Properties

 Label 2268.2.k.g Level $2268$ Weight $2$ Character orbit 2268.k Analytic conductor $18.110$ Analytic rank $0$ Dimension $16$ CM no Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$2268 = 2^{2} \cdot 3^{4} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2268.k (of order $$3$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$18.1100711784$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$8$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} - \cdots)$$ Defining polynomial: $$x^{16} - 9 x^{14} + 31 x^{12} - 282 x^{10} + 1695 x^{8} - 3318 x^{6} + 4606 x^{4} - 4116 x^{2} + 2401$$ Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$3^{7}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{15}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{13} q^{5} -\beta_{7} q^{7} +O(q^{10})$$ $$q -\beta_{13} q^{5} -\beta_{7} q^{7} -\beta_{12} q^{11} + ( -3 + \beta_{1} - \beta_{2} + \beta_{4} - \beta_{9} ) q^{13} + ( \beta_{6} + \beta_{10} + \beta_{11} + \beta_{13} - \beta_{15} ) q^{17} + ( \beta_{2} + \beta_{4} - \beta_{7} + \beta_{8} ) q^{19} + \beta_{11} q^{23} + ( -1 + \beta_{1} + \beta_{2} + \beta_{4} + \beta_{8} - \beta_{9} ) q^{25} + ( -2 \beta_{5} + \beta_{6} + 2 \beta_{10} - 2 \beta_{12} + \beta_{14} - 2 \beta_{15} ) q^{29} + ( -1 - \beta_{3} + \beta_{4} + \beta_{7} ) q^{31} + ( -2 \beta_{6} - \beta_{11} + \beta_{12} - 2 \beta_{13} + \beta_{15} ) q^{35} + ( -1 + \beta_{1} - \beta_{3} - \beta_{4} - \beta_{7} - \beta_{8} ) q^{37} + ( \beta_{5} - 3 \beta_{6} + \beta_{12} - 3 \beta_{14} + \beta_{15} ) q^{41} + ( 2 - \beta_{2} - \beta_{3} + 2 \beta_{7} + 2 \beta_{9} ) q^{43} + ( \beta_{5} - \beta_{6} - 2 \beta_{11} + 3 \beta_{13} ) q^{47} + ( 1 - 2 \beta_{3} + \beta_{7} - \beta_{8} + 2 \beta_{9} ) q^{49} + ( -3 \beta_{10} - 3 \beta_{13} - \beta_{14} ) q^{53} + ( -2 - \beta_{2} - \beta_{3} + \beta_{7} + \beta_{9} ) q^{55} + ( -\beta_{10} + 2 \beta_{12} - \beta_{13} + \beta_{14} ) q^{59} + ( 1 - \beta_{1} + \beta_{2} - 3 \beta_{3} + \beta_{4} - 2 \beta_{8} ) q^{61} + ( 2 \beta_{6} - \beta_{11} + 4 \beta_{13} ) q^{65} + ( 1 + 2 \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{4} - \beta_{7} + \beta_{8} - \beta_{9} ) q^{67} + ( \beta_{5} - 2 \beta_{6} + \beta_{12} - 2 \beta_{14} + 3 \beta_{15} ) q^{71} + ( -1 + \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} + \beta_{7} + \beta_{8} - \beta_{9} ) q^{73} + ( \beta_{5} + 2 \beta_{6} + \beta_{11} + 2 \beta_{12} - \beta_{13} - 2 \beta_{14} + \beta_{15} ) q^{77} + ( -2 + 2 \beta_{1} - \beta_{2} - 2 \beta_{4} - \beta_{7} - \beta_{8} ) q^{79} + ( -3 \beta_{5} + 5 \beta_{6} - 2 \beta_{10} - 3 \beta_{12} + 5 \beta_{14} - 3 \beta_{15} ) q^{83} + ( 6 - 2 \beta_{1} - 2 \beta_{3} - 2 \beta_{4} - \beta_{7} + \beta_{9} ) q^{85} + ( 2 \beta_{5} - \beta_{6} + 2 \beta_{11} + 3 \beta_{13} ) q^{89} + ( -5 + 3 \beta_{1} - 2 \beta_{2} + 6 \beta_{4} + 2 \beta_{7} - 2 \beta_{8} - \beta_{9} ) q^{91} + ( -\beta_{6} - 5 \beta_{10} - \beta_{11} + 2 \beta_{12} - 5 \beta_{13} + 4 \beta_{14} + \beta_{15} ) q^{95} + ( -9 + 3 \beta_{1} - 3 \beta_{2} + 3 \beta_{4} + 2 \beta_{7} - \beta_{9} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16 q + 6 q^{7} + O(q^{10})$$ $$16 q + 6 q^{7} - 20 q^{13} + 8 q^{19} - 8 q^{31} - 4 q^{37} + 20 q^{43} + 10 q^{49} - 32 q^{55} + 28 q^{61} + 18 q^{67} - 20 q^{79} + 76 q^{85} - 2 q^{91} - 84 q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{16} - 9 x^{14} + 31 x^{12} - 282 x^{10} + 1695 x^{8} - 3318 x^{6} + 4606 x^{4} - 4116 x^{2} + 2401$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$92249 \nu^{14} - 22952 \nu^{12} - 2800495 \nu^{10} - 21569239 \nu^{8} - 19347710 \nu^{6} + 586034029 \nu^{4} + 1081706164 \nu^{2} + 170475459$$$$)/ 982062165$$ $$\beta_{2}$$ $$=$$ $$($$$$244351 \nu^{14} - 3103286 \nu^{12} + 15156266 \nu^{10} - 92194120 \nu^{8} + 665006344 \nu^{6} - 2126767580 \nu^{4} + 3126524037 \nu^{2} - 4446117606$$$$)/ 982062165$$ $$\beta_{3}$$ $$=$$ $$($$$$50804 \nu^{14} - 431490 \nu^{12} + 910001 \nu^{10} - 11273818 \nu^{8} + 75102634 \nu^{6} - 34785107 \nu^{4} - 145125260 \nu^{2} - 188652058$$$$)/ 140294595$$ $$\beta_{4}$$ $$=$$ $$($$$$95779 \nu^{14} - 763661 \nu^{12} + 2336349 \nu^{10} - 25351497 \nu^{8} + 138865326 \nu^{6} - 211337511 \nu^{4} + 367714228 \nu^{2} - 129671150$$$$)/ 196412433$$ $$\beta_{5}$$ $$=$$ $$($$$$-784170 \nu^{15} + 214456 \nu^{13} + 30604253 \nu^{11} + 93415788 \nu^{9} + 434366602 \nu^{7} - 7116987318 \nu^{5} + 3388669823 \nu^{3} - 6997483661 \nu$$$$)/ 6874435155$$ $$\beta_{6}$$ $$=$$ $$($$$$202439 \nu^{15} - 3779851 \nu^{13} + 20969988 \nu^{11} - 90097992 \nu^{9} + 810563151 \nu^{7} - 3169832022 \nu^{5} + 2394515438 \nu^{3} - 2189789518 \nu$$$$)/ 1374887031$$ $$\beta_{7}$$ $$=$$ $$($$$$-1700901 \nu^{14} + 13906205 \nu^{12} - 39713699 \nu^{10} + 439930867 \nu^{8} - 2478376396 \nu^{6} + 3214460858 \nu^{4} - 4135709270 \nu^{2} + 401714397$$$$)/ 982062165$$ $$\beta_{8}$$ $$=$$ $$($$$$-53324 \nu^{14} + 366096 \nu^{12} - 722548 \nu^{10} + 12291821 \nu^{8} - 61209692 \nu^{6} + 7818769 \nu^{4} - 19057962 \nu^{2} + 6024452$$$$)/22838655$$ $$\beta_{9}$$ $$=$$ $$($$$$160457 \nu^{14} - 1409701 \nu^{12} + 4498055 \nu^{10} - 43172212 \nu^{8} + 259237135 \nu^{6} - 437984288 \nu^{4} + 445839877 \nu^{2} - 305714528$$$$)/42698355$$ $$\beta_{10}$$ $$=$$ $$($$$$-635345 \nu^{15} + 5091886 \nu^{13} - 13365107 \nu^{11} + 152655738 \nu^{9} - 878690623 \nu^{7} + 875750037 \nu^{5} + 504845978 \nu^{3} - 2003509256 \nu$$$$)/ 982062165$$ $$\beta_{11}$$ $$=$$ $$($$$$751964 \nu^{15} - 2837787 \nu^{13} - 5745335 \nu^{11} - 140264304 \nu^{9} + 307950965 \nu^{7} + 2566998474 \nu^{5} - 571100796 \nu^{3} + 3200801814 \nu$$$$)/ 982062165$$ $$\beta_{12}$$ $$=$$ $$($$$$7006527 \nu^{15} - 54909609 \nu^{13} + 140871131 \nu^{11} - 1753147101 \nu^{9} + 9658554559 \nu^{7} - 8917693029 \nu^{5} + 11250666413 \nu^{3} - 6552594825 \nu$$$$)/ 6874435155$$ $$\beta_{13}$$ $$=$$ $$($$$$7841464 \nu^{15} - 71750653 \nu^{13} + 246634027 \nu^{11} - 2192423802 \nu^{9} + 13373548133 \nu^{7} - 26134593933 \nu^{5} + 29297334416 \nu^{3} - 8080133320 \nu$$$$)/ 6874435155$$ $$\beta_{14}$$ $$=$$ $$($$$$1635500 \nu^{15} - 12087451 \nu^{13} + 27574530 \nu^{11} - 390459270 \nu^{9} + 2074772181 \nu^{7} - 1221325980 \nu^{5} + 1133172530 \nu^{3} - 504509782 \nu$$$$)/ 1374887031$$ $$\beta_{15}$$ $$=$$ $$($$$$-12267456 \nu^{15} + 107332095 \nu^{13} - 343863724 \nu^{11} + 3308249367 \nu^{9} - 19848020141 \nu^{7} + 33437101488 \nu^{5} - 35352763285 \nu^{3} + 38302053342 \nu$$$$)/ 6874435155$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{15} + \beta_{13} + \beta_{12} - \beta_{6} + 2 \beta_{5}$$$$)/3$$ $$\nu^{2}$$ $$=$$ $$($$$$-2 \beta_{9} + \beta_{8} - 3 \beta_{7} + 7 \beta_{4} + 3 \beta_{3} + \beta_{2} - \beta_{1}$$$$)/3$$ $$\nu^{3}$$ $$=$$ $$($$$$5 \beta_{15} + 9 \beta_{14} + \beta_{13} - \beta_{12} + \beta_{11} + 6 \beta_{10} + 9 \beta_{6} + \beta_{5}$$$$)/3$$ $$\nu^{4}$$ $$=$$ $$($$$$-6 \beta_{9} - 6 \beta_{8} - 13 \beta_{7} - 31 \beta_{4} - 8 \beta_{3} + 20 \beta_{2} - 10 \beta_{1} + 25$$$$)/3$$ $$\nu^{5}$$ $$=$$ $$($$$$10 \beta_{15} - 16 \beta_{14} - 21 \beta_{13} + 44 \beta_{12} + 17 \beta_{11} + 2 \beta_{10} + 46 \beta_{6} + 22 \beta_{5}$$$$)/3$$ $$\nu^{6}$$ $$=$$ $$($$$$11 \beta_{9} - 22 \beta_{8} + 71 \beta_{7} + 10 \beta_{4} + 31 \beta_{3} + 49 \beta_{2} + 21 \beta_{1} + 322$$$$)/3$$ $$\nu^{7}$$ $$=$$ $$($$$$70 \beta_{15} - 12 \beta_{14} + 23 \beta_{13} + 178 \beta_{12} + 14 \beta_{11} + 33 \beta_{10} - 117 \beta_{6} + 356 \beta_{5}$$$$)/3$$ $$\nu^{8}$$ $$=$$ $$($$$$-234 \beta_{9} + 117 \beta_{8} - 169 \beta_{7} + 1409 \beta_{4} + 538 \beta_{3} + 26 \beta_{2} - 304 \beta_{1} + 187$$$$)/3$$ $$\nu^{9}$$ $$=$$ $$($$$$804 \beta_{15} + 1814 \beta_{14} - 25 \beta_{13} - 467 \beta_{12} + 221 \beta_{11} + 902 \beta_{10} + 1691 \beta_{6} + 467 \beta_{5}$$$$)/3$$ $$\nu^{10}$$ $$=$$ $$($$$$-1148 \beta_{9} - 1148 \beta_{8} - 2191 \beta_{7} - 3861 \beta_{4} - 2165 \beta_{3} + 3234 \beta_{2} - 3182 \beta_{1} + 2713$$$$)/3$$ $$\nu^{11}$$ $$=$$ $$($$$$1322 \beta_{15} - 2061 \beta_{14} - 5174 \beta_{13} + 5600 \beta_{12} + 4591 \beta_{11} + 156 \beta_{10} + 12972 \beta_{6} + 2800 \beta_{5}$$$$)/3$$ $$\nu^{12}$$ $$=$$ $$1284 \beta_{9} - 2568 \beta_{8} + 5956 \beta_{7} - 1481 \beta_{4} - 1678 \beta_{3} + 3388 \beta_{2} - 197 \beta_{1} + 19573$$ $$\nu^{13}$$ $$=$$ $$($$$$3218 \beta_{15} - 21675 \beta_{14} - 5929 \beta_{13} + 34676 \beta_{12} + 13164 \beta_{11} - 4017 \beta_{10} - 12365 \beta_{6} + 69352 \beta_{5}$$$$)/3$$ $$\nu^{14}$$ $$=$$ $$($$$$-24730 \beta_{9} + 12365 \beta_{8} + 31071 \beta_{7} + 328079 \beta_{4} + 80961 \beta_{3} - 21718 \beta_{2} - 56231 \beta_{1} + 43866$$$$)/3$$ $$\nu^{15}$$ $$=$$ $$($$$$108952 \beta_{15} + 307191 \beta_{14} - 7798 \beta_{13} - 141578 \beta_{12} + 66890 \beta_{11} + 138498 \beta_{10} + 269847 \beta_{6} + 141578 \beta_{5}$$$$)/3$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$1135$$ $$1541$$ $$\chi(n)$$ $$-\beta_{4}$$ $$1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1297.1
 0.817131 − 0.735533i −2.40332 + 0.123797i 1.04556 − 0.339889i 1.30887 − 2.01944i −1.30887 + 2.01944i −1.04556 + 0.339889i 2.40332 − 0.123797i −0.817131 + 0.735533i 0.817131 + 0.735533i −2.40332 − 0.123797i 1.04556 + 0.339889i 1.30887 + 2.01944i −1.30887 − 2.01944i −1.04556 − 0.339889i 2.40332 + 0.123797i −0.817131 − 0.735533i
0 0 0 −1.83843 + 3.18426i 0 2.63118 0.277320i 0 0 0
1297.2 0 0 0 −1.15101 + 1.99360i 0 −0.271847 + 2.63175i 0 0 0
1297.3 0 0 0 −0.515559 + 0.892975i 0 1.55575 2.14001i 0 0 0
1297.4 0 0 0 −0.171869 + 0.297685i 0 −2.41508 1.08045i 0 0 0
1297.5 0 0 0 0.171869 0.297685i 0 −2.41508 1.08045i 0 0 0
1297.6 0 0 0 0.515559 0.892975i 0 1.55575 2.14001i 0 0 0
1297.7 0 0 0 1.15101 1.99360i 0 −0.271847 + 2.63175i 0 0 0
1297.8 0 0 0 1.83843 3.18426i 0 2.63118 0.277320i 0 0 0
1621.1 0 0 0 −1.83843 3.18426i 0 2.63118 + 0.277320i 0 0 0
1621.2 0 0 0 −1.15101 1.99360i 0 −0.271847 2.63175i 0 0 0
1621.3 0 0 0 −0.515559 0.892975i 0 1.55575 + 2.14001i 0 0 0
1621.4 0 0 0 −0.171869 0.297685i 0 −2.41508 + 1.08045i 0 0 0
1621.5 0 0 0 0.171869 + 0.297685i 0 −2.41508 + 1.08045i 0 0 0
1621.6 0 0 0 0.515559 + 0.892975i 0 1.55575 + 2.14001i 0 0 0
1621.7 0 0 0 1.15101 + 1.99360i 0 −0.271847 2.63175i 0 0 0
1621.8 0 0 0 1.83843 + 3.18426i 0 2.63118 + 0.277320i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1621.8 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.2.k.g 16
3.b odd 2 1 inner 2268.2.k.g 16
7.c even 3 1 inner 2268.2.k.g 16
9.c even 3 1 2268.2.i.n 16
9.c even 3 1 2268.2.l.n 16
9.d odd 6 1 2268.2.i.n 16
9.d odd 6 1 2268.2.l.n 16
21.h odd 6 1 inner 2268.2.k.g 16
63.g even 3 1 2268.2.i.n 16
63.h even 3 1 2268.2.l.n 16
63.j odd 6 1 2268.2.l.n 16
63.n odd 6 1 2268.2.i.n 16

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2268.2.i.n 16 9.c even 3 1
2268.2.i.n 16 9.d odd 6 1
2268.2.i.n 16 63.g even 3 1
2268.2.i.n 16 63.n odd 6 1
2268.2.k.g 16 1.a even 1 1 trivial
2268.2.k.g 16 3.b odd 2 1 inner
2268.2.k.g 16 7.c even 3 1 inner
2268.2.k.g 16 21.h odd 6 1 inner
2268.2.l.n 16 9.c even 3 1
2268.2.l.n 16 9.d odd 6 1
2268.2.l.n 16 63.h even 3 1
2268.2.l.n 16 63.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5}^{16} + \cdots$$ acting on $$S_{2}^{\mathrm{new}}(2268, [\chi])$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{16}$$
$3$ $$T^{16}$$
$5$ $$81 + 783 T^{2} + 6723 T^{4} + 7818 T^{6} + 7087 T^{8} + 1706 T^{10} + 306 T^{12} + 20 T^{14} + T^{16}$$
$7$ $$( 2401 - 1029 T + 98 T^{2} + 21 T^{3} - 27 T^{4} + 3 T^{5} + 2 T^{6} - 3 T^{7} + T^{8} )^{2}$$
$11$ $$194481 + 629748 T^{2} + 1770174 T^{4} + 829626 T^{6} + 304543 T^{8} + 25814 T^{10} + 1599 T^{12} + 47 T^{14} + T^{16}$$
$13$ $$( -147 - 126 T - 20 T^{2} + 5 T^{3} + T^{4} )^{4}$$
$17$ $$194481 + 3685878 T^{2} + 69302709 T^{4} + 10434606 T^{6} + 1056388 T^{8} + 61094 T^{10} + 2589 T^{12} + 62 T^{14} + T^{16}$$
$19$ $$( 49 - 49 T + 217 T^{2} + 224 T^{3} + 541 T^{4} + 110 T^{5} + 40 T^{6} - 4 T^{7} + T^{8} )^{2}$$
$23$ $$50625 + 124875 T^{2} + 230175 T^{4} + 172230 T^{6} + 95071 T^{8} + 14114 T^{10} + 1590 T^{12} + 44 T^{14} + T^{16}$$
$29$ $$( 3164841 - 438468 T^{2} + 15550 T^{4} - 212 T^{6} + T^{8} )^{2}$$
$31$ $$( 3969 - 2646 T + 2835 T^{2} + 210 T^{3} + 394 T^{4} + 16 T^{5} + 33 T^{6} + 4 T^{7} + T^{8} )^{2}$$
$37$ $$( 1 - 187 T + 35029 T^{2} + 11216 T^{3} + 3973 T^{4} + 254 T^{5} + 64 T^{6} + 2 T^{7} + T^{8} )^{2}$$
$41$ $$( 99225 - 41580 T^{2} + 3726 T^{4} - 111 T^{6} + T^{8} )^{2}$$
$43$ $$( 1789 + 466 T - 114 T^{2} - 5 T^{3} + T^{4} )^{4}$$
$47$ $$3916747167734241 + 220418128989081 T^{2} + 8490148282260 T^{4} + 166569958683 T^{6} + 2337871491 T^{8} + 19786167 T^{10} + 121500 T^{12} + 429 T^{14} + T^{16}$$
$53$ $$1315703055681 + 261666434043 T^{2} + 38722957119 T^{4} + 2208044286 T^{6} + 89845443 T^{8} + 1772874 T^{10} + 25254 T^{12} + 192 T^{14} + T^{16}$$
$59$ $$10709131895361 + 1262179559295 T^{2} + 103135702923 T^{4} + 4068367290 T^{6} + 113967883 T^{8} + 2017010 T^{10} + 26058 T^{12} + 200 T^{14} + T^{16}$$
$61$ $$( 7017201 - 4227804 T + 2295561 T^{2} - 225792 T^{3} + 34018 T^{4} - 1862 T^{5} + 291 T^{6} - 14 T^{7} + T^{8} )^{2}$$
$67$ $$( 840889 - 616224 T + 394730 T^{2} - 58170 T^{3} + 10809 T^{4} - 786 T^{5} + 143 T^{6} - 9 T^{7} + T^{8} )^{2}$$
$71$ $$( 505521 - 419085 T^{2} + 22657 T^{4} - 305 T^{6} + T^{8} )^{2}$$
$73$ $$( 7458361 + 286755 T + 360593 T^{2} - 13440 T^{3} + 13653 T^{4} - 210 T^{5} + 128 T^{6} + T^{8} )^{2}$$
$79$ $$( 2241009 + 1001493 T + 372711 T^{2} + 63390 T^{3} + 10687 T^{4} + 838 T^{5} + 150 T^{6} + 10 T^{7} + T^{8} )^{2}$$
$83$ $$( 776569689 - 20580252 T^{2} + 189718 T^{4} - 731 T^{6} + T^{8} )^{2}$$
$89$ $$4631487063921 + 1485257767083 T^{2} + 421566649983 T^{4} + 16261945398 T^{6} + 437692167 T^{8} + 6249906 T^{10} + 64566 T^{12} + 300 T^{14} + T^{16}$$
$97$ $$( 2935 - 1260 T - 8 T^{2} + 21 T^{3} + T^{4} )^{4}$$