Properties

Label 2268.2.bm.g.1025.1
Level $2268$
Weight $2$
Character 2268.1025
Analytic conductor $18.110$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(593,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-10,0,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1025.1
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1025
Dual form 2268.2.bm.g.593.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.44949 q^{5} +(-2.50000 + 0.866025i) q^{7} -4.24264i q^{11} +(-1.50000 - 0.866025i) q^{13} +(-2.44949 + 4.24264i) q^{17} +(4.50000 - 2.59808i) q^{19} +1.00000 q^{25} +(-7.34847 + 4.24264i) q^{29} +(1.50000 - 0.866025i) q^{31} +(6.12372 - 2.12132i) q^{35} +(2.50000 + 4.33013i) q^{37} +(6.12372 - 10.6066i) q^{41} +(5.50000 + 9.52628i) q^{43} +(1.22474 - 2.12132i) q^{47} +(5.50000 - 4.33013i) q^{49} +(-7.34847 - 4.24264i) q^{53} +10.3923i q^{55} +(2.44949 + 4.24264i) q^{59} +(3.00000 + 1.73205i) q^{61} +(3.67423 + 2.12132i) q^{65} +(3.50000 + 6.06218i) q^{67} -12.7279i q^{71} +(13.5000 + 7.79423i) q^{73} +(3.67423 + 10.6066i) q^{77} +(-5.50000 + 9.52628i) q^{79} +(6.12372 + 10.6066i) q^{83} +(6.00000 - 10.3923i) q^{85} +(7.34847 + 12.7279i) q^{89} +(4.50000 + 0.866025i) q^{91} +(-11.0227 + 6.36396i) q^{95} +(3.00000 - 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{7} - 6 q^{13} + 18 q^{19} + 4 q^{25} + 6 q^{31} + 10 q^{37} + 22 q^{43} + 22 q^{49} + 12 q^{61} + 14 q^{67} + 54 q^{73} - 22 q^{79} + 24 q^{85} + 18 q^{91} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.44949 −1.09545 −0.547723 0.836660i \(-0.684505\pi\)
−0.547723 + 0.836660i \(0.684505\pi\)
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.24264i 1.27920i −0.768706 0.639602i \(-0.779099\pi\)
0.768706 0.639602i \(-0.220901\pi\)
\(12\) 0 0
\(13\) −1.50000 0.866025i −0.416025 0.240192i 0.277350 0.960769i \(-0.410544\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.44949 + 4.24264i −0.594089 + 1.02899i 0.399586 + 0.916696i \(0.369154\pi\)
−0.993675 + 0.112296i \(0.964180\pi\)
\(18\) 0 0
\(19\) 4.50000 2.59808i 1.03237 0.596040i 0.114708 0.993399i \(-0.463407\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.34847 + 4.24264i −1.36458 + 0.787839i −0.990229 0.139450i \(-0.955467\pi\)
−0.374347 + 0.927289i \(0.622133\pi\)
\(30\) 0 0
\(31\) 1.50000 0.866025i 0.269408 0.155543i −0.359211 0.933257i \(-0.616954\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.12372 2.12132i 1.03510 0.358569i
\(36\) 0 0
\(37\) 2.50000 + 4.33013i 0.410997 + 0.711868i 0.994999 0.0998840i \(-0.0318472\pi\)
−0.584002 + 0.811752i \(0.698514\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.12372 10.6066i 0.956365 1.65647i 0.225152 0.974324i \(-0.427712\pi\)
0.731213 0.682149i \(-0.238955\pi\)
\(42\) 0 0
\(43\) 5.50000 + 9.52628i 0.838742 + 1.45274i 0.890947 + 0.454108i \(0.150042\pi\)
−0.0522047 + 0.998636i \(0.516625\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.22474 2.12132i 0.178647 0.309426i −0.762770 0.646670i \(-0.776161\pi\)
0.941417 + 0.337243i \(0.109495\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.34847 4.24264i −1.00939 0.582772i −0.0983769 0.995149i \(-0.531365\pi\)
−0.911013 + 0.412378i \(0.864698\pi\)
\(54\) 0 0
\(55\) 10.3923i 1.40130i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.44949 + 4.24264i 0.318896 + 0.552345i 0.980258 0.197722i \(-0.0633545\pi\)
−0.661362 + 0.750067i \(0.730021\pi\)
\(60\) 0 0
\(61\) 3.00000 + 1.73205i 0.384111 + 0.221766i 0.679605 0.733578i \(-0.262151\pi\)
−0.295495 + 0.955344i \(0.595484\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.67423 + 2.12132i 0.455733 + 0.263117i
\(66\) 0 0
\(67\) 3.50000 + 6.06218i 0.427593 + 0.740613i 0.996659 0.0816792i \(-0.0260283\pi\)
−0.569066 + 0.822292i \(0.692695\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.7279i 1.51053i −0.655422 0.755263i \(-0.727509\pi\)
0.655422 0.755263i \(-0.272491\pi\)
\(72\) 0 0
\(73\) 13.5000 + 7.79423i 1.58006 + 0.912245i 0.994850 + 0.101361i \(0.0323196\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.67423 + 10.6066i 0.418718 + 1.20873i
\(78\) 0 0
\(79\) −5.50000 + 9.52628i −0.618798 + 1.07179i 0.370907 + 0.928670i \(0.379047\pi\)
−0.989705 + 0.143120i \(0.954286\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.12372 + 10.6066i 0.672166 + 1.16423i 0.977289 + 0.211913i \(0.0679692\pi\)
−0.305123 + 0.952313i \(0.598697\pi\)
\(84\) 0 0
\(85\) 6.00000 10.3923i 0.650791 1.12720i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.34847 + 12.7279i 0.778936 + 1.34916i 0.932555 + 0.361027i \(0.117574\pi\)
−0.153619 + 0.988130i \(0.549093\pi\)
\(90\) 0 0
\(91\) 4.50000 + 0.866025i 0.471728 + 0.0907841i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −11.0227 + 6.36396i −1.13091 + 0.652929i
\(96\) 0 0
\(97\) 3.00000 1.73205i 0.304604 0.175863i −0.339905 0.940460i \(-0.610395\pi\)
0.644509 + 0.764597i \(0.277062\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.34847 0.731200 0.365600 0.930772i \(-0.380864\pi\)
0.365600 + 0.930772i \(0.380864\pi\)
\(102\) 0 0
\(103\) 8.66025i 0.853320i 0.904412 + 0.426660i \(0.140310\pi\)
−0.904412 + 0.426660i \(0.859690\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.34847 + 4.24264i −0.710403 + 0.410152i −0.811210 0.584754i \(-0.801191\pi\)
0.100807 + 0.994906i \(0.467858\pi\)
\(108\) 0 0
\(109\) 2.50000 4.33013i 0.239457 0.414751i −0.721102 0.692829i \(-0.756364\pi\)
0.960558 + 0.278078i \(0.0896974\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.67423 2.12132i −0.345643 0.199557i 0.317122 0.948385i \(-0.397284\pi\)
−0.662765 + 0.748828i \(0.730617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.44949 12.7279i 0.224544 1.16677i
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.79796 0.876356
\(126\) 0 0
\(127\) 5.00000 0.443678 0.221839 0.975083i \(-0.428794\pi\)
0.221839 + 0.975083i \(0.428794\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.34847 −0.642039 −0.321019 0.947073i \(-0.604025\pi\)
−0.321019 + 0.947073i \(0.604025\pi\)
\(132\) 0 0
\(133\) −9.00000 + 10.3923i −0.780399 + 0.901127i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 1.50000 + 0.866025i 0.127228 + 0.0734553i 0.562263 0.826958i \(-0.309931\pi\)
−0.435035 + 0.900414i \(0.643264\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.67423 + 6.36396i −0.307255 + 0.532181i
\(144\) 0 0
\(145\) 18.0000 10.3923i 1.49482 0.863034i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.9706i 1.39028i 0.718873 + 0.695141i \(0.244658\pi\)
−0.718873 + 0.695141i \(0.755342\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.67423 + 2.12132i −0.295122 + 0.170389i
\(156\) 0 0
\(157\) 9.00000 5.19615i 0.718278 0.414698i −0.0958404 0.995397i \(-0.530554\pi\)
0.814119 + 0.580699i \(0.197221\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 11.0000 + 19.0526i 0.861586 + 1.49231i 0.870397 + 0.492350i \(0.163862\pi\)
−0.00881059 + 0.999961i \(0.502805\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.57321 14.8492i 0.663415 1.14907i −0.316297 0.948660i \(-0.602440\pi\)
0.979712 0.200409i \(-0.0642270\pi\)
\(168\) 0 0
\(169\) −5.00000 8.66025i −0.384615 0.666173i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) −2.50000 + 0.866025i −0.188982 + 0.0654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.0227 + 6.36396i 0.823876 + 0.475665i 0.851751 0.523947i \(-0.175541\pi\)
−0.0278755 + 0.999611i \(0.508874\pi\)
\(180\) 0 0
\(181\) 5.19615i 0.386227i −0.981176 0.193113i \(-0.938141\pi\)
0.981176 0.193113i \(-0.0618586\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.12372 10.6066i −0.450225 0.779813i
\(186\) 0 0
\(187\) 18.0000 + 10.3923i 1.31629 + 0.759961i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.67423 + 2.12132i 0.265858 + 0.153493i 0.627004 0.779016i \(-0.284281\pi\)
−0.361146 + 0.932509i \(0.617614\pi\)
\(192\) 0 0
\(193\) −9.50000 16.4545i −0.683825 1.18442i −0.973805 0.227387i \(-0.926982\pi\)
0.289980 0.957033i \(-0.406351\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.48528i 0.604551i −0.953221 0.302276i \(-0.902254\pi\)
0.953221 0.302276i \(-0.0977463\pi\)
\(198\) 0 0
\(199\) −12.0000 6.92820i −0.850657 0.491127i 0.0102152 0.999948i \(-0.496748\pi\)
−0.860873 + 0.508821i \(0.830082\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 14.6969 16.9706i 1.03152 1.19110i
\(204\) 0 0
\(205\) −15.0000 + 25.9808i −1.04765 + 1.81458i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −11.0227 19.0919i −0.762456 1.32061i
\(210\) 0 0
\(211\) 1.00000 1.73205i 0.0688428 0.119239i −0.829549 0.558433i \(-0.811403\pi\)
0.898392 + 0.439194i \(0.144736\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −13.4722 23.3345i −0.918796 1.59140i
\(216\) 0 0
\(217\) −3.00000 + 3.46410i −0.203653 + 0.235159i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.34847 4.24264i 0.494312 0.285391i
\(222\) 0 0
\(223\) 18.0000 10.3923i 1.20537 0.695920i 0.243625 0.969870i \(-0.421663\pi\)
0.961744 + 0.273949i \(0.0883300\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −22.0454 −1.46321 −0.731603 0.681731i \(-0.761227\pi\)
−0.731603 + 0.681731i \(0.761227\pi\)
\(228\) 0 0
\(229\) 1.73205i 0.114457i 0.998361 + 0.0572286i \(0.0182264\pi\)
−0.998361 + 0.0572286i \(0.981774\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.67423 + 2.12132i −0.240707 + 0.138972i −0.615502 0.788136i \(-0.711047\pi\)
0.374795 + 0.927108i \(0.377713\pi\)
\(234\) 0 0
\(235\) −3.00000 + 5.19615i −0.195698 + 0.338960i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.67423 2.12132i −0.237666 0.137217i 0.376437 0.926442i \(-0.377149\pi\)
−0.614104 + 0.789225i \(0.710482\pi\)
\(240\) 0 0
\(241\) 13.8564i 0.892570i −0.894891 0.446285i \(-0.852747\pi\)
0.894891 0.446285i \(-0.147253\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −13.4722 + 10.6066i −0.860707 + 0.677631i
\(246\) 0 0
\(247\) −9.00000 −0.572656
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −9.79796 −0.618442 −0.309221 0.950990i \(-0.600068\pi\)
−0.309221 + 0.950990i \(0.600068\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.34847 0.458385 0.229192 0.973381i \(-0.426391\pi\)
0.229192 + 0.973381i \(0.426391\pi\)
\(258\) 0 0
\(259\) −10.0000 8.66025i −0.621370 0.538122i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 25.4558i 1.56967i 0.619702 + 0.784837i \(0.287254\pi\)
−0.619702 + 0.784837i \(0.712746\pi\)
\(264\) 0 0
\(265\) 18.0000 + 10.3923i 1.10573 + 0.638394i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.12372 10.6066i 0.373370 0.646696i −0.616712 0.787189i \(-0.711536\pi\)
0.990082 + 0.140493i \(0.0448688\pi\)
\(270\) 0 0
\(271\) −24.0000 + 13.8564i −1.45790 + 0.841717i −0.998908 0.0467255i \(-0.985121\pi\)
−0.458988 + 0.888442i \(0.651788\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.24264i 0.255841i
\(276\) 0 0
\(277\) 11.0000 0.660926 0.330463 0.943819i \(-0.392795\pi\)
0.330463 + 0.943819i \(0.392795\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.6969 8.48528i 0.876746 0.506189i 0.00716177 0.999974i \(-0.497720\pi\)
0.869584 + 0.493785i \(0.164387\pi\)
\(282\) 0 0
\(283\) 7.50000 4.33013i 0.445829 0.257399i −0.260238 0.965544i \(-0.583801\pi\)
0.706067 + 0.708145i \(0.250468\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.12372 + 31.8198i −0.361472 + 1.87826i
\(288\) 0 0
\(289\) −3.50000 6.06218i −0.205882 0.356599i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.2474 + 21.2132i −0.715504 + 1.23929i 0.247261 + 0.968949i \(0.420469\pi\)
−0.962765 + 0.270340i \(0.912864\pi\)
\(294\) 0 0
\(295\) −6.00000 10.3923i −0.349334 0.605063i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −22.0000 19.0526i −1.26806 1.09817i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.34847 4.24264i −0.420772 0.242933i
\(306\) 0 0
\(307\) 19.0526i 1.08739i −0.839284 0.543693i \(-0.817025\pi\)
0.839284 0.543693i \(-0.182975\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.57321 + 14.8492i 0.486142 + 0.842023i 0.999873 0.0159282i \(-0.00507031\pi\)
−0.513731 + 0.857951i \(0.671737\pi\)
\(312\) 0 0
\(313\) 13.5000 + 7.79423i 0.763065 + 0.440556i 0.830395 0.557175i \(-0.188115\pi\)
−0.0673300 + 0.997731i \(0.521448\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.34847 4.24264i −0.412731 0.238290i 0.279231 0.960224i \(-0.409920\pi\)
−0.691963 + 0.721933i \(0.743254\pi\)
\(318\) 0 0
\(319\) 18.0000 + 31.1769i 1.00781 + 1.74557i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 25.4558i 1.41640i
\(324\) 0 0
\(325\) −1.50000 0.866025i −0.0832050 0.0480384i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.22474 + 6.36396i −0.0675224 + 0.350857i
\(330\) 0 0
\(331\) 2.50000 4.33013i 0.137412 0.238005i −0.789104 0.614260i \(-0.789455\pi\)
0.926516 + 0.376254i \(0.122788\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.57321 14.8492i −0.468405 0.811301i
\(336\) 0 0
\(337\) −3.50000 + 6.06218i −0.190657 + 0.330228i −0.945468 0.325714i \(-0.894395\pi\)
0.754811 + 0.655942i \(0.227729\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.67423 6.36396i −0.198971 0.344628i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.34847 + 4.24264i −0.394486 + 0.227757i −0.684102 0.729386i \(-0.739806\pi\)
0.289616 + 0.957143i \(0.406472\pi\)
\(348\) 0 0
\(349\) −21.0000 + 12.1244i −1.12410 + 0.649002i −0.942446 0.334360i \(-0.891480\pi\)
−0.181659 + 0.983362i \(0.558147\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.9444 1.43411 0.717053 0.697019i \(-0.245491\pi\)
0.717053 + 0.697019i \(0.245491\pi\)
\(354\) 0 0
\(355\) 31.1769i 1.65470i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.6969 8.48528i 0.775675 0.447836i −0.0592205 0.998245i \(-0.518862\pi\)
0.834895 + 0.550409i \(0.185528\pi\)
\(360\) 0 0
\(361\) 4.00000 6.92820i 0.210526 0.364642i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −33.0681 19.0919i −1.73086 0.999315i
\(366\) 0 0
\(367\) 25.9808i 1.35618i −0.734977 0.678092i \(-0.762807\pi\)
0.734977 0.678092i \(-0.237193\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 22.0454 + 4.24264i 1.14454 + 0.220267i
\(372\) 0 0
\(373\) −7.00000 −0.362446 −0.181223 0.983442i \(-0.558006\pi\)
−0.181223 + 0.983442i \(0.558006\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.6969 0.756931
\(378\) 0 0
\(379\) −5.00000 −0.256833 −0.128416 0.991720i \(-0.540989\pi\)
−0.128416 + 0.991720i \(0.540989\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 9.79796 0.500652 0.250326 0.968162i \(-0.419462\pi\)
0.250326 + 0.968162i \(0.419462\pi\)
\(384\) 0 0
\(385\) −9.00000 25.9808i −0.458682 1.32410i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.24264i 0.215110i −0.994199 0.107555i \(-0.965698\pi\)
0.994199 0.107555i \(-0.0343022\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.4722 23.3345i 0.677860 1.17409i
\(396\) 0 0
\(397\) 7.50000 4.33013i 0.376414 0.217323i −0.299843 0.953989i \(-0.596934\pi\)
0.676257 + 0.736666i \(0.263601\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.48528i 0.423735i −0.977298 0.211867i \(-0.932046\pi\)
0.977298 0.211867i \(-0.0679545\pi\)
\(402\) 0 0
\(403\) −3.00000 −0.149441
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.3712 10.6066i 0.910625 0.525750i
\(408\) 0 0
\(409\) 7.50000 4.33013i 0.370851 0.214111i −0.302979 0.952997i \(-0.597981\pi\)
0.673830 + 0.738886i \(0.264648\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.79796 8.48528i −0.482126 0.417533i
\(414\) 0 0
\(415\) −15.0000 25.9808i −0.736321 1.27535i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.4722 + 23.3345i −0.658160 + 1.13997i 0.322932 + 0.946422i \(0.395332\pi\)
−0.981092 + 0.193544i \(0.938002\pi\)
\(420\) 0 0
\(421\) −17.5000 30.3109i −0.852898 1.47726i −0.878582 0.477592i \(-0.841510\pi\)
0.0256838 0.999670i \(-0.491824\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.44949 + 4.24264i −0.118818 + 0.205798i
\(426\) 0 0
\(427\) −9.00000 1.73205i −0.435541 0.0838198i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.3712 + 10.6066i 0.884908 + 0.510902i 0.872274 0.489018i \(-0.162645\pi\)
0.0126347 + 0.999920i \(0.495978\pi\)
\(432\) 0 0
\(433\) 12.1244i 0.582659i −0.956623 0.291330i \(-0.905902\pi\)
0.956623 0.291330i \(-0.0940977\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 36.0000 + 20.7846i 1.71819 + 0.991995i 0.922231 + 0.386640i \(0.126365\pi\)
0.795956 + 0.605355i \(0.206969\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) −18.0000 31.1769i −0.853282 1.47793i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.7279i 0.600668i 0.953834 + 0.300334i \(0.0970981\pi\)
−0.953834 + 0.300334i \(0.902902\pi\)
\(450\) 0 0
\(451\) −45.0000 25.9808i −2.11897 1.22339i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.0227 2.12132i −0.516752 0.0994490i
\(456\) 0 0
\(457\) −6.50000 + 11.2583i −0.304057 + 0.526642i −0.977051 0.213006i \(-0.931675\pi\)
0.672994 + 0.739648i \(0.265008\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.44949 + 4.24264i 0.114084 + 0.197599i 0.917413 0.397936i \(-0.130273\pi\)
−0.803329 + 0.595535i \(0.796940\pi\)
\(462\) 0 0
\(463\) −14.5000 + 25.1147i −0.673872 + 1.16718i 0.302925 + 0.953014i \(0.402037\pi\)
−0.976797 + 0.214166i \(0.931297\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.67423 + 6.36396i 0.170023 + 0.294489i 0.938428 0.345476i \(-0.112282\pi\)
−0.768404 + 0.639965i \(0.778949\pi\)
\(468\) 0 0
\(469\) −14.0000 12.1244i −0.646460 0.559851i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 40.4166 23.3345i 1.85836 1.07292i
\(474\) 0 0
\(475\) 4.50000 2.59808i 0.206474 0.119208i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.89898 −0.223840 −0.111920 0.993717i \(-0.535700\pi\)
−0.111920 + 0.993717i \(0.535700\pi\)
\(480\) 0 0
\(481\) 8.66025i 0.394874i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.34847 + 4.24264i −0.333677 + 0.192648i
\(486\) 0 0
\(487\) −3.50000 + 6.06218i −0.158600 + 0.274703i −0.934364 0.356320i \(-0.884031\pi\)
0.775764 + 0.631023i \(0.217365\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 29.3939 + 16.9706i 1.32653 + 0.765871i 0.984761 0.173914i \(-0.0556415\pi\)
0.341766 + 0.939785i \(0.388975\pi\)
\(492\) 0 0
\(493\) 41.5692i 1.87218i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11.0227 + 31.8198i 0.494436 + 1.42731i
\(498\) 0 0
\(499\) −35.0000 −1.56682 −0.783408 0.621508i \(-0.786520\pi\)
−0.783408 + 0.621508i \(0.786520\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.44949 0.109217 0.0546087 0.998508i \(-0.482609\pi\)
0.0546087 + 0.998508i \(0.482609\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.1464 0.760002 0.380001 0.924986i \(-0.375924\pi\)
0.380001 + 0.924986i \(0.375924\pi\)
\(510\) 0 0
\(511\) −40.5000 7.79423i −1.79161 0.344796i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 21.2132i 0.934765i
\(516\) 0 0
\(517\) −9.00000 5.19615i −0.395820 0.228527i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.44949 4.24264i 0.107314 0.185873i −0.807367 0.590049i \(-0.799108\pi\)
0.914681 + 0.404176i \(0.132442\pi\)
\(522\) 0 0
\(523\) −7.50000 + 4.33013i −0.327952 + 0.189343i −0.654932 0.755688i \(-0.727303\pi\)
0.326979 + 0.945031i \(0.393969\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.48528i 0.369625i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −18.3712 + 10.6066i −0.795744 + 0.459423i
\(534\) 0 0
\(535\) 18.0000 10.3923i 0.778208 0.449299i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.3712 23.3345i −0.791302 1.00509i
\(540\) 0 0
\(541\) 9.50000 + 16.4545i 0.408437 + 0.707433i 0.994715 0.102677i \(-0.0327407\pi\)
−0.586278 + 0.810110i \(0.699407\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.12372 + 10.6066i −0.262312 + 0.454337i
\(546\) 0 0
\(547\) −1.00000 1.73205i −0.0427569 0.0740571i 0.843855 0.536571i \(-0.180281\pi\)
−0.886612 + 0.462514i \(0.846947\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −22.0454 + 38.1838i −0.939166 + 1.62668i
\(552\) 0 0
\(553\) 5.50000 28.5788i 0.233884 1.21530i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.3712 10.6066i −0.778412 0.449416i 0.0574555 0.998348i \(-0.481701\pi\)
−0.835867 + 0.548932i \(0.815035\pi\)
\(558\) 0 0
\(559\) 19.0526i 0.805837i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.67423 6.36396i −0.154851 0.268209i 0.778154 0.628073i \(-0.216156\pi\)
−0.933005 + 0.359864i \(0.882823\pi\)
\(564\) 0 0
\(565\) 9.00000 + 5.19615i 0.378633 + 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.3712 10.6066i −0.770160 0.444652i 0.0627719 0.998028i \(-0.480006\pi\)
−0.832932 + 0.553376i \(0.813339\pi\)
\(570\) 0 0
\(571\) 3.50000 + 6.06218i 0.146470 + 0.253694i 0.929921 0.367760i \(-0.119875\pi\)
−0.783450 + 0.621455i \(0.786542\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −34.5000 19.9186i −1.43625 0.829222i −0.438667 0.898650i \(-0.644549\pi\)
−0.997587 + 0.0694283i \(0.977883\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −24.4949 21.2132i −1.01622 0.880072i
\(582\) 0 0
\(583\) −18.0000 + 31.1769i −0.745484 + 1.29122i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.34847 + 12.7279i 0.303304 + 0.525338i 0.976882 0.213778i \(-0.0685770\pi\)
−0.673578 + 0.739116i \(0.735244\pi\)
\(588\) 0 0
\(589\) 4.50000 7.79423i 0.185419 0.321156i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.22474 2.12132i −0.0502942 0.0871122i 0.839782 0.542923i \(-0.182683\pi\)
−0.890077 + 0.455811i \(0.849349\pi\)
\(594\) 0 0
\(595\) −6.00000 + 31.1769i −0.245976 + 1.27813i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14.6969 + 8.48528i −0.600501 + 0.346699i −0.769238 0.638962i \(-0.779364\pi\)
0.168738 + 0.985661i \(0.446031\pi\)
\(600\) 0 0
\(601\) 37.5000 21.6506i 1.52966 0.883148i 0.530281 0.847822i \(-0.322086\pi\)
0.999376 0.0353259i \(-0.0112469\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 17.1464 0.697101
\(606\) 0 0
\(607\) 25.9808i 1.05453i 0.849702 + 0.527263i \(0.176782\pi\)
−0.849702 + 0.527263i \(0.823218\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.67423 + 2.12132i −0.148644 + 0.0858194i
\(612\) 0 0
\(613\) −4.00000 + 6.92820i −0.161558 + 0.279827i −0.935428 0.353518i \(-0.884985\pi\)
0.773869 + 0.633345i \(0.218319\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.3712 + 10.6066i 0.739596 + 0.427006i 0.821922 0.569600i \(-0.192902\pi\)
−0.0823267 + 0.996605i \(0.526235\pi\)
\(618\) 0 0
\(619\) 8.66025i 0.348085i −0.984738 0.174042i \(-0.944317\pi\)
0.984738 0.174042i \(-0.0556830\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −29.3939 25.4558i −1.17764 1.01987i
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −24.4949 −0.976676
\(630\) 0 0
\(631\) −22.0000 −0.875806 −0.437903 0.899022i \(-0.644279\pi\)
−0.437903 + 0.899022i \(0.644279\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12.2474 −0.486025
\(636\) 0 0
\(637\) −12.0000 + 1.73205i −0.475457 + 0.0686264i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.48528i 0.335148i −0.985859 0.167574i \(-0.946407\pi\)
0.985859 0.167574i \(-0.0535934\pi\)
\(642\) 0 0
\(643\) 28.5000 + 16.4545i 1.12393 + 0.648901i 0.942401 0.334484i \(-0.108562\pi\)
0.181529 + 0.983386i \(0.441895\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.0227 + 19.0919i −0.433347 + 0.750579i −0.997159 0.0753238i \(-0.976001\pi\)
0.563812 + 0.825903i \(0.309334\pi\)
\(648\) 0 0
\(649\) 18.0000 10.3923i 0.706562 0.407934i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 21.2132i 0.830137i −0.909790 0.415068i \(-0.863758\pi\)
0.909790 0.415068i \(-0.136242\pi\)
\(654\) 0 0
\(655\) 18.0000 0.703318
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.6969 8.48528i 0.572511 0.330540i −0.185640 0.982618i \(-0.559436\pi\)
0.758152 + 0.652078i \(0.226103\pi\)
\(660\) 0 0
\(661\) −4.50000 + 2.59808i −0.175030 + 0.101053i −0.584955 0.811065i \(-0.698888\pi\)
0.409926 + 0.912119i \(0.365555\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 22.0454 25.4558i 0.854884 0.987135i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.34847 12.7279i 0.283685 0.491356i
\(672\) 0 0
\(673\) −9.50000 16.4545i −0.366198 0.634274i 0.622770 0.782405i \(-0.286007\pi\)
−0.988968 + 0.148132i \(0.952674\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.6969 25.4558i 0.564849 0.978348i −0.432214 0.901771i \(-0.642268\pi\)
0.997064 0.0765767i \(-0.0243990\pi\)
\(678\) 0 0
\(679\) −6.00000 + 6.92820i −0.230259 + 0.265880i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.34847 4.24264i −0.281181 0.162340i 0.352777 0.935708i \(-0.385238\pi\)
−0.633958 + 0.773367i \(0.718571\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.34847 + 12.7279i 0.279954 + 0.484895i
\(690\) 0 0
\(691\) −16.5000 9.52628i −0.627690 0.362397i 0.152167 0.988355i \(-0.451375\pi\)
−0.779857 + 0.625958i \(0.784708\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.67423 2.12132i −0.139372 0.0804663i
\(696\) 0 0
\(697\) 30.0000 + 51.9615i 1.13633 + 1.96818i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.9411i 1.28194i 0.767567 + 0.640969i \(0.221467\pi\)
−0.767567 + 0.640969i \(0.778533\pi\)
\(702\) 0 0
\(703\) 22.5000 + 12.9904i 0.848604 + 0.489942i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −18.3712 + 6.36396i −0.690919 + 0.239341i
\(708\) 0 0
\(709\) −8.00000 + 13.8564i −0.300446 + 0.520388i −0.976237 0.216705i \(-0.930469\pi\)
0.675791 + 0.737093i \(0.263802\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 9.00000 15.5885i 0.336581 0.582975i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13.4722 + 23.3345i 0.502428 + 0.870231i 0.999996 + 0.00280593i \(0.000893157\pi\)
−0.497568 + 0.867425i \(0.665774\pi\)
\(720\) 0 0
\(721\) −7.50000 21.6506i −0.279315 0.806312i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7.34847 + 4.24264i −0.272915 + 0.157568i
\(726\) 0 0
\(727\) 34.5000 19.9186i 1.27953 0.738739i 0.302772 0.953063i \(-0.402088\pi\)
0.976763 + 0.214324i \(0.0687548\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −53.8888 −1.99315
\(732\) 0 0
\(733\) 8.66025i 0.319874i 0.987127 + 0.159937i \(0.0511291\pi\)
−0.987127 + 0.159937i \(0.948871\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.7196 14.8492i 0.947395 0.546979i
\(738\) 0 0
\(739\) 9.50000 16.4545i 0.349463 0.605288i −0.636691 0.771119i \(-0.719697\pi\)
0.986154 + 0.165831i \(0.0530307\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.0227 + 6.36396i 0.404384 + 0.233471i 0.688374 0.725356i \(-0.258325\pi\)
−0.283990 + 0.958827i \(0.591658\pi\)
\(744\) 0 0
\(745\) 41.5692i 1.52298i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 14.6969 16.9706i 0.537014 0.620091i
\(750\) 0 0
\(751\) −5.00000 −0.182453 −0.0912263 0.995830i \(-0.529079\pi\)
−0.0912263 + 0.995830i \(0.529079\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.89898 0.178292
\(756\) 0 0
\(757\) −14.0000 −0.508839 −0.254419 0.967094i \(-0.581884\pi\)
−0.254419 + 0.967094i \(0.581884\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −34.2929 −1.24312 −0.621558 0.783369i \(-0.713500\pi\)
−0.621558 + 0.783369i \(0.713500\pi\)
\(762\) 0 0
\(763\) −2.50000 + 12.9904i −0.0905061 + 0.470283i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.48528i 0.306386i
\(768\) 0 0
\(769\) 13.5000 + 7.79423i 0.486822 + 0.281067i 0.723255 0.690581i \(-0.242645\pi\)
−0.236433 + 0.971648i \(0.575978\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20.8207 + 36.0624i −0.748867 + 1.29708i 0.199499 + 0.979898i \(0.436069\pi\)
−0.948366 + 0.317178i \(0.897265\pi\)
\(774\) 0 0
\(775\) 1.50000 0.866025i 0.0538816 0.0311086i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 63.6396i 2.28013i
\(780\) 0 0
\(781\) −54.0000 −1.93227
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −22.0454 + 12.7279i −0.786834 + 0.454279i
\(786\) 0 0
\(787\) −15.0000 + 8.66025i −0.534692 + 0.308705i −0.742925 0.669375i \(-0.766562\pi\)
0.208233 + 0.978079i \(0.433229\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.0227 + 2.12132i 0.391922 + 0.0754255i
\(792\) 0 0
\(793\) −3.00000 5.19615i −0.106533 0.184521i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(798\) 0 0
\(799\) 6.00000 + 10.3923i 0.212265 + 0.367653i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 33.0681 57.2756i 1.16695 2.02121i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.3712 + 10.6066i 0.645896 + 0.372908i 0.786882 0.617103i \(-0.211694\pi\)
−0.140986 + 0.990012i \(0.545027\pi\)
\(810\) 0 0
\(811\) 31.1769i 1.09477i 0.836881 + 0.547385i \(0.184377\pi\)
−0.836881 + 0.547385i \(0.815623\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −26.9444 46.6690i −0.943821 1.63475i
\(816\) 0 0
\(817\) 49.5000 + 28.5788i 1.73179 + 0.999847i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 18.3712 + 10.6066i 0.641158 + 0.370173i 0.785061 0.619419i \(-0.212632\pi\)
−0.143902 + 0.989592i \(0.545965\pi\)
\(822\) 0 0
\(823\) −13.0000 22.5167i −0.453152 0.784881i 0.545428 0.838157i \(-0.316367\pi\)
−0.998580 + 0.0532760i \(0.983034\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.6985i 1.03272i −0.856372 0.516359i \(-0.827287\pi\)
0.856372 0.516359i \(-0.172713\pi\)
\(828\) 0 0
\(829\) 31.5000 + 18.1865i 1.09404 + 0.631644i 0.934649 0.355571i \(-0.115714\pi\)
0.159391 + 0.987216i \(0.449047\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.89898 + 33.9411i 0.169740 + 1.17599i
\(834\) 0 0
\(835\) −21.0000 + 36.3731i −0.726735 + 1.25874i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 26.9444 + 46.6690i 0.930224 + 1.61119i 0.782937 + 0.622101i \(0.213720\pi\)
0.147286 + 0.989094i \(0.452946\pi\)
\(840\) 0 0
\(841\) 21.5000 37.2391i 0.741379 1.28411i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.2474 + 21.2132i 0.421325 + 0.729756i
\(846\) 0 0
\(847\) 17.5000 6.06218i 0.601307 0.208299i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −22.5000 + 12.9904i −0.770385 + 0.444782i −0.833012 0.553255i \(-0.813386\pi\)
0.0626267 + 0.998037i \(0.480052\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −39.1918 −1.33877 −0.669384 0.742917i \(-0.733442\pi\)
−0.669384 + 0.742917i \(0.733442\pi\)
\(858\) 0 0
\(859\) 45.0333i 1.53652i 0.640140 + 0.768259i \(0.278876\pi\)
−0.640140 + 0.768259i \(0.721124\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 33.0681 19.0919i 1.12565 0.649895i 0.182814 0.983148i \(-0.441479\pi\)
0.942838 + 0.333252i \(0.108146\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 40.4166 + 23.3345i 1.37104 + 0.791570i
\(870\) 0 0
\(871\) 12.1244i 0.410818i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −24.4949 + 8.48528i −0.828079 + 0.286855i
\(876\) 0 0
\(877\) −28.0000 −0.945493 −0.472746 0.881199i \(-0.656737\pi\)
−0.472746 + 0.881199i \(0.656737\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −29.3939 −0.990305 −0.495152 0.868806i \(-0.664888\pi\)
−0.495152 + 0.868806i \(0.664888\pi\)
\(882\) 0 0
\(883\) 1.00000 0.0336527 0.0168263 0.999858i \(-0.494644\pi\)
0.0168263 + 0.999858i \(0.494644\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 56.3383 1.89165 0.945827 0.324671i \(-0.105254\pi\)
0.945827 + 0.324671i \(0.105254\pi\)
\(888\) 0 0
\(889\) −12.5000 + 4.33013i −0.419237 + 0.145228i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12.7279i 0.425924i
\(894\) 0 0
\(895\) −27.0000 15.5885i −0.902510 0.521065i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7.34847 + 12.7279i −0.245085 + 0.424500i
\(900\) 0 0
\(901\) 36.0000 20.7846i 1.19933 0.692436i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.7279i 0.423090i
\(906\) 0 0
\(907\) 7.00000 0.232431 0.116216 0.993224i \(-0.462924\pi\)
0.116216 + 0.993224i \(0.462924\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.34847 4.24264i 0.243466 0.140565i −0.373303 0.927710i \(-0.621775\pi\)
0.616769 + 0.787145i \(0.288441\pi\)
\(912\) 0 0
\(913\) 45.0000 25.9808i 1.48928 0.859838i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.3712 6.36396i 0.606670 0.210157i
\(918\) 0 0
\(919\) 20.5000 + 35.5070i 0.676233 + 1.17127i 0.976107 + 0.217291i \(0.0697219\pi\)
−0.299874 + 0.953979i \(0.596945\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −11.0227 + 19.0919i −0.362817 + 0.628417i
\(924\) 0 0
\(925\) 2.50000 + 4.33013i 0.0821995 + 0.142374i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13.4722 + 23.3345i −0.442008 + 0.765581i −0.997838 0.0657150i \(-0.979067\pi\)
0.555830 + 0.831296i \(0.312401\pi\)
\(930\) 0 0
\(931\) 13.5000 33.7750i 0.442445 1.10693i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −44.0908 25.4558i −1.44192 0.832495i
\(936\) 0 0
\(937\) 19.0526i 0.622420i 0.950341 + 0.311210i \(0.100734\pi\)
−0.950341 + 0.311210i \(0.899266\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.79796 + 16.9706i 0.319404 + 0.553225i 0.980364 0.197197i \(-0.0631839\pi\)
−0.660960 + 0.750422i \(0.729851\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 47.7650 + 27.5772i 1.55216 + 0.896137i 0.997966 + 0.0637469i \(0.0203050\pi\)
0.554189 + 0.832391i \(0.313028\pi\)
\(948\) 0 0
\(949\) −13.5000 23.3827i −0.438229 0.759034i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 33.9411i 1.09946i −0.835342 0.549730i \(-0.814730\pi\)
0.835342 0.549730i \(-0.185270\pi\)
\(954\) 0 0
\(955\) −9.00000 5.19615i −0.291233 0.168144i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −14.0000 + 24.2487i −0.451613 + 0.782216i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 23.2702 + 40.3051i 0.749093 + 1.29747i
\(966\) 0 0
\(967\) 21.5000 37.2391i 0.691393 1.19753i −0.279988 0.960003i \(-0.590331\pi\)
0.971381 0.237525i \(-0.0763362\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4.89898 8.48528i −0.157216 0.272306i 0.776648 0.629935i \(-0.216918\pi\)
−0.933864 + 0.357629i \(0.883585\pi\)
\(972\) 0 0
\(973\) −4.50000 0.866025i −0.144263 0.0277635i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −33.0681 + 19.0919i −1.05794 + 0.610803i −0.924862 0.380302i \(-0.875820\pi\)
−0.133080 + 0.991105i \(0.542487\pi\)
\(978\) 0 0
\(979\) 54.0000 31.1769i 1.72585 0.996419i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 53.8888 1.71878 0.859392 0.511316i \(-0.170842\pi\)
0.859392 + 0.511316i \(0.170842\pi\)
\(984\) 0 0
\(985\) 20.7846i 0.662253i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −6.50000 + 11.2583i −0.206479 + 0.357633i −0.950603 0.310409i \(-0.899534\pi\)
0.744124 + 0.668042i \(0.232867\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 29.3939 + 16.9706i 0.931849 + 0.538003i
\(996\) 0 0
\(997\) 50.2295i 1.59078i 0.606096 + 0.795392i \(0.292735\pi\)
−0.606096 + 0.795392i \(0.707265\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.bm.g.1025.1 4
3.2 odd 2 inner 2268.2.bm.g.1025.2 4
7.5 odd 6 2268.2.w.h.1349.1 4
9.2 odd 6 2268.2.w.h.269.1 4
9.4 even 3 252.2.t.a.17.2 yes 4
9.5 odd 6 252.2.t.a.17.1 4
9.7 even 3 2268.2.w.h.269.2 4
21.5 even 6 2268.2.w.h.1349.2 4
36.23 even 6 1008.2.bt.a.17.1 4
36.31 odd 6 1008.2.bt.a.17.2 4
45.4 even 6 6300.2.ch.a.4301.2 4
45.13 odd 12 6300.2.dd.a.4049.2 8
45.14 odd 6 6300.2.ch.a.4301.1 4
45.22 odd 12 6300.2.dd.a.4049.4 8
45.23 even 12 6300.2.dd.a.4049.1 8
45.32 even 12 6300.2.dd.a.4049.3 8
63.4 even 3 1764.2.f.a.881.1 4
63.5 even 6 252.2.t.a.89.2 yes 4
63.13 odd 6 1764.2.t.a.521.1 4
63.23 odd 6 1764.2.t.a.1097.1 4
63.31 odd 6 1764.2.f.a.881.3 4
63.32 odd 6 1764.2.f.a.881.4 4
63.40 odd 6 252.2.t.a.89.1 yes 4
63.41 even 6 1764.2.t.a.521.2 4
63.47 even 6 inner 2268.2.bm.g.593.1 4
63.58 even 3 1764.2.t.a.1097.2 4
63.59 even 6 1764.2.f.a.881.2 4
63.61 odd 6 inner 2268.2.bm.g.593.2 4
252.31 even 6 7056.2.k.a.881.4 4
252.59 odd 6 7056.2.k.a.881.1 4
252.67 odd 6 7056.2.k.a.881.2 4
252.95 even 6 7056.2.k.a.881.3 4
252.103 even 6 1008.2.bt.a.593.1 4
252.131 odd 6 1008.2.bt.a.593.2 4
315.68 odd 12 6300.2.dd.a.1349.4 8
315.103 even 12 6300.2.dd.a.1349.3 8
315.194 even 6 6300.2.ch.a.1601.2 4
315.229 odd 6 6300.2.ch.a.1601.1 4
315.257 odd 12 6300.2.dd.a.1349.2 8
315.292 even 12 6300.2.dd.a.1349.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.t.a.17.1 4 9.5 odd 6
252.2.t.a.17.2 yes 4 9.4 even 3
252.2.t.a.89.1 yes 4 63.40 odd 6
252.2.t.a.89.2 yes 4 63.5 even 6
1008.2.bt.a.17.1 4 36.23 even 6
1008.2.bt.a.17.2 4 36.31 odd 6
1008.2.bt.a.593.1 4 252.103 even 6
1008.2.bt.a.593.2 4 252.131 odd 6
1764.2.f.a.881.1 4 63.4 even 3
1764.2.f.a.881.2 4 63.59 even 6
1764.2.f.a.881.3 4 63.31 odd 6
1764.2.f.a.881.4 4 63.32 odd 6
1764.2.t.a.521.1 4 63.13 odd 6
1764.2.t.a.521.2 4 63.41 even 6
1764.2.t.a.1097.1 4 63.23 odd 6
1764.2.t.a.1097.2 4 63.58 even 3
2268.2.w.h.269.1 4 9.2 odd 6
2268.2.w.h.269.2 4 9.7 even 3
2268.2.w.h.1349.1 4 7.5 odd 6
2268.2.w.h.1349.2 4 21.5 even 6
2268.2.bm.g.593.1 4 63.47 even 6 inner
2268.2.bm.g.593.2 4 63.61 odd 6 inner
2268.2.bm.g.1025.1 4 1.1 even 1 trivial
2268.2.bm.g.1025.2 4 3.2 odd 2 inner
6300.2.ch.a.1601.1 4 315.229 odd 6
6300.2.ch.a.1601.2 4 315.194 even 6
6300.2.ch.a.4301.1 4 45.14 odd 6
6300.2.ch.a.4301.2 4 45.4 even 6
6300.2.dd.a.1349.1 8 315.292 even 12
6300.2.dd.a.1349.2 8 315.257 odd 12
6300.2.dd.a.1349.3 8 315.103 even 12
6300.2.dd.a.1349.4 8 315.68 odd 12
6300.2.dd.a.4049.1 8 45.23 even 12
6300.2.dd.a.4049.2 8 45.13 odd 12
6300.2.dd.a.4049.3 8 45.32 even 12
6300.2.dd.a.4049.4 8 45.22 odd 12
7056.2.k.a.881.1 4 252.59 odd 6
7056.2.k.a.881.2 4 252.67 odd 6
7056.2.k.a.881.3 4 252.95 even 6
7056.2.k.a.881.4 4 252.31 even 6