Properties

Label 2268.2.j.p.1513.1
Level $2268$
Weight $2$
Character 2268.1513
Analytic conductor $18.110$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(757,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.757"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-2,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1513.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1513
Dual form 2268.2.j.p.757.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 - 3.00000i) q^{5} +(-0.500000 + 0.866025i) q^{7} +(-0.866025 + 1.50000i) q^{11} +(2.00000 + 3.46410i) q^{13} +3.46410 q^{17} +2.00000 q^{19} +(-1.73205 - 3.00000i) q^{23} +(-3.50000 + 6.06218i) q^{25} +(3.46410 - 6.00000i) q^{29} +(-1.00000 - 1.73205i) q^{31} +3.46410 q^{35} +11.0000 q^{37} +(1.73205 + 3.00000i) q^{41} +(0.500000 - 0.866025i) q^{43} +(-0.500000 - 0.866025i) q^{49} -1.73205 q^{53} +6.00000 q^{55} +(-5.19615 - 9.00000i) q^{59} +(-4.00000 + 6.92820i) q^{61} +(6.92820 - 12.0000i) q^{65} +(-5.50000 - 9.52628i) q^{67} +5.19615 q^{71} -16.0000 q^{73} +(-0.866025 - 1.50000i) q^{77} +(6.50000 - 11.2583i) q^{79} +(8.66025 - 15.0000i) q^{83} +(-6.00000 - 10.3923i) q^{85} +6.92820 q^{89} -4.00000 q^{91} +(-3.46410 - 6.00000i) q^{95} +(-1.00000 + 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{7} + 8 q^{13} + 8 q^{19} - 14 q^{25} - 4 q^{31} + 44 q^{37} + 2 q^{43} - 2 q^{49} + 24 q^{55} - 16 q^{61} - 22 q^{67} - 64 q^{73} + 26 q^{79} - 24 q^{85} - 16 q^{91} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.73205 3.00000i −0.774597 1.34164i −0.935021 0.354593i \(-0.884620\pi\)
0.160424 0.987048i \(-0.448714\pi\)
\(6\) 0 0
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.866025 + 1.50000i −0.261116 + 0.452267i −0.966539 0.256520i \(-0.917424\pi\)
0.705422 + 0.708787i \(0.250757\pi\)
\(12\) 0 0
\(13\) 2.00000 + 3.46410i 0.554700 + 0.960769i 0.997927 + 0.0643593i \(0.0205004\pi\)
−0.443227 + 0.896410i \(0.646166\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.46410 0.840168 0.420084 0.907485i \(-0.362001\pi\)
0.420084 + 0.907485i \(0.362001\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.73205 3.00000i −0.361158 0.625543i 0.626994 0.779024i \(-0.284285\pi\)
−0.988152 + 0.153481i \(0.950952\pi\)
\(24\) 0 0
\(25\) −3.50000 + 6.06218i −0.700000 + 1.21244i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.46410 6.00000i 0.643268 1.11417i −0.341431 0.939907i \(-0.610912\pi\)
0.984699 0.174265i \(-0.0557550\pi\)
\(30\) 0 0
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.46410 0.585540
\(36\) 0 0
\(37\) 11.0000 1.80839 0.904194 0.427121i \(-0.140472\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.73205 + 3.00000i 0.270501 + 0.468521i 0.968990 0.247099i \(-0.0794774\pi\)
−0.698489 + 0.715621i \(0.746144\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.73205 −0.237915 −0.118958 0.992899i \(-0.537955\pi\)
−0.118958 + 0.992899i \(0.537955\pi\)
\(54\) 0 0
\(55\) 6.00000 0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.19615 9.00000i −0.676481 1.17170i −0.976034 0.217620i \(-0.930171\pi\)
0.299552 0.954080i \(-0.403163\pi\)
\(60\) 0 0
\(61\) −4.00000 + 6.92820i −0.512148 + 0.887066i 0.487753 + 0.872982i \(0.337817\pi\)
−0.999901 + 0.0140840i \(0.995517\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.92820 12.0000i 0.859338 1.48842i
\(66\) 0 0
\(67\) −5.50000 9.52628i −0.671932 1.16382i −0.977356 0.211604i \(-0.932131\pi\)
0.305424 0.952217i \(-0.401202\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.19615 0.616670 0.308335 0.951278i \(-0.400228\pi\)
0.308335 + 0.951278i \(0.400228\pi\)
\(72\) 0 0
\(73\) −16.0000 −1.87266 −0.936329 0.351123i \(-0.885800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.866025 1.50000i −0.0986928 0.170941i
\(78\) 0 0
\(79\) 6.50000 11.2583i 0.731307 1.26666i −0.225018 0.974355i \(-0.572244\pi\)
0.956325 0.292306i \(-0.0944227\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.66025 15.0000i 0.950586 1.64646i 0.206427 0.978462i \(-0.433816\pi\)
0.744160 0.668002i \(-0.232850\pi\)
\(84\) 0 0
\(85\) −6.00000 10.3923i −0.650791 1.12720i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.92820 0.734388 0.367194 0.930144i \(-0.380318\pi\)
0.367194 + 0.930144i \(0.380318\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.46410 6.00000i −0.355409 0.615587i
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.92820 12.0000i 0.689382 1.19404i −0.282656 0.959221i \(-0.591216\pi\)
0.972038 0.234823i \(-0.0754512\pi\)
\(102\) 0 0
\(103\) −7.00000 12.1244i −0.689730 1.19465i −0.971925 0.235291i \(-0.924396\pi\)
0.282194 0.959357i \(-0.408938\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.0526 −1.84188 −0.920940 0.389704i \(-0.872577\pi\)
−0.920940 + 0.389704i \(0.872577\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.33013 + 7.50000i 0.407344 + 0.705541i 0.994591 0.103867i \(-0.0331216\pi\)
−0.587247 + 0.809408i \(0.699788\pi\)
\(114\) 0 0
\(115\) −6.00000 + 10.3923i −0.559503 + 0.969087i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.73205 + 3.00000i −0.158777 + 0.275010i
\(120\) 0 0
\(121\) 4.00000 + 6.92820i 0.363636 + 0.629837i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) 17.0000 1.50851 0.754253 0.656584i \(-0.227999\pi\)
0.754253 + 0.656584i \(0.227999\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.92820 12.0000i −0.605320 1.04844i −0.992001 0.126231i \(-0.959712\pi\)
0.386681 0.922214i \(-0.373621\pi\)
\(132\) 0 0
\(133\) −1.00000 + 1.73205i −0.0867110 + 0.150188i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.33013 7.50000i 0.369948 0.640768i −0.619609 0.784910i \(-0.712709\pi\)
0.989557 + 0.144142i \(0.0460423\pi\)
\(138\) 0 0
\(139\) −7.00000 12.1244i −0.593732 1.02837i −0.993724 0.111856i \(-0.964321\pi\)
0.399992 0.916519i \(-0.369013\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.92820 −0.579365
\(144\) 0 0
\(145\) −24.0000 −1.99309
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.06218 + 10.5000i 0.496633 + 0.860194i 0.999992 0.00388357i \(-0.00123618\pi\)
−0.503360 + 0.864077i \(0.667903\pi\)
\(150\) 0 0
\(151\) −5.50000 + 9.52628i −0.447584 + 0.775238i −0.998228 0.0595022i \(-0.981049\pi\)
0.550645 + 0.834740i \(0.314382\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.46410 + 6.00000i −0.278243 + 0.481932i
\(156\) 0 0
\(157\) 2.00000 + 3.46410i 0.159617 + 0.276465i 0.934731 0.355357i \(-0.115641\pi\)
−0.775113 + 0.631822i \(0.782307\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.46410 0.273009
\(162\) 0 0
\(163\) 23.0000 1.80150 0.900750 0.434339i \(-0.143018\pi\)
0.900750 + 0.434339i \(0.143018\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.73205 + 3.00000i 0.134030 + 0.232147i 0.925227 0.379415i \(-0.123875\pi\)
−0.791196 + 0.611562i \(0.790541\pi\)
\(168\) 0 0
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) −3.50000 6.06218i −0.264575 0.458258i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 24.2487 1.81243 0.906217 0.422813i \(-0.138957\pi\)
0.906217 + 0.422813i \(0.138957\pi\)
\(180\) 0 0
\(181\) 26.0000 1.93256 0.966282 0.257485i \(-0.0828937\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −19.0526 33.0000i −1.40077 2.42621i
\(186\) 0 0
\(187\) −3.00000 + 5.19615i −0.219382 + 0.379980i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.79423 13.5000i 0.563971 0.976826i −0.433174 0.901310i \(-0.642606\pi\)
0.997145 0.0755154i \(-0.0240602\pi\)
\(192\) 0 0
\(193\) −1.00000 1.73205i −0.0719816 0.124676i 0.827788 0.561041i \(-0.189599\pi\)
−0.899770 + 0.436365i \(0.856266\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.19615 0.370211 0.185105 0.982719i \(-0.440737\pi\)
0.185105 + 0.982719i \(0.440737\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.46410 + 6.00000i 0.243132 + 0.421117i
\(204\) 0 0
\(205\) 6.00000 10.3923i 0.419058 0.725830i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.73205 + 3.00000i −0.119808 + 0.207514i
\(210\) 0 0
\(211\) 9.50000 + 16.4545i 0.654007 + 1.13277i 0.982142 + 0.188142i \(0.0602466\pi\)
−0.328135 + 0.944631i \(0.606420\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.46410 −0.236250
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.92820 + 12.0000i 0.466041 + 0.807207i
\(222\) 0 0
\(223\) −1.00000 + 1.73205i −0.0669650 + 0.115987i −0.897564 0.440884i \(-0.854665\pi\)
0.830599 + 0.556871i \(0.187998\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.66025 + 15.0000i −0.574801 + 0.995585i 0.421262 + 0.906939i \(0.361587\pi\)
−0.996063 + 0.0886460i \(0.971746\pi\)
\(228\) 0 0
\(229\) 11.0000 + 19.0526i 0.726900 + 1.25903i 0.958187 + 0.286143i \(0.0923732\pi\)
−0.231287 + 0.972886i \(0.574293\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.92820 0.453882 0.226941 0.973909i \(-0.427128\pi\)
0.226941 + 0.973909i \(0.427128\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.866025 1.50000i −0.0560185 0.0970269i 0.836656 0.547728i \(-0.184507\pi\)
−0.892675 + 0.450701i \(0.851174\pi\)
\(240\) 0 0
\(241\) 8.00000 13.8564i 0.515325 0.892570i −0.484516 0.874782i \(-0.661004\pi\)
0.999842 0.0177875i \(-0.00566223\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.73205 + 3.00000i −0.110657 + 0.191663i
\(246\) 0 0
\(247\) 4.00000 + 6.92820i 0.254514 + 0.440831i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −20.7846 −1.31191 −0.655956 0.754799i \(-0.727735\pi\)
−0.655956 + 0.754799i \(0.727735\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.92820 12.0000i −0.432169 0.748539i 0.564890 0.825166i \(-0.308918\pi\)
−0.997060 + 0.0766265i \(0.975585\pi\)
\(258\) 0 0
\(259\) −5.50000 + 9.52628i −0.341753 + 0.591934i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.2583 + 19.5000i −0.694218 + 1.20242i 0.276225 + 0.961093i \(0.410916\pi\)
−0.970443 + 0.241329i \(0.922417\pi\)
\(264\) 0 0
\(265\) 3.00000 + 5.19615i 0.184289 + 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.92820 −0.422420 −0.211210 0.977441i \(-0.567740\pi\)
−0.211210 + 0.977441i \(0.567740\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.06218 10.5000i −0.365563 0.633174i
\(276\) 0 0
\(277\) 0.500000 0.866025i 0.0300421 0.0520344i −0.850613 0.525792i \(-0.823769\pi\)
0.880656 + 0.473757i \(0.157103\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.866025 1.50000i 0.0516627 0.0894825i −0.839038 0.544074i \(-0.816881\pi\)
0.890700 + 0.454591i \(0.150215\pi\)
\(282\) 0 0
\(283\) 8.00000 + 13.8564i 0.475551 + 0.823678i 0.999608 0.0280052i \(-0.00891551\pi\)
−0.524057 + 0.851683i \(0.675582\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.46410 −0.204479
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.92820 + 12.0000i 0.404750 + 0.701047i 0.994292 0.106690i \(-0.0340252\pi\)
−0.589542 + 0.807737i \(0.700692\pi\)
\(294\) 0 0
\(295\) −18.0000 + 31.1769i −1.04800 + 1.81519i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.92820 12.0000i 0.400668 0.693978i
\(300\) 0 0
\(301\) 0.500000 + 0.866025i 0.0288195 + 0.0499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 27.7128 1.58683
\(306\) 0 0
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.3923 18.0000i −0.589294 1.02069i −0.994325 0.106384i \(-0.966073\pi\)
0.405032 0.914303i \(-0.367261\pi\)
\(312\) 0 0
\(313\) 11.0000 19.0526i 0.621757 1.07691i −0.367402 0.930062i \(-0.619753\pi\)
0.989158 0.146852i \(-0.0469141\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 6.00000 + 10.3923i 0.335936 + 0.581857i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.92820 0.385496
\(324\) 0 0
\(325\) −28.0000 −1.55316
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −19.0526 + 33.0000i −1.04095 + 1.80298i
\(336\) 0 0
\(337\) −11.5000 19.9186i −0.626445 1.08503i −0.988260 0.152784i \(-0.951176\pi\)
0.361815 0.932250i \(-0.382157\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.46410 0.187592
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.1865 + 31.5000i 0.976304 + 1.69101i 0.675562 + 0.737303i \(0.263901\pi\)
0.300742 + 0.953705i \(0.402766\pi\)
\(348\) 0 0
\(349\) 8.00000 13.8564i 0.428230 0.741716i −0.568486 0.822693i \(-0.692471\pi\)
0.996716 + 0.0809766i \(0.0258039\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.73205 3.00000i 0.0921878 0.159674i −0.816244 0.577708i \(-0.803947\pi\)
0.908431 + 0.418034i \(0.137281\pi\)
\(354\) 0 0
\(355\) −9.00000 15.5885i −0.477670 0.827349i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.4449 −1.55404 −0.777020 0.629476i \(-0.783270\pi\)
−0.777020 + 0.629476i \(0.783270\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 27.7128 + 48.0000i 1.45055 + 2.51243i
\(366\) 0 0
\(367\) 14.0000 24.2487i 0.730794 1.26577i −0.225750 0.974185i \(-0.572483\pi\)
0.956544 0.291587i \(-0.0941834\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.866025 1.50000i 0.0449618 0.0778761i
\(372\) 0 0
\(373\) 6.50000 + 11.2583i 0.336557 + 0.582934i 0.983783 0.179364i \(-0.0574041\pi\)
−0.647225 + 0.762299i \(0.724071\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 27.7128 1.42728
\(378\) 0 0
\(379\) 17.0000 0.873231 0.436616 0.899648i \(-0.356177\pi\)
0.436616 + 0.899648i \(0.356177\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.8564 + 24.0000i 0.708029 + 1.22634i 0.965587 + 0.260080i \(0.0837489\pi\)
−0.257558 + 0.966263i \(0.582918\pi\)
\(384\) 0 0
\(385\) −3.00000 + 5.19615i −0.152894 + 0.264820i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.92820 12.0000i 0.351274 0.608424i −0.635199 0.772348i \(-0.719082\pi\)
0.986473 + 0.163924i \(0.0524153\pi\)
\(390\) 0 0
\(391\) −6.00000 10.3923i −0.303433 0.525561i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −45.0333 −2.26587
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.7224 25.5000i −0.735203 1.27341i −0.954634 0.297781i \(-0.903753\pi\)
0.219431 0.975628i \(-0.429580\pi\)
\(402\) 0 0
\(403\) 4.00000 6.92820i 0.199254 0.345118i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.52628 + 16.5000i −0.472200 + 0.817875i
\(408\) 0 0
\(409\) −1.00000 1.73205i −0.0494468 0.0856444i 0.840243 0.542211i \(-0.182412\pi\)
−0.889689 + 0.456566i \(0.849079\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.3923 0.511372
\(414\) 0 0
\(415\) −60.0000 −2.94528
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.1244 + 21.0000i 0.592314 + 1.02592i 0.993920 + 0.110105i \(0.0351186\pi\)
−0.401606 + 0.915812i \(0.631548\pi\)
\(420\) 0 0
\(421\) 18.5000 32.0429i 0.901635 1.56168i 0.0762630 0.997088i \(-0.475701\pi\)
0.825372 0.564590i \(-0.190966\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.1244 + 21.0000i −0.588118 + 1.01865i
\(426\) 0 0
\(427\) −4.00000 6.92820i −0.193574 0.335279i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −38.1051 −1.83546 −0.917729 0.397206i \(-0.869980\pi\)
−0.917729 + 0.397206i \(0.869980\pi\)
\(432\) 0 0
\(433\) −10.0000 −0.480569 −0.240285 0.970702i \(-0.577241\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.46410 6.00000i −0.165710 0.287019i
\(438\) 0 0
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.19615 + 9.00000i −0.246877 + 0.427603i −0.962658 0.270722i \(-0.912738\pi\)
0.715781 + 0.698325i \(0.246071\pi\)
\(444\) 0 0
\(445\) −12.0000 20.7846i −0.568855 0.985285i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.19615 −0.245222 −0.122611 0.992455i \(-0.539127\pi\)
−0.122611 + 0.992455i \(0.539127\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.92820 + 12.0000i 0.324799 + 0.562569i
\(456\) 0 0
\(457\) −2.50000 + 4.33013i −0.116945 + 0.202555i −0.918556 0.395292i \(-0.870643\pi\)
0.801611 + 0.597847i \(0.203977\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.92820 + 12.0000i −0.322679 + 0.558896i −0.981040 0.193806i \(-0.937917\pi\)
0.658361 + 0.752702i \(0.271250\pi\)
\(462\) 0 0
\(463\) −11.5000 19.9186i −0.534450 0.925695i −0.999190 0.0402476i \(-0.987185\pi\)
0.464739 0.885448i \(-0.346148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −24.2487 −1.12210 −0.561048 0.827783i \(-0.689602\pi\)
−0.561048 + 0.827783i \(0.689602\pi\)
\(468\) 0 0
\(469\) 11.0000 0.507933
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.866025 + 1.50000i 0.0398199 + 0.0689701i
\(474\) 0 0
\(475\) −7.00000 + 12.1244i −0.321182 + 0.556304i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.1244 21.0000i 0.553976 0.959514i −0.444006 0.896024i \(-0.646443\pi\)
0.997982 0.0634909i \(-0.0202234\pi\)
\(480\) 0 0
\(481\) 22.0000 + 38.1051i 1.00311 + 1.73744i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.92820 0.314594
\(486\) 0 0
\(487\) 29.0000 1.31412 0.657058 0.753840i \(-0.271801\pi\)
0.657058 + 0.753840i \(0.271801\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.73205 + 3.00000i 0.0781664 + 0.135388i 0.902459 0.430776i \(-0.141760\pi\)
−0.824292 + 0.566164i \(0.808427\pi\)
\(492\) 0 0
\(493\) 12.0000 20.7846i 0.540453 0.936092i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.59808 + 4.50000i −0.116540 + 0.201853i
\(498\) 0 0
\(499\) 2.00000 + 3.46410i 0.0895323 + 0.155074i 0.907314 0.420455i \(-0.138129\pi\)
−0.817781 + 0.575529i \(0.804796\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −48.0000 −2.13597
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.66025 + 15.0000i 0.383859 + 0.664863i 0.991610 0.129264i \(-0.0412615\pi\)
−0.607751 + 0.794128i \(0.707928\pi\)
\(510\) 0 0
\(511\) 8.00000 13.8564i 0.353899 0.612971i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −24.2487 + 42.0000i −1.06853 + 1.85074i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −38.1051 −1.66942 −0.834708 0.550693i \(-0.814363\pi\)
−0.834708 + 0.550693i \(0.814363\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.46410 6.00000i −0.150899 0.261364i
\(528\) 0 0
\(529\) 5.50000 9.52628i 0.239130 0.414186i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.92820 + 12.0000i −0.300094 + 0.519778i
\(534\) 0 0
\(535\) 33.0000 + 57.1577i 1.42671 + 2.47114i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.73205 0.0746047
\(540\) 0 0
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.46410 6.00000i −0.148386 0.257012i
\(546\) 0 0
\(547\) −14.5000 + 25.1147i −0.619975 + 1.07383i 0.369514 + 0.929225i \(0.379524\pi\)
−0.989490 + 0.144604i \(0.953809\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.92820 12.0000i 0.295151 0.511217i
\(552\) 0 0
\(553\) 6.50000 + 11.2583i 0.276408 + 0.478753i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19.0526 0.807283 0.403641 0.914917i \(-0.367744\pi\)
0.403641 + 0.914917i \(0.367744\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.19615 9.00000i −0.218992 0.379305i 0.735508 0.677516i \(-0.236943\pi\)
−0.954500 + 0.298211i \(0.903610\pi\)
\(564\) 0 0
\(565\) 15.0000 25.9808i 0.631055 1.09302i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.1865 + 31.5000i −0.762419 + 1.32055i 0.179181 + 0.983816i \(0.442655\pi\)
−0.941600 + 0.336733i \(0.890678\pi\)
\(570\) 0 0
\(571\) −10.0000 17.3205i −0.418487 0.724841i 0.577301 0.816532i \(-0.304106\pi\)
−0.995788 + 0.0916910i \(0.970773\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24.2487 1.01124
\(576\) 0 0
\(577\) −16.0000 −0.666089 −0.333044 0.942911i \(-0.608076\pi\)
−0.333044 + 0.942911i \(0.608076\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8.66025 + 15.0000i 0.359288 + 0.622305i
\(582\) 0 0
\(583\) 1.50000 2.59808i 0.0621237 0.107601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.66025 15.0000i 0.357447 0.619116i −0.630087 0.776525i \(-0.716981\pi\)
0.987534 + 0.157409i \(0.0503140\pi\)
\(588\) 0 0
\(589\) −2.00000 3.46410i −0.0824086 0.142736i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24.2487 −0.995775 −0.497888 0.867242i \(-0.665891\pi\)
−0.497888 + 0.867242i \(0.665891\pi\)
\(594\) 0 0
\(595\) 12.0000 0.491952
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 18.1865 + 31.5000i 0.743082 + 1.28706i 0.951086 + 0.308927i \(0.0999699\pi\)
−0.208004 + 0.978128i \(0.566697\pi\)
\(600\) 0 0
\(601\) −13.0000 + 22.5167i −0.530281 + 0.918474i 0.469095 + 0.883148i \(0.344580\pi\)
−0.999376 + 0.0353259i \(0.988753\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 13.8564 24.0000i 0.563343 0.975739i
\(606\) 0 0
\(607\) 2.00000 + 3.46410i 0.0811775 + 0.140604i 0.903756 0.428048i \(-0.140799\pi\)
−0.822578 + 0.568652i \(0.807465\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 41.0000 1.65597 0.827987 0.560747i \(-0.189486\pi\)
0.827987 + 0.560747i \(0.189486\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.3205 + 30.0000i 0.697297 + 1.20775i 0.969400 + 0.245486i \(0.0789476\pi\)
−0.272103 + 0.962268i \(0.587719\pi\)
\(618\) 0 0
\(619\) 14.0000 24.2487i 0.562708 0.974638i −0.434551 0.900647i \(-0.643093\pi\)
0.997259 0.0739910i \(-0.0235736\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.46410 + 6.00000i −0.138786 + 0.240385i
\(624\) 0 0
\(625\) 5.50000 + 9.52628i 0.220000 + 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 38.1051 1.51935
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −29.4449 51.0000i −1.16848 2.02387i
\(636\) 0 0
\(637\) 2.00000 3.46410i 0.0792429 0.137253i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.06218 + 10.5000i −0.239442 + 0.414725i −0.960554 0.278093i \(-0.910298\pi\)
0.721113 + 0.692818i \(0.243631\pi\)
\(642\) 0 0
\(643\) 2.00000 + 3.46410i 0.0788723 + 0.136611i 0.902764 0.430137i \(-0.141535\pi\)
−0.823891 + 0.566748i \(0.808201\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.46410 0.136188 0.0680939 0.997679i \(-0.478308\pi\)
0.0680939 + 0.997679i \(0.478308\pi\)
\(648\) 0 0
\(649\) 18.0000 0.706562
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.9186 34.5000i −0.779474 1.35009i −0.932245 0.361828i \(-0.882153\pi\)
0.152771 0.988262i \(-0.451180\pi\)
\(654\) 0 0
\(655\) −24.0000 + 41.5692i −0.937758 + 1.62424i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −25.1147 + 43.5000i −0.978331 + 1.69452i −0.309859 + 0.950783i \(0.600282\pi\)
−0.668473 + 0.743737i \(0.733052\pi\)
\(660\) 0 0
\(661\) 8.00000 + 13.8564i 0.311164 + 0.538952i 0.978615 0.205702i \(-0.0659478\pi\)
−0.667451 + 0.744654i \(0.732615\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.92820 0.268664
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.92820 12.0000i −0.267460 0.463255i
\(672\) 0 0
\(673\) 0.500000 0.866025i 0.0192736 0.0333828i −0.856228 0.516599i \(-0.827198\pi\)
0.875501 + 0.483216i \(0.160531\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.5885 + 27.0000i −0.599113 + 1.03769i 0.393839 + 0.919179i \(0.371147\pi\)
−0.992952 + 0.118515i \(0.962187\pi\)
\(678\) 0 0
\(679\) −1.00000 1.73205i −0.0383765 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.73205 −0.0662751 −0.0331375 0.999451i \(-0.510550\pi\)
−0.0331375 + 0.999451i \(0.510550\pi\)
\(684\) 0 0
\(685\) −30.0000 −1.14624
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.46410 6.00000i −0.131972 0.228582i
\(690\) 0 0
\(691\) 11.0000 19.0526i 0.418460 0.724793i −0.577325 0.816514i \(-0.695903\pi\)
0.995785 + 0.0917209i \(0.0292368\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −24.2487 + 42.0000i −0.919806 + 1.59315i
\(696\) 0 0
\(697\) 6.00000 + 10.3923i 0.227266 + 0.393637i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 46.7654 1.76630 0.883152 0.469087i \(-0.155417\pi\)
0.883152 + 0.469087i \(0.155417\pi\)
\(702\) 0 0
\(703\) 22.0000 0.829746
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.92820 + 12.0000i 0.260562 + 0.451306i
\(708\) 0 0
\(709\) −17.5000 + 30.3109i −0.657226 + 1.13835i 0.324104 + 0.946021i \(0.394937\pi\)
−0.981331 + 0.192328i \(0.938396\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.46410 + 6.00000i −0.129732 + 0.224702i
\(714\) 0 0
\(715\) 12.0000 + 20.7846i 0.448775 + 0.777300i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.2487 −0.904324 −0.452162 0.891936i \(-0.649347\pi\)
−0.452162 + 0.891936i \(0.649347\pi\)
\(720\) 0 0
\(721\) 14.0000 0.521387
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24.2487 + 42.0000i 0.900575 + 1.55984i
\(726\) 0 0
\(727\) −4.00000 + 6.92820i −0.148352 + 0.256953i −0.930618 0.365991i \(-0.880730\pi\)
0.782267 + 0.622944i \(0.214063\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.73205 3.00000i 0.0640622 0.110959i
\(732\) 0 0
\(733\) 11.0000 + 19.0526i 0.406294 + 0.703722i 0.994471 0.105010i \(-0.0334875\pi\)
−0.588177 + 0.808732i \(0.700154\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.0526 0.701810
\(738\) 0 0
\(739\) 29.0000 1.06678 0.533391 0.845869i \(-0.320917\pi\)
0.533391 + 0.845869i \(0.320917\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.06218 10.5000i −0.222400 0.385208i 0.733136 0.680082i \(-0.238056\pi\)
−0.955536 + 0.294874i \(0.904722\pi\)
\(744\) 0 0
\(745\) 21.0000 36.3731i 0.769380 1.33261i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.52628 16.5000i 0.348083 0.602897i
\(750\) 0 0
\(751\) −11.5000 19.9186i −0.419641 0.726839i 0.576262 0.817265i \(-0.304511\pi\)
−0.995903 + 0.0904254i \(0.971177\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 38.1051 1.38679
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.46410 + 6.00000i 0.125574 + 0.217500i 0.921957 0.387292i \(-0.126590\pi\)
−0.796383 + 0.604792i \(0.793256\pi\)
\(762\) 0 0
\(763\) −1.00000 + 1.73205i −0.0362024 + 0.0627044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 20.7846 36.0000i 0.750489 1.29988i
\(768\) 0 0
\(769\) 11.0000 + 19.0526i 0.396670 + 0.687053i 0.993313 0.115454i \(-0.0368323\pi\)
−0.596643 + 0.802507i \(0.703499\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −38.1051 −1.37055 −0.685273 0.728286i \(-0.740317\pi\)
−0.685273 + 0.728286i \(0.740317\pi\)
\(774\) 0 0
\(775\) 14.0000 0.502895
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.46410 + 6.00000i 0.124114 + 0.214972i
\(780\) 0 0
\(781\) −4.50000 + 7.79423i −0.161023 + 0.278899i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.92820 12.0000i 0.247278 0.428298i
\(786\) 0 0
\(787\) 11.0000 + 19.0526i 0.392108 + 0.679150i 0.992727 0.120384i \(-0.0384127\pi\)
−0.600620 + 0.799535i \(0.705079\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.66025 −0.307923
\(792\) 0 0
\(793\) −32.0000 −1.13635
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.7128 + 48.0000i 0.981638 + 1.70025i 0.656015 + 0.754747i \(0.272241\pi\)
0.325623 + 0.945500i \(0.394426\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.8564 24.0000i 0.488982 0.846942i
\(804\) 0 0
\(805\) −6.00000 10.3923i −0.211472 0.366281i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −32.9090 −1.15702 −0.578509 0.815676i \(-0.696365\pi\)
−0.578509 + 0.815676i \(0.696365\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −39.8372 69.0000i −1.39544 2.41696i
\(816\) 0 0
\(817\) 1.00000 1.73205i 0.0349856 0.0605968i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 18.1865 31.5000i 0.634714 1.09936i −0.351861 0.936052i \(-0.614451\pi\)
0.986576 0.163305i \(-0.0522156\pi\)
\(822\) 0 0
\(823\) 20.0000 + 34.6410i 0.697156 + 1.20751i 0.969448 + 0.245295i \(0.0788849\pi\)
−0.272292 + 0.962215i \(0.587782\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.5885 0.542064 0.271032 0.962570i \(-0.412635\pi\)
0.271032 + 0.962570i \(0.412635\pi\)
\(828\) 0 0
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.73205 3.00000i −0.0600120 0.103944i
\(834\) 0 0
\(835\) 6.00000 10.3923i 0.207639 0.359641i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.1244 + 21.0000i −0.418579 + 0.725001i −0.995797 0.0915899i \(-0.970805\pi\)
0.577218 + 0.816590i \(0.304138\pi\)
\(840\) 0 0
\(841\) −9.50000 16.4545i −0.327586 0.567396i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.3923 0.357506
\(846\) 0 0
\(847\) −8.00000 −0.274883
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −19.0526 33.0000i −0.653113 1.13123i
\(852\) 0 0
\(853\) −22.0000 + 38.1051i −0.753266 + 1.30469i 0.192966 + 0.981205i \(0.438189\pi\)
−0.946232 + 0.323489i \(0.895144\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.5167 39.0000i 0.769154 1.33221i −0.168867 0.985639i \(-0.554011\pi\)
0.938022 0.346576i \(-0.112656\pi\)
\(858\) 0 0
\(859\) −22.0000 38.1051i −0.750630 1.30013i −0.947518 0.319704i \(-0.896417\pi\)
0.196887 0.980426i \(-0.436917\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.73205 0.0589597 0.0294798 0.999565i \(-0.490615\pi\)
0.0294798 + 0.999565i \(0.490615\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11.2583 + 19.5000i 0.381913 + 0.661492i
\(870\) 0 0
\(871\) 22.0000 38.1051i 0.745442 1.29114i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.46410 + 6.00000i −0.117108 + 0.202837i
\(876\) 0 0
\(877\) −8.50000 14.7224i −0.287025 0.497141i 0.686074 0.727532i \(-0.259333\pi\)
−0.973098 + 0.230391i \(0.925999\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −51.9615 −1.75063 −0.875314 0.483555i \(-0.839345\pi\)
−0.875314 + 0.483555i \(0.839345\pi\)
\(882\) 0 0
\(883\) 35.0000 1.17784 0.588922 0.808190i \(-0.299553\pi\)
0.588922 + 0.808190i \(0.299553\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.8564 + 24.0000i 0.465253 + 0.805841i 0.999213 0.0396684i \(-0.0126302\pi\)
−0.533960 + 0.845510i \(0.679297\pi\)
\(888\) 0 0
\(889\) −8.50000 + 14.7224i −0.285081 + 0.493775i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −42.0000 72.7461i −1.40391 2.43164i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13.8564 −0.462137
\(900\) 0 0
\(901\) −6.00000 −0.199889
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −45.0333 78.0000i −1.49696 2.59281i
\(906\) 0 0
\(907\) 18.5000 32.0429i 0.614282 1.06397i −0.376228 0.926527i \(-0.622779\pi\)
0.990510 0.137441i \(-0.0438878\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 19.0526 33.0000i 0.631239 1.09334i −0.356059 0.934463i \(-0.615880\pi\)
0.987299 0.158875i \(-0.0507868\pi\)
\(912\) 0 0
\(913\) 15.0000 + 25.9808i 0.496428 + 0.859838i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 13.8564 0.457579
\(918\) 0 0
\(919\) −25.0000 −0.824674 −0.412337 0.911031i \(-0.635287\pi\)
−0.412337 + 0.911031i \(0.635287\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.3923 + 18.0000i 0.342067 + 0.592477i
\(924\) 0 0
\(925\) −38.5000 + 66.6840i −1.26587 + 2.19255i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.7846 36.0000i 0.681921 1.18112i −0.292473 0.956274i \(-0.594478\pi\)
0.974394 0.224848i \(-0.0721885\pi\)
\(930\) 0 0
\(931\) −1.00000 1.73205i −0.0327737 0.0567657i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 20.7846 0.679729
\(936\) 0 0
\(937\) 8.00000 0.261349 0.130674 0.991425i \(-0.458286\pi\)
0.130674 + 0.991425i \(0.458286\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.3923 18.0000i −0.338779 0.586783i 0.645424 0.763825i \(-0.276681\pi\)
−0.984203 + 0.177041i \(0.943347\pi\)
\(942\) 0 0
\(943\) 6.00000 10.3923i 0.195387 0.338420i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.19615 9.00000i 0.168852 0.292461i −0.769164 0.639051i \(-0.779327\pi\)
0.938017 + 0.346590i \(0.112661\pi\)
\(948\) 0 0
\(949\) −32.0000 55.4256i −1.03876 1.79919i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −20.7846 −0.673280 −0.336640 0.941634i \(-0.609290\pi\)
−0.336640 + 0.941634i \(0.609290\pi\)
\(954\) 0 0
\(955\) −54.0000 −1.74740
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.33013 + 7.50000i 0.139827 + 0.242188i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.46410 + 6.00000i −0.111513 + 0.193147i
\(966\) 0 0
\(967\) −16.0000 27.7128i −0.514525 0.891184i −0.999858 0.0168544i \(-0.994635\pi\)
0.485333 0.874330i \(-0.338699\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.46410 −0.111168 −0.0555842 0.998454i \(-0.517702\pi\)
−0.0555842 + 0.998454i \(0.517702\pi\)
\(972\) 0 0
\(973\) 14.0000 0.448819
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10.3923 + 18.0000i 0.332479 + 0.575871i 0.982997 0.183620i \(-0.0587815\pi\)
−0.650518 + 0.759491i \(0.725448\pi\)
\(978\) 0 0
\(979\) −6.00000 + 10.3923i −0.191761 + 0.332140i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −13.8564 + 24.0000i −0.441951 + 0.765481i −0.997834 0.0657791i \(-0.979047\pi\)
0.555883 + 0.831260i \(0.312380\pi\)
\(984\) 0 0
\(985\) −9.00000 15.5885i −0.286764 0.496690i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.46410 −0.110152
\(990\) 0 0
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.92820 + 12.0000i 0.219639 + 0.380426i
\(996\) 0 0
\(997\) −13.0000 + 22.5167i −0.411714 + 0.713110i −0.995077 0.0991016i \(-0.968403\pi\)
0.583363 + 0.812211i \(0.301736\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.j.p.1513.1 4
3.2 odd 2 inner 2268.2.j.p.1513.2 4
9.2 odd 6 2268.2.a.e.1.1 2
9.4 even 3 inner 2268.2.j.p.757.1 4
9.5 odd 6 inner 2268.2.j.p.757.2 4
9.7 even 3 2268.2.a.e.1.2 yes 2
36.7 odd 6 9072.2.a.bg.1.2 2
36.11 even 6 9072.2.a.bg.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.a.e.1.1 2 9.2 odd 6
2268.2.a.e.1.2 yes 2 9.7 even 3
2268.2.j.p.757.1 4 9.4 even 3 inner
2268.2.j.p.757.2 4 9.5 odd 6 inner
2268.2.j.p.1513.1 4 1.1 even 1 trivial
2268.2.j.p.1513.2 4 3.2 odd 2 inner
9072.2.a.bg.1.1 2 36.11 even 6
9072.2.a.bg.1.2 2 36.7 odd 6