 0
\(277\) −5.53913 + 9.59405i −0.332814 + 0.576451i −0.983062 0.183271i \(-0.941331\pi\)
0.650248 + 0.759722i \(0.274665\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.273084 0.0162908 0.00814541 0.999967i \(-0.497407\pi\)
0.00814541 + 0.999967i \(0.497407\pi\)
\(282\) 0 0
\(283\) −5.57676 + 9.65923i −0.331504 + 0.574181i −0.982807 0.184636i \(-0.940889\pi\)
0.651303 + 0.758818i \(0.274223\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −13.5848 + 6.07751i −0.801888 + 0.358744i
\(288\) 0 0
\(289\) −0.0995427 0.172413i −0.00585545 0.0101419i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 28.1195 1.64276 0.821379 0.570382i \(-0.193205\pi\)
0.821379 + 0.570382i \(0.193205\pi\)
\(294\) 0 0
\(295\) −2.90499 −0.169135
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.68758 + 4.65503i 0.155427 + 0.269207i
\(300\) 0 0
\(301\) −23.9719 + 10.7244i −1.38172 + 0.618145i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.84863 + 3.20192i −0.105852 + 0.183342i
\(306\) 0 0
\(307\) 22.3340 1.27467 0.637333 0.770588i \(-0.280037\pi\)
0.637333 + 0.770588i \(0.280037\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.9513 + 24.1643i −0.791105 + 1.37023i 0.134179 + 0.990957i \(0.457160\pi\)
−0.925283 + 0.379277i \(0.876173\pi\)
\(312\) 0 0
\(313\) 6.15786 + 10.6657i 0.348063 + 0.602863i 0.985905 0.167304i \(-0.0535062\pi\)
−0.637842 + 0.770167i \(0.720173\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.7767 23.8619i −0.773775 1.34022i −0.935480 0.353379i \(-0.885033\pi\)
0.161705 0.986839i \(-0.448301\pi\)
\(318\) 0 0
\(319\) 8.06155 13.9630i 0.451360 0.781779i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.67807 0.0933704
\(324\) 0 0
\(325\) −4.75571 + 8.23713i −0.263799 + 0.456914i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −28.2923 20.4783i −1.55981 1.12901i
\(330\) 0 0
\(331\) −5.05585 8.75699i −0.277895 0.481327i 0.692967 0.720970i \(-0.256303\pi\)
−0.970861 + 0.239642i \(0.922970\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.89617 −0.158235
\(336\) 0 0
\(337\) 11.8302 0.644430 0.322215 0.946666i \(-0.395573\pi\)
0.322215 + 0.946666i \(0.395573\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.08433 + 14.0025i 0.437791 + 0.758276i
\(342\) 0 0
\(343\) −5.62843 + 17.6443i −0.303907 + 0.952702i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.2249 + 24.6383i −0.763634 + 1.32265i 0.177331 + 0.984151i \(0.443254\pi\)
−0.940966 + 0.338502i \(0.890080\pi\)
\(348\) 0 0
\(349\) −17.5806 −0.941066 −0.470533 0.882382i \(-0.655938\pi\)
−0.470533 + 0.882382i \(0.655938\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.7573 23.8283i 0.732225 1.26825i −0.223705 0.974657i \(-0.571815\pi\)
0.955930 0.293594i \(-0.0948513\pi\)
\(354\) 0 0
\(355\) 0.874619 + 1.51489i 0.0464200 + 0.0804018i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.73182 16.8560i −0.513626 0.889626i −0.999875 0.0158059i \(-0.994969\pi\)
0.486249 0.873820i \(-0.338365\pi\)
\(360\) 0 0
\(361\) 9.41814 16.3127i 0.495691 0.858563i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.15149 −0.164957
\(366\) 0 0
\(367\) −3.48214 + 6.03125i −0.181766 + 0.314829i −0.942482 0.334257i \(-0.891515\pi\)
0.760716 + 0.649085i \(0.224848\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.751185 + 7.27221i −0.0389996 + 0.377554i
\(372\) 0 0
\(373\) 6.90747 + 11.9641i 0.357655 + 0.619477i 0.987569 0.157188i \(-0.0502430\pi\)
−0.629914 + 0.776665i \(0.716910\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.38507 0.328848
\(378\) 0 0
\(379\) −13.3822 −0.687398 −0.343699 0.939080i \(-0.611680\pi\)
−0.343699 + 0.939080i \(0.611680\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.23395 3.86931i −0.114149 0.197712i 0.803290 0.595588i \(-0.203081\pi\)
−0.917439 + 0.397876i \(0.869748\pi\)
\(384\) 0 0
\(385\) −4.08416 + 1.82715i −0.208148 + 0.0931202i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.1232 24.4620i 0.716072 1.24027i −0.246472 0.969150i \(-0.579271\pi\)
0.962545 0.271124i \(-0.0873953\pi\)
\(390\) 0 0
\(391\) −11.4415 −0.578622
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.772037 + 1.33721i −0.0388454 + 0.0672822i
\(396\) 0 0
\(397\) 0.293513 + 0.508379i 0.0147310 + 0.0255148i 0.873297 0.487188i \(-0.161977\pi\)
−0.858566 + 0.512703i \(0.828644\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.5150 + 25.1408i 0.724846 + 1.25547i 0.959037 + 0.283280i \(0.0914226\pi\)
−0.234191 + 0.972191i \(0.575244\pi\)
\(402\) 0 0
\(403\) −3.20156 + 5.54526i −0.159481 + 0.276229i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 33.3486 1.65303
\(408\) 0 0
\(409\) −11.0021 + 19.0562i −0.544018 + 0.942267i 0.454650 + 0.890670i \(0.349764\pi\)
−0.998668 + 0.0515965i \(0.983569\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.29744 + 22.2414i −0.113049 + 1.09443i
\(414\) 0 0
\(415\) 1.59138 + 2.75636i 0.0781180 + 0.135304i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 25.1231 1.22734 0.613671 0.789562i \(-0.289692\pi\)
0.613671 + 0.789562i \(0.289692\pi\)
\(420\) 0 0
\(421\) 0.192252 0.00936980 0.00468490 0.999989i \(-0.498509\pi\)
0.00468490 + 0.999989i \(0.498509\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.1229 17.5334i −0.491035 0.850497i
\(426\) 0 0
\(427\) 23.0528 + 16.6859i 1.11560 + 0.807487i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.7344 18.5925i 0.517057 0.895569i −0.482747 0.875760i \(-0.660361\pi\)
0.999804 0.0198093i \(-0.00630591\pi\)
\(432\) 0 0
\(433\) −40.3807 −1.94057 −0.970286 0.241960i \(-0.922210\pi\)
−0.970286 + 0.241960i \(0.922210\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.558159 0.966760i 0.0267004 0.0462464i
\(438\) 0 0
\(439\) 16.8288 + 29.1484i 0.803196 + 1.39118i 0.917502 + 0.397731i \(0.130202\pi\)
−0.114306 + 0.993446i \(0.536464\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.77416 10.0011i −0.274339 0.475168i 0.695629 0.718401i \(-0.255126\pi\)
−0.969968 + 0.243232i \(0.921792\pi\)
\(444\) 0 0
\(445\) 1.21770 2.10911i 0.0577244 0.0999816i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 22.6025 1.06668 0.533338 0.845902i \(-0.320937\pi\)
0.533338 + 0.845902i \(0.320937\pi\)
\(450\) 0 0
\(451\) −13.8368 + 23.9661i −0.651550 + 1.12852i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.43535 1.03892i −0.0672903 0.0487055i
\(456\) 0 0
\(457\) −1.04064 1.80244i −0.0486792 0.0843148i 0.840659 0.541565i \(-0.182168\pi\)
−0.889338 + 0.457250i \(0.848835\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8.43675 −0.392939 −0.196469 0.980510i \(-0.562948\pi\)
−0.196469 + 0.980510i \(0.562948\pi\)
\(462\) 0 0
\(463\) −5.84462 −0.271623 −0.135811 0.990735i \(-0.543364\pi\)
−0.135811 + 0.990735i \(0.543364\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.04009 + 1.80149i 0.0481298 + 0.0833632i 0.889087 0.457739i \(-0.151341\pi\)
−0.840957 + 0.541102i \(0.818007\pi\)
\(468\) 0 0
\(469\) −2.29046 + 22.1739i −0.105764 + 1.02390i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −24.4165 + 42.2907i −1.12267 + 1.94453i
\(474\) 0 0
\(475\) 1.97534 0.0906348
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.51538 14.7491i 0.389077 0.673902i −0.603248 0.797553i \(-0.706127\pi\)
0.992326 + 0.123652i \(0.0394605\pi\)
\(480\) 0 0
\(481\) 6.60335 + 11.4373i 0.301087 + 0.521498i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.451091 0.781312i −0.0204830 0.0354775i
\(486\) 0 0
\(487\) −11.0758 + 19.1838i −0.501892 + 0.869302i 0.498106 + 0.867116i \(0.334029\pi\)
−0.999998 + 0.00218582i \(0.999304\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.76779 −0.260297 −0.130148 0.991495i \(-0.541545\pi\)
−0.130148 + 0.991495i \(0.541545\pi\)
\(492\) 0 0
\(493\) −6.79559 + 11.7703i −0.306058 + 0.530108i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.2901 5.49827i 0.551286 0.246631i
\(498\) 0 0
\(499\) 5.16034 + 8.93797i 0.231008 + 0.400118i 0.958105 0.286417i \(-0.0924642\pi\)
−0.727097 + 0.686535i \(0.759131\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −29.4644 −1.31375 −0.656876 0.753998i \(-0.728123\pi\)
−0.656876 + 0.753998i \(0.728123\pi\)
\(504\) 0 0
\(505\) 5.39852 0.240231
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.87465 3.24698i −0.0830922 0.143920i 0.821484 0.570231i \(-0.193146\pi\)
−0.904577 + 0.426311i \(0.859813\pi\)
\(510\) 0 0
\(511\) −2.49238 + 24.1287i −0.110257 + 1.06739i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.33074 2.30491i 0.0586394 0.101566i
\(516\) 0 0
\(517\) −64.9445 −2.85626
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.9592 24.1780i 0.611562 1.05926i −0.379415 0.925226i \(-0.623875\pi\)
0.990977 0.134030i \(-0.0427919\pi\)
\(522\) 0 0
\(523\) 21.0680 + 36.4909i 0.921240 + 1.59563i 0.797499 + 0.603320i \(0.206156\pi\)
0.123741 + 0.992315i \(0.460511\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.81480 11.8036i −0.296857 0.514172i
\(528\) 0 0
\(529\) 7.69433 13.3270i 0.334536 0.579434i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10.9593 −0.474701
\(534\) 0 0
\(535\) −2.10694 + 3.64934i −0.0910912 + 0.157775i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10.7592 + 32.7145i 0.463431 + 1.40911i
\(540\) 0 0
\(541\) −14.5992 25.2865i −0.627667 1.08715i −0.988019 0.154334i \(-0.950677\pi\)
0.360352 0.932816i \(-0.382657\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.36410 −0.144102
\(546\) 0 0
\(547\) −11.5224 −0.492664 −0.246332 0.969186i \(-0.579225\pi\)
−0.246332 + 0.969186i \(0.579225\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.663029 1.14840i −0.0282460 0.0489235i
\(552\) 0 0
\(553\) 9.62746 + 6.96847i 0.409401 + 0.296330i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.97631 + 10.3513i −0.253224 + 0.438597i −0.964412 0.264405i \(-0.914824\pi\)
0.711187 + 0.703002i \(0.248158\pi\)
\(558\) 0 0
\(559\) −19.3389 −0.817947
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −11.8099 + 20.4553i −0.497728 + 0.862090i −0.999997 0.00262192i \(-0.999165\pi\)
0.502269 + 0.864711i \(0.332499\pi\)
\(564\) 0 0
\(565\) 0.875375 + 1.51619i 0.0368273 + 0.0637868i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.9745 20.7405i −0.501999 0.869487i −0.999997 0.00230931i \(-0.999265\pi\)
0.497999 0.867178i \(-0.334068\pi\)
\(570\) 0 0
\(571\) −5.04958 + 8.74614i −0.211319 + 0.366014i −0.952127 0.305701i \(-0.901109\pi\)
0.740809 + 0.671716i \(0.234442\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −13.4683 −0.561669
\(576\) 0 0
\(577\) 16.1744 28.0149i 0.673348 1.16627i −0.303600 0.952800i \(-0.598189\pi\)
0.976949 0.213474i \(-0.0684780\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 22.3620 10.0042i 0.927733 0.415044i
\(582\) 0 0
\(583\) 6.79729 + 11.7733i 0.281515 + 0.487598i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.0549 0.415011 0.207505 0.978234i \(-0.433466\pi\)
0.207505 + 0.978234i \(0.433466\pi\)
\(588\) 0 0
\(589\) 1.32981 0.0547937
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.0673 + 29.5613i 0.700868 + 1.21394i 0.968162 + 0.250324i \(0.0805371\pi\)
−0.267294 + 0.963615i \(0.586130\pi\)
\(594\) 0 0
\(595\) 3.44280 1.54022i 0.141141 0.0631429i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −15.2141 + 26.3517i −0.621633 + 1.07670i 0.367549 + 0.930004i \(0.380197\pi\)
−0.989182 + 0.146695i \(0.953136\pi\)
\(600\) 0 0
\(601\) −47.3933 −1.93321 −0.966606 0.256268i \(-0.917507\pi\)
−0.966606 + 0.256268i \(0.917507\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.26936 + 3.93064i −0.0922625 + 0.159803i
\(606\) 0 0
\(607\) 21.9060 + 37.9422i 0.889135 + 1.54003i 0.840899 + 0.541192i \(0.182027\pi\)
0.0482359 + 0.998836i \(0.484640\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.8597 22.2736i −0.520247 0.901094i
\(612\) 0 0
\(613\) 0.997163 1.72714i 0.0402750 0.0697584i −0.845185 0.534474i \(-0.820510\pi\)
0.885460 + 0.464715i \(0.153843\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −42.1124 −1.69538 −0.847690 0.530492i \(-0.822007\pi\)
−0.847690 + 0.530492i \(0.822007\pi\)
\(618\) 0 0
\(619\) −5.88221 + 10.1883i −0.236426 + 0.409502i −0.959686 0.281074i \(-0.909309\pi\)
0.723260 + 0.690576i \(0.242643\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −15.1849 10.9910i −0.608372 0.440347i
\(624\) 0 0
\(625\) −11.6208 20.1278i −0.464833 0.805114i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −28.1116 −1.12088
\(630\) 0 0
\(631\) 37.3202 1.48570 0.742848 0.669460i \(-0.233475\pi\)
0.742848 + 0.669460i \(0.233475\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.385401 0.667534i −0.0152942 0.0264903i
\(636\) 0 0
\(637\) −9.08945 + 10.1678i −0.360137 + 0.402863i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.2296 35.0387i 0.799022 1.38395i −0.121231 0.992624i \(-0.538684\pi\)
0.920254 0.391323i \(-0.127982\pi\)
\(642\) 0 0
\(643\) −2.86891 −0.113139 −0.0565693 0.998399i \(-0.518016\pi\)
−0.0565693 + 0.998399i \(0.518016\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.71712 + 2.97413i −0.0675068 + 0.116925i −0.897803 0.440397i \(-0.854838\pi\)
0.830296 + 0.557322i \(0.188171\pi\)
\(648\) 0 0
\(649\) 20.7889 + 36.0075i 0.816038 + 1.41342i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.2475 + 21.2133i 0.479283 + 0.830142i 0.999718 0.0237590i \(-0.00756342\pi\)
−0.520435 + 0.853901i \(0.674230\pi\)
\(654\) 0 0
\(655\) −1.28118 + 2.21907i −0.0500599 + 0.0867064i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23.2750 0.906664 0.453332 0.891342i \(-0.350235\pi\)
0.453332 + 0.891342i \(0.350235\pi\)
\(660\) 0 0
\(661\) 16.7899 29.0809i 0.653051 1.13112i −0.329328 0.944216i \(-0.606822\pi\)
0.982379 0.186902i \(-0.0598446\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.0378102 + 0.366040i −0.00146622 + 0.0141944i
\(666\) 0 0
\(667\) 4.52069 + 7.83007i 0.175042 + 0.303182i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 52.9173 2.04285
\(672\) 0 0
\(673\) 46.7162 1.80078 0.900388 0.435088i \(-0.143283\pi\)
0.900388 + 0.435088i \(0.143283\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.73653 + 3.00777i 0.0667404 + 0.115598i 0.897465 0.441086i \(-0.145407\pi\)
−0.830724 + 0.556684i \(0.812073\pi\)
\(678\) 0 0
\(679\) −6.33869 + 2.83577i −0.243257 + 0.108827i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.49075 6.04615i 0.133570 0.231349i −0.791480 0.611194i \(-0.790689\pi\)
0.925050 + 0.379845i \(0.124023\pi\)
\(684\) 0 0
\(685\) 2.90348 0.110936
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.69187 + 4.66245i −0.102552 + 0.177625i
\(690\) 0 0
\(691\) −16.5416 28.6509i −0.629272 1.08993i −0.987698 0.156373i \(-0.950020\pi\)
0.358426 0.933558i \(-0.383314\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.626813 + 1.08567i 0.0237764 + 0.0411819i
\(696\) 0 0
\(697\) 11.6639 20.2025i 0.441803 0.765225i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −39.4243 −1.48904 −0.744518 0.667602i \(-0.767321\pi\)
−0.744518 + 0.667602i \(0.767321\pi\)
\(702\) 0 0
\(703\) 1.37139 2.37532i 0.0517230 0.0895868i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.26947 41.3326i 0.160570 1.55447i
\(708\) 0 0
\(709\) −10.5771 18.3201i −0.397232 0.688026i 0.596151 0.802872i \(-0.296696\pi\)
−0.993383 + 0.114846i \(0.963363\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.06694 −0.339559
\(714\) 0 0
\(715\) −3.29482 −0.123219
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13.7586 + 23.8305i 0.513108 + 0.888729i 0.999884 + 0.0152024i \(0.00483926\pi\)
−0.486777 + 0.873527i \(0.661827\pi\)
\(720\) 0 0
\(721\) −16.5946 12.0114i −0.618016 0.447327i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7.99942 + 13.8554i −0.297091 + 0.514577i
\(726\) 0 0
\(727\) 21.0190 0.779550 0.389775 0.920910i \(-0.372553\pi\)
0.389775 + 0.920910i \(0.372553\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 20.5822 35.6495i 0.761262 1.31854i
\(732\) 0 0
\(733\) 3.21219 + 5.56368i 0.118645 + 0.205499i 0.919231 0.393719i \(-0.128812\pi\)
−0.800586 + 0.599218i \(0.795478\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.7258 + 35.8982i 0.763445 + 1.32233i
\(738\) 0 0
\(739\) 19.2219 33.2933i 0.707089 1.22471i −0.258844 0.965919i \(-0.583342\pi\)
0.965932 0.258794i \(-0.0833252\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −19.7146 −0.723257 −0.361629 0.932322i \(-0.617779\pi\)
−0.361629 + 0.932322i \(0.617779\pi\)
\(744\) 0 0
\(745\) 0.0505562 0.0875658i 0.00185223 0.00320816i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 26.2740 + 19.0175i 0.960033 + 0.694883i
\(750\) 0 0
\(751\) −11.4624 19.8534i −0.418268 0.724461i 0.577497 0.816392i \(-0.304029\pi\)
−0.995765 + 0.0919312i \(0.970696\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.60114 −0.240240
\(756\) 0 0
\(757\) −52.3408 −1.90236 −0.951179 0.308639i \(-0.900127\pi\)
−0.951179 + 0.308639i \(0.900127\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.939077 1.62653i −0.0340415 0.0589616i 0.848503 0.529191i \(-0.177505\pi\)
−0.882544 + 0.470229i \(0.844171\pi\)
\(762\) 0 0
\(763\) −2.66053 + 25.7565i −0.0963175 + 0.932448i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.23284 + 14.2597i −0.297271 + 0.514888i
\(768\) 0 0
\(769\) 26.8119 0.966862 0.483431 0.875382i \(-0.339390\pi\)
0.483431 + 0.875382i \(0.339390\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.67835 8.10314i 0.168268 0.291450i −0.769543 0.638595i \(-0.779516\pi\)
0.937811 + 0.347146i \(0.112849\pi\)
\(774\) 0 0
\(775\) −8.02203 13.8946i −0.288160 0.499107i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.13802 + 1.97111i 0.0407738 + 0.0706223i
\(780\) 0 0
\(781\) 12.5180 21.6819i 0.447931 0.775839i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.50868 −0.160922
\(786\) 0 0
\(787\) −9.43675 + 16.3449i −0.336384 + 0.582634i −0.983750 0.179546i \(-0.942537\pi\)
0.647366 + 0.762179i \(0.275871\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 12.3007 5.50302i 0.437363 0.195665i
\(792\) 0 0
\(793\) 10.4782 + 18.1487i 0.372090 + 0.644479i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 35.8047 1.26827 0.634134 0.773223i \(-0.281357\pi\)
0.634134 + 0.773223i \(0.281357\pi\)
\(798\) 0 0
\(799\) 54.7459 1.93677
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 22.5530 + 39.0629i 0.795877 + 1.37850i
\(804\) 0 0
\(805\) 0.257799 2.49575i 0.00908623 0.0879637i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.8027 32.5672i 0.661068 1.14500i −0.319268 0.947665i \(-0.603437\pi\)
0.980335 0.197338i \(-0.0632297\pi\)
\(810\) 0 0
\(811\) −38.9673 −1.36833 −0.684163 0.729329i \(-0.739832\pi\)
−0.684163 + 0.729329i \(0.739832\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.170559 0.295418i 0.00597443 0.0103480i
\(816\) 0 0
\(817\) 2.00816 + 3.47823i 0.0702565 + 0.121688i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −12.5874 21.8020i −0.439304 0.760897i 0.558332 0.829618i \(-0.311442\pi\)
−0.997636 + 0.0687210i \(0.978108\pi\)
\(822\) 0 0
\(823\) −3.91792 + 6.78604i −0.136570 + 0.236546i −0.926196 0.377042i \(-0.876941\pi\)
0.789626 + 0.613588i \(0.210275\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.4941 0.643103 0.321552 0.946892i \(-0.395796\pi\)
0.321552 + 0.946892i \(0.395796\pi\)
\(828\) 0 0
\(829\) −6.83264 + 11.8345i −0.237307 + 0.411029i −0.959941 0.280203i \(-0.909598\pi\)
0.722633 + 0.691232i \(0.242932\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −9.06960 27.5771i −0.314243 0.955491i
\(834\) 0 0
\(835\) −2.38224 4.12616i −0.0824407 0.142791i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −51.0340 −1.76189 −0.880945 0.473218i \(-0.843092\pi\)
−0.880945 + 0.473218i \(0.843092\pi\)
\(840\) 0 0
\(841\) −18.2599 −0.629651
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.58188 + 2.73990i 0.0544185 + 0.0942556i
\(846\) 0 0
\(847\) 28.2994 + 20.4834i 0.972378 + 0.703819i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −9.35047 + 16.1955i −0.320530 + 0.555174i
\(852\) 0 0
\(853\) −15.8526 −0.542782 −0.271391 0.962469i \(-0.587484\pi\)
−0.271391 + 0.962469i \(0.587484\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21.1000 + 36.5464i −0.720764 + 1.24840i 0.239930 + 0.970790i \(0.422875\pi\)
−0.960694 + 0.277610i \(0.910458\pi\)
\(858\) 0 0
\(859\) 14.1628 + 24.5307i 0.483228 + 0.836976i 0.999815 0.0192593i \(-0.00613079\pi\)
−0.516586 + 0.856235i \(0.672797\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −17.6891 30.6385i −0.602145 1.04295i −0.992496 0.122279i \(-0.960980\pi\)
0.390351 0.920666i \(-0.372354\pi\)
\(864\) 0 0
\(865\) −0.860179 + 1.48987i −0.0292470 + 0.0506572i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22.0997 0.749679
\(870\) 0 0
\(871\) −8.20784 + 14.2164i −0.278112 + 0.481704i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8.20346 3.67002i 0.277327 0.124069i
\(876\) 0 0
\(877\) −6.47664 11.2179i −0.218700 0.378800i 0.735710 0.677296i \(-0.236848\pi\)
−0.954411 + 0.298496i \(0.903515\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −26.1995 −0.882683 −0.441341 0.897339i \(-0.645497\pi\)
−0.441341 + 0.897339i \(0.645497\pi\)
\(882\) 0 0
\(883\) −6.36625 −0.214241 −0.107121 0.994246i \(-0.534163\pi\)
−0.107121 + 0.994246i \(0.534163\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −24.0538 41.6625i −0.807649 1.39889i −0.914488 0.404612i \(-0.867407\pi\)
0.106840 0.994276i \(-0.465927\pi\)
\(888\) 0 0
\(889\) −5.41562 + 2.42281i −0.181634 + 0.0812585i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.67071 + 4.62580i −0.0893718 + 0.154797i
\(894\) 0 0
\(895\) −7.43165 −0.248412
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.38524 + 9.32751i −0.179608 + 0.311090i
\(900\) 0 0
\(901\) −5.72987 9.92443i −0.190890 0.330631i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.47446 + 7.74999i 0.148736 + 0.257619i
\(906\) 0 0
\(907\) 21.7040 37.5925i 0.720671 1.24824i −0.240061 0.970758i \(-0.577167\pi\)
0.960731 0.277480i \(-0.0894993\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −23.0282 −0.762957 −0.381479 0.924378i \(-0.624585\pi\)
−0.381479 + 0.924378i \(0.624585\pi\)
\(912\) 0 0
\(913\) 22.7768 39.4506i 0.753802 1.30562i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.9766 + 11.5641i 0.527594 + 0.381879i
\(918\) 0 0
\(919\) −17.2599 29.8950i −0.569351 0.986145i −0.996630 0.0820251i \(-0.973861\pi\)
0.427279 0.904120i \(-0.359472\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.91480 0.326350
\(924\) 0 0
\(925\) −33.0916 −1.08804
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.3176 + 24.7988i 0.469746 + 0.813623i 0.999402 0.0345892i \(-0.0110123\pi\)
−0.529656 + 0.848213i \(0.677679\pi\)
\(930\) 0 0
\(931\) 2.77260 + 0.578971i 0.0908684 + 0.0189750i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.50666 6.07370i 0.114680 0.198631i
\(936\) 0 0
\(937\) 13.9020 0.454158 0.227079 0.973876i \(-0.427083\pi\)
0.227079 + 0.973876i \(0.427083\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 18.4340 31.9286i 0.600930 1.04084i −0.391750 0.920072i \(-0.628130\pi\)
0.992681 0.120770i \(-0.0385364\pi\)
\(942\) 0 0
\(943\) −7.75930 13.4395i −0.252678 0.437650i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.8909 + 32.7200i 0.613872 + 1.06326i 0.990581 + 0.136925i \(0.0437220\pi\)
−0.376710 + 0.926331i \(0.622945\pi\)
\(948\) 0 0
\(949\) −8.93143 + 15.4697i −0.289926 + 0.502167i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 43.5184 1.40970 0.704850 0.709356i \(-0.251014\pi\)
0.704850 + 0.709356i \(0.251014\pi\)
\(954\) 0 0
\(955\) 3.04294 5.27052i 0.0984672 0.170550i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.29624 22.2299i 0.0741495 0.717840i
\(960\) 0 0
\(961\) 10.0995 + 17.4929i 0.325792 + 0.564288i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.01894 −0.0328007
\(966\) 0 0
\(967\) 35.6064 1.14502 0.572512 0.819896i \(-0.305969\pi\)
0.572512 + 0.819896i \(0.305969\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.2654 31.6366i −0.586164 1.01527i −0.994729 0.102537i \(-0.967304\pi\)
0.408565 0.912729i \(-0.366029\pi\)
\(972\) 0 0
\(973\) 8.80792 3.94044i 0.282369 0.126325i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11.6369 + 20.1558i −0.372299 + 0.644840i −0.989919 0.141637i \(-0.954764\pi\)
0.617620 + 0.786477i \(0.288097\pi\)
\(978\) 0 0
\(979\) −34.8568 −1.11403
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −2.01170 + 3.48437i −0.0641634 + 0.111134i −0.896323 0.443403i \(-0.853771\pi\)
0.832159 + 0.554537i \(0.187105\pi\)
\(984\) 0 0
\(985\) −3.13414 5.42848i −0.0998619 0.172966i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −13.6921 23.7154i −0.435384 0.754107i
\(990\) 0 0
\(991\) 21.3820 37.0348i 0.679223 1.17645i −0.295993 0.955190i \(-0.595650\pi\)
0.975215 0.221258i \(-0.0710163\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.10905 −0.0351593
\(996\) 0 0
\(997\) 4.03324 6.98578i 0.127734 0.221242i −0.795064 0.606525i \(-0.792563\pi\)
0.922798 + 0.385283i \(0.125896\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.k.g.1621.4 yes 16
3.2 odd 2 inner 2268.2.k.g.1621.5 yes 16
7.2 even 3 inner 2268.2.k.g.1297.4 16
9.2 odd 6 2268.2.l.n.109.4 16
9.4 even 3 2268.2.i.n.865.4 16
9.5 odd 6 2268.2.i.n.865.5 16
9.7 even 3 2268.2.l.n.109.5 16
21.2 odd 6 inner 2268.2.k.g.1297.5 yes 16
63.2 odd 6 2268.2.i.n.2053.5 16
63.16 even 3 2268.2.i.n.2053.4 16
63.23 odd 6 2268.2.l.n.541.4 16
63.58 even 3 2268.2.l.n.541.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.i.n.865.4 16 9.4 even 3
2268.2.i.n.865.5 16 9.5 odd 6
2268.2.i.n.2053.4 16 63.16 even 3
2268.2.i.n.2053.5 16 63.2 odd 6
2268.2.k.g.1297.4 16 7.2 even 3 inner
2268.2.k.g.1297.5 yes 16 21.2 odd 6 inner
2268.2.k.g.1621.4 yes 16 1.1 even 1 trivial
2268.2.k.g.1621.5 yes 16 3.2 odd 2 inner
2268.2.l.n.109.4 16 9.2 odd 6
2268.2.l.n.109.5 16 9.7 even 3
2268.2.l.n.541.4 16 63.23 odd 6
2268.2.l.n.541.5 16 63.58 even 3