Properties

Label 2268.2.j.p.757.1
Level $2268$
Weight $2$
Character 2268.757
Analytic conductor $18.110$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(757,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.757"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-2,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 757.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2268.757
Dual form 2268.2.j.p.1513.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 + 3.00000i) q^{5} +(-0.500000 - 0.866025i) q^{7} +(-0.866025 - 1.50000i) q^{11} +(2.00000 - 3.46410i) q^{13} +3.46410 q^{17} +2.00000 q^{19} +(-1.73205 + 3.00000i) q^{23} +(-3.50000 - 6.06218i) q^{25} +(3.46410 + 6.00000i) q^{29} +(-1.00000 + 1.73205i) q^{31} +3.46410 q^{35} +11.0000 q^{37} +(1.73205 - 3.00000i) q^{41} +(0.500000 + 0.866025i) q^{43} +(-0.500000 + 0.866025i) q^{49} -1.73205 q^{53} +6.00000 q^{55} +(-5.19615 + 9.00000i) q^{59} +(-4.00000 - 6.92820i) q^{61} +(6.92820 + 12.0000i) q^{65} +(-5.50000 + 9.52628i) q^{67} +5.19615 q^{71} -16.0000 q^{73} +(-0.866025 + 1.50000i) q^{77} +(6.50000 + 11.2583i) q^{79} +(8.66025 + 15.0000i) q^{83} +(-6.00000 + 10.3923i) q^{85} +6.92820 q^{89} -4.00000 q^{91} +(-3.46410 + 6.00000i) q^{95} +(-1.00000 - 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{7} + 8 q^{13} + 8 q^{19} - 14 q^{25} - 4 q^{31} + 44 q^{37} + 2 q^{43} - 2 q^{49} + 24 q^{55} - 16 q^{61} - 22 q^{67} - 64 q^{73} + 26 q^{79} - 24 q^{85} - 16 q^{91} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.73205 + 3.00000i −0.774597 + 1.34164i 0.160424 + 0.987048i \(0.448714\pi\)
−0.935021 + 0.354593i \(0.884620\pi\)
\(6\) 0 0
\(7\) −0.500000 0.866025i −0.188982 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.866025 1.50000i −0.261116 0.452267i 0.705422 0.708787i \(-0.250757\pi\)
−0.966539 + 0.256520i \(0.917424\pi\)
\(12\) 0 0
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.46410 0.840168 0.420084 0.907485i \(-0.362001\pi\)
0.420084 + 0.907485i \(0.362001\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.73205 + 3.00000i −0.361158 + 0.625543i −0.988152 0.153481i \(-0.950952\pi\)
0.626994 + 0.779024i \(0.284285\pi\)
\(24\) 0 0
\(25\) −3.50000 6.06218i −0.700000 1.21244i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.46410 + 6.00000i 0.643268 + 1.11417i 0.984699 + 0.174265i \(0.0557550\pi\)
−0.341431 + 0.939907i \(0.610912\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.46410 0.585540
\(36\) 0 0
\(37\) 11.0000 1.80839 0.904194 0.427121i \(-0.140472\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.73205 3.00000i 0.270501 0.468521i −0.698489 0.715621i \(-0.746144\pi\)
0.968990 + 0.247099i \(0.0794774\pi\)
\(42\) 0 0
\(43\) 0.500000 + 0.866025i 0.0762493 + 0.132068i 0.901629 0.432511i \(-0.142372\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.73205 −0.237915 −0.118958 0.992899i \(-0.537955\pi\)
−0.118958 + 0.992899i \(0.537955\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.19615 + 9.00000i −0.676481 + 1.17170i 0.299552 + 0.954080i \(0.403163\pi\)
−0.976034 + 0.217620i \(0.930171\pi\)
\(60\) 0 0
\(61\) −4.00000 6.92820i −0.512148 0.887066i −0.999901 0.0140840i \(-0.995517\pi\)
0.487753 0.872982i \(-0.337817\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.92820 + 12.0000i 0.859338 + 1.48842i
\(66\) 0 0
\(67\) −5.50000 + 9.52628i −0.671932 + 1.16382i 0.305424 + 0.952217i \(0.401202\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.19615 0.616670 0.308335 0.951278i \(-0.400228\pi\)
0.308335 + 0.951278i \(0.400228\pi\)
\(72\) 0 0
\(73\) −16.0000 −1.87266 −0.936329 0.351123i \(-0.885800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.866025 + 1.50000i −0.0986928 + 0.170941i
\(78\) 0 0
\(79\) 6.50000 + 11.2583i 0.731307 + 1.26666i 0.956325 + 0.292306i \(0.0944227\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.66025 + 15.0000i 0.950586 + 1.64646i 0.744160 + 0.668002i \(0.232850\pi\)
0.206427 + 0.978462i \(0.433816\pi\)
\(84\) 0 0
\(85\) −6.00000 + 10.3923i −0.650791 + 1.12720i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.92820 0.734388 0.367194 0.930144i \(-0.380318\pi\)
0.367194 + 0.930144i \(0.380318\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.46410 + 6.00000i −0.355409 + 0.615587i
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.92820 + 12.0000i 0.689382 + 1.19404i 0.972038 + 0.234823i \(0.0754512\pi\)
−0.282656 + 0.959221i \(0.591216\pi\)
\(102\) 0 0
\(103\) −7.00000 + 12.1244i −0.689730 + 1.19465i 0.282194 + 0.959357i \(0.408938\pi\)
−0.971925 + 0.235291i \(0.924396\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.0526 −1.84188 −0.920940 0.389704i \(-0.872577\pi\)
−0.920940 + 0.389704i \(0.872577\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.33013 7.50000i 0.407344 0.705541i −0.587247 0.809408i \(-0.699788\pi\)
0.994591 + 0.103867i \(0.0331216\pi\)
\(114\) 0 0
\(115\) −6.00000 10.3923i −0.559503 0.969087i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.73205 3.00000i −0.158777 0.275010i
\(120\) 0 0
\(121\) 4.00000 6.92820i 0.363636 0.629837i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) 17.0000 1.50851 0.754253 0.656584i \(-0.227999\pi\)
0.754253 + 0.656584i \(0.227999\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.92820 + 12.0000i −0.605320 + 1.04844i 0.386681 + 0.922214i \(0.373621\pi\)
−0.992001 + 0.126231i \(0.959712\pi\)
\(132\) 0 0
\(133\) −1.00000 1.73205i −0.0867110 0.150188i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.33013 + 7.50000i 0.369948 + 0.640768i 0.989557 0.144142i \(-0.0460423\pi\)
−0.619609 + 0.784910i \(0.712709\pi\)
\(138\) 0 0
\(139\) −7.00000 + 12.1244i −0.593732 + 1.02837i 0.399992 + 0.916519i \(0.369013\pi\)
−0.993724 + 0.111856i \(0.964321\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.92820 −0.579365
\(144\) 0 0
\(145\) −24.0000 −1.99309
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.06218 10.5000i 0.496633 0.860194i −0.503360 0.864077i \(-0.667903\pi\)
0.999992 + 0.00388357i \(0.00123618\pi\)
\(150\) 0 0
\(151\) −5.50000 9.52628i −0.447584 0.775238i 0.550645 0.834740i \(-0.314382\pi\)
−0.998228 + 0.0595022i \(0.981049\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.46410 6.00000i −0.278243 0.481932i
\(156\) 0 0
\(157\) 2.00000 3.46410i 0.159617 0.276465i −0.775113 0.631822i \(-0.782307\pi\)
0.934731 + 0.355357i \(0.115641\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.46410 0.273009
\(162\) 0 0
\(163\) 23.0000 1.80150 0.900750 0.434339i \(-0.143018\pi\)
0.900750 + 0.434339i \(0.143018\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.73205 3.00000i 0.134030 0.232147i −0.791196 0.611562i \(-0.790541\pi\)
0.925227 + 0.379415i \(0.123875\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) −3.50000 + 6.06218i −0.264575 + 0.458258i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 24.2487 1.81243 0.906217 0.422813i \(-0.138957\pi\)
0.906217 + 0.422813i \(0.138957\pi\)
\(180\) 0 0
\(181\) 26.0000 1.93256 0.966282 0.257485i \(-0.0828937\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −19.0526 + 33.0000i −1.40077 + 2.42621i
\(186\) 0 0
\(187\) −3.00000 5.19615i −0.219382 0.379980i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.79423 + 13.5000i 0.563971 + 0.976826i 0.997145 + 0.0755154i \(0.0240602\pi\)
−0.433174 + 0.901310i \(0.642606\pi\)
\(192\) 0 0
\(193\) −1.00000 + 1.73205i −0.0719816 + 0.124676i −0.899770 0.436365i \(-0.856266\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.19615 0.370211 0.185105 0.982719i \(-0.440737\pi\)
0.185105 + 0.982719i \(0.440737\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.46410 6.00000i 0.243132 0.421117i
\(204\) 0 0
\(205\) 6.00000 + 10.3923i 0.419058 + 0.725830i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.73205 3.00000i −0.119808 0.207514i
\(210\) 0 0
\(211\) 9.50000 16.4545i 0.654007 1.13277i −0.328135 0.944631i \(-0.606420\pi\)
0.982142 0.188142i \(-0.0602466\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.46410 −0.236250
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.92820 12.0000i 0.466041 0.807207i
\(222\) 0 0
\(223\) −1.00000 1.73205i −0.0669650 0.115987i 0.830599 0.556871i \(-0.187998\pi\)
−0.897564 + 0.440884i \(0.854665\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.66025 15.0000i −0.574801 0.995585i −0.996063 0.0886460i \(-0.971746\pi\)
0.421262 0.906939i \(-0.361587\pi\)
\(228\) 0 0
\(229\) 11.0000 19.0526i 0.726900 1.25903i −0.231287 0.972886i \(-0.574293\pi\)
0.958187 0.286143i \(-0.0923732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.92820 0.453882 0.226941 0.973909i \(-0.427128\pi\)
0.226941 + 0.973909i \(0.427128\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.866025 + 1.50000i −0.0560185 + 0.0970269i −0.892675 0.450701i \(-0.851174\pi\)
0.836656 + 0.547728i \(0.184507\pi\)
\(240\) 0 0
\(241\) 8.00000 + 13.8564i 0.515325 + 0.892570i 0.999842 + 0.0177875i \(0.00566223\pi\)
−0.484516 + 0.874782i \(0.661004\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.73205 3.00000i −0.110657 0.191663i
\(246\) 0 0
\(247\) 4.00000 6.92820i 0.254514 0.440831i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −20.7846 −1.31191 −0.655956 0.754799i \(-0.727735\pi\)
−0.655956 + 0.754799i \(0.727735\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.92820 + 12.0000i −0.432169 + 0.748539i −0.997060 0.0766265i \(-0.975585\pi\)
0.564890 + 0.825166i \(0.308918\pi\)
\(258\) 0 0
\(259\) −5.50000 9.52628i −0.341753 0.591934i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.2583 19.5000i −0.694218 1.20242i −0.970443 0.241329i \(-0.922417\pi\)
0.276225 0.961093i \(-0.410916\pi\)
\(264\) 0 0
\(265\) 3.00000 5.19615i 0.184289 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.92820 −0.422420 −0.211210 0.977441i \(-0.567740\pi\)
−0.211210 + 0.977441i \(0.567740\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.06218 + 10.5000i −0.365563 + 0.633174i
\(276\) 0 0
\(277\) 0.500000 + 0.866025i 0.0300421 + 0.0520344i 0.880656 0.473757i \(-0.157103\pi\)
−0.850613 + 0.525792i \(0.823769\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.866025 + 1.50000i 0.0516627 + 0.0894825i 0.890700 0.454591i \(-0.150215\pi\)
−0.839038 + 0.544074i \(0.816881\pi\)
\(282\) 0 0
\(283\) 8.00000 13.8564i 0.475551 0.823678i −0.524057 0.851683i \(-0.675582\pi\)
0.999608 + 0.0280052i \(0.00891551\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.46410 −0.204479
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.92820 12.0000i 0.404750 0.701047i −0.589542 0.807737i \(-0.700692\pi\)
0.994292 + 0.106690i \(0.0340252\pi\)
\(294\) 0 0
\(295\) −18.0000 31.1769i −1.04800 1.81519i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.92820 + 12.0000i 0.400668 + 0.693978i
\(300\) 0 0
\(301\) 0.500000 0.866025i 0.0288195 0.0499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 27.7128 1.58683
\(306\) 0 0
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.3923 + 18.0000i −0.589294 + 1.02069i 0.405032 + 0.914303i \(0.367261\pi\)
−0.994325 + 0.106384i \(0.966073\pi\)
\(312\) 0 0
\(313\) 11.0000 + 19.0526i 0.621757 + 1.07691i 0.989158 + 0.146852i \(0.0469141\pi\)
−0.367402 + 0.930062i \(0.619753\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 6.00000 10.3923i 0.335936 0.581857i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.92820 0.385496
\(324\) 0 0
\(325\) −28.0000 −1.55316
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.00000 + 3.46410i 0.109930 + 0.190404i 0.915742 0.401768i \(-0.131604\pi\)
−0.805812 + 0.592172i \(0.798271\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −19.0526 33.0000i −1.04095 1.80298i
\(336\) 0 0
\(337\) −11.5000 + 19.9186i −0.626445 + 1.08503i 0.361815 + 0.932250i \(0.382157\pi\)
−0.988260 + 0.152784i \(0.951176\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.46410 0.187592
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.1865 31.5000i 0.976304 1.69101i 0.300742 0.953705i \(-0.402766\pi\)
0.675562 0.737303i \(-0.263901\pi\)
\(348\) 0 0
\(349\) 8.00000 + 13.8564i 0.428230 + 0.741716i 0.996716 0.0809766i \(-0.0258039\pi\)
−0.568486 + 0.822693i \(0.692471\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.73205 + 3.00000i 0.0921878 + 0.159674i 0.908431 0.418034i \(-0.137281\pi\)
−0.816244 + 0.577708i \(0.803947\pi\)
\(354\) 0 0
\(355\) −9.00000 + 15.5885i −0.477670 + 0.827349i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.4449 −1.55404 −0.777020 0.629476i \(-0.783270\pi\)
−0.777020 + 0.629476i \(0.783270\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 27.7128 48.0000i 1.45055 2.51243i
\(366\) 0 0
\(367\) 14.0000 + 24.2487i 0.730794 + 1.26577i 0.956544 + 0.291587i \(0.0941834\pi\)
−0.225750 + 0.974185i \(0.572483\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.866025 + 1.50000i 0.0449618 + 0.0778761i
\(372\) 0 0
\(373\) 6.50000 11.2583i 0.336557 0.582934i −0.647225 0.762299i \(-0.724071\pi\)
0.983783 + 0.179364i \(0.0574041\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 27.7128 1.42728
\(378\) 0 0
\(379\) 17.0000 0.873231 0.436616 0.899648i \(-0.356177\pi\)
0.436616 + 0.899648i \(0.356177\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.8564 24.0000i 0.708029 1.22634i −0.257558 0.966263i \(-0.582918\pi\)
0.965587 0.260080i \(-0.0837489\pi\)
\(384\) 0 0
\(385\) −3.00000 5.19615i −0.152894 0.264820i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.92820 + 12.0000i 0.351274 + 0.608424i 0.986473 0.163924i \(-0.0524153\pi\)
−0.635199 + 0.772348i \(0.719082\pi\)
\(390\) 0 0
\(391\) −6.00000 + 10.3923i −0.303433 + 0.525561i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −45.0333 −2.26587
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.7224 + 25.5000i −0.735203 + 1.27341i 0.219431 + 0.975628i \(0.429580\pi\)
−0.954634 + 0.297781i \(0.903753\pi\)
\(402\) 0 0
\(403\) 4.00000 + 6.92820i 0.199254 + 0.345118i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.52628 16.5000i −0.472200 0.817875i
\(408\) 0 0
\(409\) −1.00000 + 1.73205i −0.0494468 + 0.0856444i −0.889689 0.456566i \(-0.849079\pi\)
0.840243 + 0.542211i \(0.182412\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.3923 0.511372
\(414\) 0 0
\(415\) −60.0000 −2.94528
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.1244 21.0000i 0.592314 1.02592i −0.401606 0.915812i \(-0.631548\pi\)
0.993920 0.110105i \(-0.0351186\pi\)
\(420\) 0 0
\(421\) 18.5000 + 32.0429i 0.901635 + 1.56168i 0.825372 + 0.564590i \(0.190966\pi\)
0.0762630 + 0.997088i \(0.475701\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.1244 21.0000i −0.588118 1.01865i
\(426\) 0 0
\(427\) −4.00000 + 6.92820i −0.193574 + 0.335279i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −38.1051 −1.83546 −0.917729 0.397206i \(-0.869980\pi\)
−0.917729 + 0.397206i \(0.869980\pi\)
\(432\) 0 0
\(433\) −10.0000 −0.480569 −0.240285 0.970702i \(-0.577241\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.46410 + 6.00000i −0.165710 + 0.287019i
\(438\) 0 0
\(439\) −4.00000 6.92820i −0.190910 0.330665i 0.754642 0.656136i \(-0.227810\pi\)
−0.945552 + 0.325471i \(0.894477\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.19615 9.00000i −0.246877 0.427603i 0.715781 0.698325i \(-0.246071\pi\)
−0.962658 + 0.270722i \(0.912738\pi\)
\(444\) 0 0
\(445\) −12.0000 + 20.7846i −0.568855 + 0.985285i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.19615 −0.245222 −0.122611 0.992455i \(-0.539127\pi\)
−0.122611 + 0.992455i \(0.539127\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.92820 12.0000i 0.324799 0.562569i
\(456\) 0 0
\(457\) −2.50000 4.33013i −0.116945 0.202555i 0.801611 0.597847i \(-0.203977\pi\)
−0.918556 + 0.395292i \(0.870643\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.92820 12.0000i −0.322679 0.558896i 0.658361 0.752702i \(-0.271250\pi\)
−0.981040 + 0.193806i \(0.937917\pi\)
\(462\) 0 0
\(463\) −11.5000 + 19.9186i −0.534450 + 0.925695i 0.464739 + 0.885448i \(0.346148\pi\)
−0.999190 + 0.0402476i \(0.987185\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −24.2487 −1.12210 −0.561048 0.827783i \(-0.689602\pi\)
−0.561048 + 0.827783i \(0.689602\pi\)
\(468\) 0 0
\(469\) 11.0000 0.507933
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.866025 1.50000i 0.0398199 0.0689701i
\(474\) 0 0
\(475\) −7.00000 12.1244i −0.321182 0.556304i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.1244 + 21.0000i 0.553976 + 0.959514i 0.997982 + 0.0634909i \(0.0202234\pi\)
−0.444006 + 0.896024i \(0.646443\pi\)
\(480\) 0 0
\(481\) 22.0000 38.1051i 1.00311 1.73744i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.92820 0.314594
\(486\) 0 0
\(487\) 29.0000 1.31412 0.657058 0.753840i \(-0.271801\pi\)
0.657058 + 0.753840i \(0.271801\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.73205 3.00000i 0.0781664 0.135388i −0.824292 0.566164i \(-0.808427\pi\)
0.902459 + 0.430776i \(0.141760\pi\)
\(492\) 0 0
\(493\) 12.0000 + 20.7846i 0.540453 + 0.936092i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.59808 4.50000i −0.116540 0.201853i
\(498\) 0 0
\(499\) 2.00000 3.46410i 0.0895323 0.155074i −0.817781 0.575529i \(-0.804796\pi\)
0.907314 + 0.420455i \(0.138129\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −48.0000 −2.13597
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.66025 15.0000i 0.383859 0.664863i −0.607751 0.794128i \(-0.707928\pi\)
0.991610 + 0.129264i \(0.0412615\pi\)
\(510\) 0 0
\(511\) 8.00000 + 13.8564i 0.353899 + 0.612971i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −24.2487 42.0000i −1.06853 1.85074i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −38.1051 −1.66942 −0.834708 0.550693i \(-0.814363\pi\)
−0.834708 + 0.550693i \(0.814363\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.46410 + 6.00000i −0.150899 + 0.261364i
\(528\) 0 0
\(529\) 5.50000 + 9.52628i 0.239130 + 0.414186i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.92820 12.0000i −0.300094 0.519778i
\(534\) 0 0
\(535\) 33.0000 57.1577i 1.42671 2.47114i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.73205 0.0746047
\(540\) 0 0
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.46410 + 6.00000i −0.148386 + 0.257012i
\(546\) 0 0
\(547\) −14.5000 25.1147i −0.619975 1.07383i −0.989490 0.144604i \(-0.953809\pi\)
0.369514 0.929225i \(-0.379524\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.92820 + 12.0000i 0.295151 + 0.511217i
\(552\) 0 0
\(553\) 6.50000 11.2583i 0.276408 0.478753i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19.0526 0.807283 0.403641 0.914917i \(-0.367744\pi\)
0.403641 + 0.914917i \(0.367744\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.19615 + 9.00000i −0.218992 + 0.379305i −0.954500 0.298211i \(-0.903610\pi\)
0.735508 + 0.677516i \(0.236943\pi\)
\(564\) 0 0
\(565\) 15.0000 + 25.9808i 0.631055 + 1.09302i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.1865 31.5000i −0.762419 1.32055i −0.941600 0.336733i \(-0.890678\pi\)
0.179181 0.983816i \(-0.442655\pi\)
\(570\) 0 0
\(571\) −10.0000 + 17.3205i −0.418487 + 0.724841i −0.995788 0.0916910i \(-0.970773\pi\)
0.577301 + 0.816532i \(0.304106\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24.2487 1.01124
\(576\) 0 0
\(577\) −16.0000 −0.666089 −0.333044 0.942911i \(-0.608076\pi\)
−0.333044 + 0.942911i \(0.608076\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8.66025 15.0000i 0.359288 0.622305i
\(582\) 0 0
\(583\) 1.50000 + 2.59808i 0.0621237 + 0.107601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.66025 + 15.0000i 0.357447 + 0.619116i 0.987534 0.157409i \(-0.0503140\pi\)
−0.630087 + 0.776525i \(0.716981\pi\)
\(588\) 0 0
\(589\) −2.00000 + 3.46410i −0.0824086 + 0.142736i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24.2487 −0.995775 −0.497888 0.867242i \(-0.665891\pi\)
−0.497888 + 0.867242i \(0.665891\pi\)
\(594\) 0 0
\(595\) 12.0000 0.491952
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 18.1865 31.5000i 0.743082 1.28706i −0.208004 0.978128i \(-0.566697\pi\)
0.951086 0.308927i \(-0.0999699\pi\)
\(600\) 0 0
\(601\) −13.0000 22.5167i −0.530281 0.918474i −0.999376 0.0353259i \(-0.988753\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 13.8564 + 24.0000i 0.563343 + 0.975739i
\(606\) 0 0
\(607\) 2.00000 3.46410i 0.0811775 0.140604i −0.822578 0.568652i \(-0.807465\pi\)
0.903756 + 0.428048i \(0.140799\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 41.0000 1.65597 0.827987 0.560747i \(-0.189486\pi\)
0.827987 + 0.560747i \(0.189486\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.3205 30.0000i 0.697297 1.20775i −0.272103 0.962268i \(-0.587719\pi\)
0.969400 0.245486i \(-0.0789476\pi\)
\(618\) 0 0
\(619\) 14.0000 + 24.2487i 0.562708 + 0.974638i 0.997259 + 0.0739910i \(0.0235736\pi\)
−0.434551 + 0.900647i \(0.643093\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.46410 6.00000i −0.138786 0.240385i
\(624\) 0 0
\(625\) 5.50000 9.52628i 0.220000 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 38.1051 1.51935
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −29.4449 + 51.0000i −1.16848 + 2.02387i
\(636\) 0 0
\(637\) 2.00000 + 3.46410i 0.0792429 + 0.137253i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.06218 10.5000i −0.239442 0.414725i 0.721113 0.692818i \(-0.243631\pi\)
−0.960554 + 0.278093i \(0.910298\pi\)
\(642\) 0 0
\(643\) 2.00000 3.46410i 0.0788723 0.136611i −0.823891 0.566748i \(-0.808201\pi\)
0.902764 + 0.430137i \(0.141535\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.46410 0.136188 0.0680939 0.997679i \(-0.478308\pi\)
0.0680939 + 0.997679i \(0.478308\pi\)
\(648\) 0 0
\(649\) 18.0000 0.706562
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.9186 + 34.5000i −0.779474 + 1.35009i 0.152771 + 0.988262i \(0.451180\pi\)
−0.932245 + 0.361828i \(0.882153\pi\)
\(654\) 0 0
\(655\) −24.0000 41.5692i −0.937758 1.62424i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −25.1147 43.5000i −0.978331 1.69452i −0.668473 0.743737i \(-0.733052\pi\)
−0.309859 0.950783i \(-0.600282\pi\)
\(660\) 0 0
\(661\) 8.00000 13.8564i 0.311164 0.538952i −0.667451 0.744654i \(-0.732615\pi\)
0.978615 + 0.205702i \(0.0659478\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.92820 0.268664
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.92820 + 12.0000i −0.267460 + 0.463255i
\(672\) 0 0
\(673\) 0.500000 + 0.866025i 0.0192736 + 0.0333828i 0.875501 0.483216i \(-0.160531\pi\)
−0.856228 + 0.516599i \(0.827198\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.5885 27.0000i −0.599113 1.03769i −0.992952 0.118515i \(-0.962187\pi\)
0.393839 0.919179i \(-0.371147\pi\)
\(678\) 0 0
\(679\) −1.00000 + 1.73205i −0.0383765 + 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.73205 −0.0662751 −0.0331375 0.999451i \(-0.510550\pi\)
−0.0331375 + 0.999451i \(0.510550\pi\)
\(684\) 0 0
\(685\) −30.0000 −1.14624
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.46410 + 6.00000i −0.131972 + 0.228582i
\(690\) 0 0
\(691\) 11.0000 + 19.0526i 0.418460 + 0.724793i 0.995785 0.0917209i \(-0.0292368\pi\)
−0.577325 + 0.816514i \(0.695903\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −24.2487 42.0000i −0.919806 1.59315i
\(696\) 0 0
\(697\) 6.00000 10.3923i 0.227266 0.393637i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 46.7654 1.76630 0.883152 0.469087i \(-0.155417\pi\)
0.883152 + 0.469087i \(0.155417\pi\)
\(702\) 0 0
\(703\) 22.0000 0.829746
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.92820 12.0000i 0.260562 0.451306i
\(708\) 0 0
\(709\) −17.5000 30.3109i −0.657226 1.13835i −0.981331 0.192328i \(-0.938396\pi\)
0.324104 0.946021i \(-0.394937\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.46410 6.00000i −0.129732 0.224702i
\(714\) 0 0
\(715\) 12.0000 20.7846i 0.448775 0.777300i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.2487 −0.904324 −0.452162 0.891936i \(-0.649347\pi\)
−0.452162 + 0.891936i \(0.649347\pi\)
\(720\) 0 0
\(721\) 14.0000 0.521387
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24.2487 42.0000i 0.900575 1.55984i
\(726\) 0 0
\(727\) −4.00000 6.92820i −0.148352 0.256953i 0.782267 0.622944i \(-0.214063\pi\)
−0.930618 + 0.365991i \(0.880730\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.73205 + 3.00000i 0.0640622 + 0.110959i
\(732\) 0 0
\(733\) 11.0000 19.0526i 0.406294 0.703722i −0.588177 0.808732i \(-0.700154\pi\)
0.994471 + 0.105010i \(0.0334875\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.0526 0.701810
\(738\) 0 0
\(739\) 29.0000 1.06678 0.533391 0.845869i \(-0.320917\pi\)
0.533391 + 0.845869i \(0.320917\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.06218 + 10.5000i −0.222400 + 0.385208i −0.955536 0.294874i \(-0.904722\pi\)
0.733136 + 0.680082i \(0.238056\pi\)
\(744\) 0 0
\(745\) 21.0000 + 36.3731i 0.769380 + 1.33261i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.52628 + 16.5000i 0.348083 + 0.602897i
\(750\) 0 0
\(751\) −11.5000 + 19.9186i −0.419641 + 0.726839i −0.995903 0.0904254i \(-0.971177\pi\)
0.576262 + 0.817265i \(0.304511\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 38.1051 1.38679
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.46410 6.00000i 0.125574 0.217500i −0.796383 0.604792i \(-0.793256\pi\)
0.921957 + 0.387292i \(0.126590\pi\)
\(762\) 0 0
\(763\) −1.00000 1.73205i −0.0362024 0.0627044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 20.7846 + 36.0000i 0.750489 + 1.29988i
\(768\) 0 0
\(769\) 11.0000 19.0526i 0.396670 0.687053i −0.596643 0.802507i \(-0.703499\pi\)
0.993313 + 0.115454i \(0.0368323\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −38.1051 −1.37055 −0.685273 0.728286i \(-0.740317\pi\)
−0.685273 + 0.728286i \(0.740317\pi\)
\(774\) 0 0
\(775\) 14.0000 0.502895
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.46410 6.00000i 0.124114 0.214972i
\(780\) 0 0
\(781\) −4.50000 7.79423i −0.161023 0.278899i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.92820 + 12.0000i 0.247278 + 0.428298i
\(786\) 0 0
\(787\) 11.0000 19.0526i 0.392108 0.679150i −0.600620 0.799535i \(-0.705079\pi\)
0.992727 + 0.120384i \(0.0384127\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.66025 −0.307923
\(792\) 0 0
\(793\) −32.0000 −1.13635
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.7128 48.0000i 0.981638 1.70025i 0.325623 0.945500i \(-0.394426\pi\)
0.656015 0.754747i \(-0.272241\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.8564 + 24.0000i 0.488982 + 0.846942i
\(804\) 0 0
\(805\) −6.00000 + 10.3923i −0.211472 + 0.366281i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −32.9090 −1.15702 −0.578509 0.815676i \(-0.696365\pi\)
−0.578509 + 0.815676i \(0.696365\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −39.8372 + 69.0000i −1.39544 + 2.41696i
\(816\) 0 0
\(817\) 1.00000 + 1.73205i 0.0349856 + 0.0605968i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 18.1865 + 31.5000i 0.634714 + 1.09936i 0.986576 + 0.163305i \(0.0522156\pi\)
−0.351861 + 0.936052i \(0.614451\pi\)
\(822\) 0 0
\(823\) 20.0000 34.6410i 0.697156 1.20751i −0.272292 0.962215i \(-0.587782\pi\)
0.969448 0.245295i \(-0.0788849\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.5885 0.542064 0.271032 0.962570i \(-0.412635\pi\)
0.271032 + 0.962570i \(0.412635\pi\)
\(828\) 0 0
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.73205 + 3.00000i −0.0600120 + 0.103944i
\(834\) 0 0
\(835\) 6.00000 + 10.3923i 0.207639 + 0.359641i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.1244 21.0000i −0.418579 0.725001i 0.577218 0.816590i \(-0.304138\pi\)
−0.995797 + 0.0915899i \(0.970805\pi\)
\(840\) 0 0
\(841\) −9.50000 + 16.4545i −0.327586 + 0.567396i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.3923 0.357506
\(846\) 0 0
\(847\) −8.00000 −0.274883
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −19.0526 + 33.0000i −0.653113 + 1.13123i
\(852\) 0 0
\(853\) −22.0000 38.1051i −0.753266 1.30469i −0.946232 0.323489i \(-0.895144\pi\)
0.192966 0.981205i \(-0.438189\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.5167 + 39.0000i 0.769154 + 1.33221i 0.938022 + 0.346576i \(0.112656\pi\)
−0.168867 + 0.985639i \(0.554011\pi\)
\(858\) 0 0
\(859\) −22.0000 + 38.1051i −0.750630 + 1.30013i 0.196887 + 0.980426i \(0.436917\pi\)
−0.947518 + 0.319704i \(0.896417\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.73205 0.0589597 0.0294798 0.999565i \(-0.490615\pi\)
0.0294798 + 0.999565i \(0.490615\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.2583 19.5000i 0.381913 0.661492i
\(870\) 0 0
\(871\) 22.0000 + 38.1051i 0.745442 + 1.29114i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.46410 6.00000i −0.117108 0.202837i
\(876\) 0 0
\(877\) −8.50000 + 14.7224i −0.287025 + 0.497141i −0.973098 0.230391i \(-0.925999\pi\)
0.686074 + 0.727532i \(0.259333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −51.9615 −1.75063 −0.875314 0.483555i \(-0.839345\pi\)
−0.875314 + 0.483555i \(0.839345\pi\)
\(882\) 0 0
\(883\) 35.0000 1.17784 0.588922 0.808190i \(-0.299553\pi\)
0.588922 + 0.808190i \(0.299553\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.8564 24.0000i 0.465253 0.805841i −0.533960 0.845510i \(-0.679297\pi\)
0.999213 + 0.0396684i \(0.0126302\pi\)
\(888\) 0 0
\(889\) −8.50000 14.7224i −0.285081 0.493775i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −42.0000 + 72.7461i −1.40391 + 2.43164i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13.8564 −0.462137
\(900\) 0 0
\(901\) −6.00000 −0.199889
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −45.0333 + 78.0000i −1.49696 + 2.59281i
\(906\) 0 0
\(907\) 18.5000 + 32.0429i 0.614282 + 1.06397i 0.990510 + 0.137441i \(0.0438878\pi\)
−0.376228 + 0.926527i \(0.622779\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19.0526 + 33.0000i 0.631239 + 1.09334i 0.987299 + 0.158875i \(0.0507868\pi\)
−0.356059 + 0.934463i \(0.615880\pi\)
\(912\) 0 0
\(913\) 15.0000 25.9808i 0.496428 0.859838i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 13.8564 0.457579
\(918\) 0 0
\(919\) −25.0000 −0.824674 −0.412337 0.911031i \(-0.635287\pi\)
−0.412337 + 0.911031i \(0.635287\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.3923 18.0000i 0.342067 0.592477i
\(924\) 0 0
\(925\) −38.5000 66.6840i −1.26587 2.19255i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.7846 + 36.0000i 0.681921 + 1.18112i 0.974394 + 0.224848i \(0.0721885\pi\)
−0.292473 + 0.956274i \(0.594478\pi\)
\(930\) 0 0
\(931\) −1.00000 + 1.73205i −0.0327737 + 0.0567657i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 20.7846 0.679729
\(936\) 0 0
\(937\) 8.00000 0.261349 0.130674 0.991425i \(-0.458286\pi\)
0.130674 + 0.991425i \(0.458286\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.3923 + 18.0000i −0.338779 + 0.586783i −0.984203 0.177041i \(-0.943347\pi\)
0.645424 + 0.763825i \(0.276681\pi\)
\(942\) 0 0
\(943\) 6.00000 + 10.3923i 0.195387 + 0.338420i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.19615 + 9.00000i 0.168852 + 0.292461i 0.938017 0.346590i \(-0.112661\pi\)
−0.769164 + 0.639051i \(0.779327\pi\)
\(948\) 0 0
\(949\) −32.0000 + 55.4256i −1.03876 + 1.79919i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −20.7846 −0.673280 −0.336640 0.941634i \(-0.609290\pi\)
−0.336640 + 0.941634i \(0.609290\pi\)
\(954\) 0 0
\(955\) −54.0000 −1.74740
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.33013 7.50000i 0.139827 0.242188i
\(960\) 0 0
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.46410 6.00000i −0.111513 0.193147i
\(966\) 0 0
\(967\) −16.0000 + 27.7128i −0.514525 + 0.891184i 0.485333 + 0.874330i \(0.338699\pi\)
−0.999858 + 0.0168544i \(0.994635\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.46410 −0.111168 −0.0555842 0.998454i \(-0.517702\pi\)
−0.0555842 + 0.998454i \(0.517702\pi\)
\(972\) 0 0
\(973\) 14.0000 0.448819
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10.3923 18.0000i 0.332479 0.575871i −0.650518 0.759491i \(-0.725448\pi\)
0.982997 + 0.183620i \(0.0587815\pi\)
\(978\) 0 0
\(979\) −6.00000 10.3923i −0.191761 0.332140i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −13.8564 24.0000i −0.441951 0.765481i 0.555883 0.831260i \(-0.312380\pi\)
−0.997834 + 0.0657791i \(0.979047\pi\)
\(984\) 0 0
\(985\) −9.00000 + 15.5885i −0.286764 + 0.496690i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.46410 −0.110152
\(990\) 0 0
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.92820 12.0000i 0.219639 0.380426i
\(996\) 0 0
\(997\) −13.0000 22.5167i −0.411714 0.713110i 0.583363 0.812211i \(-0.301736\pi\)
−0.995077 + 0.0991016i \(0.968403\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.j.p.757.1 4
3.2 odd 2 inner 2268.2.j.p.757.2 4
9.2 odd 6 inner 2268.2.j.p.1513.2 4
9.4 even 3 2268.2.a.e.1.2 yes 2
9.5 odd 6 2268.2.a.e.1.1 2
9.7 even 3 inner 2268.2.j.p.1513.1 4
36.23 even 6 9072.2.a.bg.1.1 2
36.31 odd 6 9072.2.a.bg.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.a.e.1.1 2 9.5 odd 6
2268.2.a.e.1.2 yes 2 9.4 even 3
2268.2.j.p.757.1 4 1.1 even 1 trivial
2268.2.j.p.757.2 4 3.2 odd 2 inner
2268.2.j.p.1513.1 4 9.7 even 3 inner
2268.2.j.p.1513.2 4 9.2 odd 6 inner
9072.2.a.bg.1.1 2 36.23 even 6
9072.2.a.bg.1.2 2 36.31 odd 6