Properties

Label 1764.2.f.a.881.4
Level $1764$
Weight $2$
Character 1764.881
Analytic conductor $14.086$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(881,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.4
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1764.881
Dual form 1764.2.f.a.881.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.44949 q^{5} +4.24264i q^{11} +1.73205i q^{13} -4.89898 q^{17} +5.19615i q^{19} +1.00000 q^{25} +8.48528i q^{29} +1.73205i q^{31} -5.00000 q^{37} +12.2474 q^{41} -11.0000 q^{43} +2.44949 q^{47} -8.48528i q^{53} +10.3923i q^{55} +4.89898 q^{59} -3.46410i q^{61} +4.24264i q^{65} -7.00000 q^{67} +12.7279i q^{71} -15.5885i q^{73} +11.0000 q^{79} +12.2474 q^{83} -12.0000 q^{85} +14.6969 q^{89} +12.7279i q^{95} +3.46410i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{25} - 20 q^{37} - 44 q^{43} - 28 q^{67} + 44 q^{79} - 48 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.44949 1.09545 0.547723 0.836660i \(-0.315495\pi\)
0.547723 + 0.836660i \(0.315495\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.24264i 1.27920i 0.768706 + 0.639602i \(0.220901\pi\)
−0.768706 + 0.639602i \(0.779099\pi\)
\(12\) 0 0
\(13\) 1.73205i 0.480384i 0.970725 + 0.240192i \(0.0772105\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.89898 −1.18818 −0.594089 0.804400i \(-0.702487\pi\)
−0.594089 + 0.804400i \(0.702487\pi\)
\(18\) 0 0
\(19\) 5.19615i 1.19208i 0.802955 + 0.596040i \(0.203260\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.48528i 1.57568i 0.615882 + 0.787839i \(0.288800\pi\)
−0.615882 + 0.787839i \(0.711200\pi\)
\(30\) 0 0
\(31\) 1.73205i 0.311086i 0.987829 + 0.155543i \(0.0497126\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.00000 −0.821995 −0.410997 0.911636i \(-0.634819\pi\)
−0.410997 + 0.911636i \(0.634819\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.2474 1.91273 0.956365 0.292174i \(-0.0943788\pi\)
0.956365 + 0.292174i \(0.0943788\pi\)
\(42\) 0 0
\(43\) −11.0000 −1.67748 −0.838742 0.544529i \(-0.816708\pi\)
−0.838742 + 0.544529i \(0.816708\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.44949 0.357295 0.178647 0.983913i \(-0.442828\pi\)
0.178647 + 0.983913i \(0.442828\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 8.48528i − 1.16554i −0.812636 0.582772i \(-0.801968\pi\)
0.812636 0.582772i \(-0.198032\pi\)
\(54\) 0 0
\(55\) 10.3923i 1.40130i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.89898 0.637793 0.318896 0.947790i \(-0.396688\pi\)
0.318896 + 0.947790i \(0.396688\pi\)
\(60\) 0 0
\(61\) − 3.46410i − 0.443533i −0.975100 0.221766i \(-0.928818\pi\)
0.975100 0.221766i \(-0.0711822\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.24264i 0.526235i
\(66\) 0 0
\(67\) −7.00000 −0.855186 −0.427593 0.903971i \(-0.640638\pi\)
−0.427593 + 0.903971i \(0.640638\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.7279i 1.51053i 0.655422 + 0.755263i \(0.272491\pi\)
−0.655422 + 0.755263i \(0.727509\pi\)
\(72\) 0 0
\(73\) − 15.5885i − 1.82449i −0.409644 0.912245i \(-0.634347\pi\)
0.409644 0.912245i \(-0.365653\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.2474 1.34433 0.672166 0.740400i \(-0.265364\pi\)
0.672166 + 0.740400i \(0.265364\pi\)
\(84\) 0 0
\(85\) −12.0000 −1.30158
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.6969 1.55787 0.778936 0.627103i \(-0.215760\pi\)
0.778936 + 0.627103i \(0.215760\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 12.7279i 1.30586i
\(96\) 0 0
\(97\) 3.46410i 0.351726i 0.984415 + 0.175863i \(0.0562716\pi\)
−0.984415 + 0.175863i \(0.943728\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.34847 −0.731200 −0.365600 0.930772i \(-0.619136\pi\)
−0.365600 + 0.930772i \(0.619136\pi\)
\(102\) 0 0
\(103\) 8.66025i 0.853320i 0.904412 + 0.426660i \(0.140310\pi\)
−0.904412 + 0.426660i \(0.859690\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.48528i 0.820303i 0.912017 + 0.410152i \(0.134524\pi\)
−0.912017 + 0.410152i \(0.865476\pi\)
\(108\) 0 0
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 4.24264i − 0.399114i −0.979886 0.199557i \(-0.936050\pi\)
0.979886 0.199557i \(-0.0639503\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.79796 −0.876356
\(126\) 0 0
\(127\) 5.00000 0.443678 0.221839 0.975083i \(-0.428794\pi\)
0.221839 + 0.975083i \(0.428794\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.34847 0.642039 0.321019 0.947073i \(-0.395975\pi\)
0.321019 + 0.947073i \(0.395975\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) − 1.73205i − 0.146911i −0.997299 0.0734553i \(-0.976597\pi\)
0.997299 0.0734553i \(-0.0234026\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.34847 −0.614510
\(144\) 0 0
\(145\) 20.7846i 1.72607i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 16.9706i − 1.39028i −0.718873 0.695141i \(-0.755342\pi\)
0.718873 0.695141i \(-0.244658\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.24264i 0.340777i
\(156\) 0 0
\(157\) 10.3923i 0.829396i 0.909959 + 0.414698i \(0.136113\pi\)
−0.909959 + 0.414698i \(0.863887\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −22.0000 −1.72317 −0.861586 0.507611i \(-0.830529\pi\)
−0.861586 + 0.507611i \(0.830529\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.1464 1.32683 0.663415 0.748251i \(-0.269106\pi\)
0.663415 + 0.748251i \(0.269106\pi\)
\(168\) 0 0
\(169\) 10.0000 0.769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.7279i 0.951330i 0.879627 + 0.475665i \(0.157792\pi\)
−0.879627 + 0.475665i \(0.842208\pi\)
\(180\) 0 0
\(181\) − 5.19615i − 0.386227i −0.981176 0.193113i \(-0.938141\pi\)
0.981176 0.193113i \(-0.0618586\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −12.2474 −0.900450
\(186\) 0 0
\(187\) − 20.7846i − 1.51992i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.24264i 0.306987i 0.988150 + 0.153493i \(0.0490524\pi\)
−0.988150 + 0.153493i \(0.950948\pi\)
\(192\) 0 0
\(193\) 19.0000 1.36765 0.683825 0.729646i \(-0.260315\pi\)
0.683825 + 0.729646i \(0.260315\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.48528i 0.604551i 0.953221 + 0.302276i \(0.0977463\pi\)
−0.953221 + 0.302276i \(0.902254\pi\)
\(198\) 0 0
\(199\) 13.8564i 0.982255i 0.871088 + 0.491127i \(0.163415\pi\)
−0.871088 + 0.491127i \(0.836585\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 30.0000 2.09529
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −22.0454 −1.52491
\(210\) 0 0
\(211\) −2.00000 −0.137686 −0.0688428 0.997628i \(-0.521931\pi\)
−0.0688428 + 0.997628i \(0.521931\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −26.9444 −1.83759
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 8.48528i − 0.570782i
\(222\) 0 0
\(223\) 20.7846i 1.39184i 0.718119 + 0.695920i \(0.245003\pi\)
−0.718119 + 0.695920i \(0.754997\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 22.0454 1.46321 0.731603 0.681731i \(-0.238773\pi\)
0.731603 + 0.681731i \(0.238773\pi\)
\(228\) 0 0
\(229\) 1.73205i 0.114457i 0.998361 + 0.0572286i \(0.0182264\pi\)
−0.998361 + 0.0572286i \(0.981774\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.24264i 0.277945i 0.990296 + 0.138972i \(0.0443799\pi\)
−0.990296 + 0.138972i \(0.955620\pi\)
\(234\) 0 0
\(235\) 6.00000 0.391397
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 4.24264i − 0.274434i −0.990541 0.137217i \(-0.956184\pi\)
0.990541 0.137217i \(-0.0438157\pi\)
\(240\) 0 0
\(241\) − 13.8564i − 0.892570i −0.894891 0.446285i \(-0.852747\pi\)
0.894891 0.446285i \(-0.147253\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.00000 −0.572656
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.79796 0.618442 0.309221 0.950990i \(-0.399932\pi\)
0.309221 + 0.950990i \(0.399932\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.34847 −0.458385 −0.229192 0.973381i \(-0.573609\pi\)
−0.229192 + 0.973381i \(0.573609\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 25.4558i − 1.56967i −0.619702 0.784837i \(-0.712746\pi\)
0.619702 0.784837i \(-0.287254\pi\)
\(264\) 0 0
\(265\) − 20.7846i − 1.27679i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.2474 0.746740 0.373370 0.927682i \(-0.378202\pi\)
0.373370 + 0.927682i \(0.378202\pi\)
\(270\) 0 0
\(271\) − 27.7128i − 1.68343i −0.539919 0.841717i \(-0.681545\pi\)
0.539919 0.841717i \(-0.318455\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.24264i 0.255841i
\(276\) 0 0
\(277\) 11.0000 0.660926 0.330463 0.943819i \(-0.392795\pi\)
0.330463 + 0.943819i \(0.392795\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 16.9706i − 1.01238i −0.862422 0.506189i \(-0.831054\pi\)
0.862422 0.506189i \(-0.168946\pi\)
\(282\) 0 0
\(283\) 8.66025i 0.514799i 0.966305 + 0.257399i \(0.0828656\pi\)
−0.966305 + 0.257399i \(0.917134\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.00000 0.411765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.4949 −1.43101 −0.715504 0.698609i \(-0.753803\pi\)
−0.715504 + 0.698609i \(0.753803\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 8.48528i − 0.485866i
\(306\) 0 0
\(307\) − 19.0526i − 1.08739i −0.839284 0.543693i \(-0.817025\pi\)
0.839284 0.543693i \(-0.182975\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 17.1464 0.972285 0.486142 0.873880i \(-0.338404\pi\)
0.486142 + 0.873880i \(0.338404\pi\)
\(312\) 0 0
\(313\) − 15.5885i − 0.881112i −0.897725 0.440556i \(-0.854781\pi\)
0.897725 0.440556i \(-0.145219\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 8.48528i − 0.476581i −0.971194 0.238290i \(-0.923413\pi\)
0.971194 0.238290i \(-0.0765870\pi\)
\(318\) 0 0
\(319\) −36.0000 −2.01561
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 25.4558i − 1.41640i
\(324\) 0 0
\(325\) 1.73205i 0.0960769i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −5.00000 −0.274825 −0.137412 0.990514i \(-0.543879\pi\)
−0.137412 + 0.990514i \(0.543879\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.1464 −0.936809
\(336\) 0 0
\(337\) 7.00000 0.381314 0.190657 0.981657i \(-0.438938\pi\)
0.190657 + 0.981657i \(0.438938\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.34847 −0.397942
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.48528i 0.455514i 0.973718 + 0.227757i \(0.0731391\pi\)
−0.973718 + 0.227757i \(0.926861\pi\)
\(348\) 0 0
\(349\) − 24.2487i − 1.29800i −0.760787 0.649002i \(-0.775187\pi\)
0.760787 0.649002i \(-0.224813\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −26.9444 −1.43411 −0.717053 0.697019i \(-0.754509\pi\)
−0.717053 + 0.697019i \(0.754509\pi\)
\(354\) 0 0
\(355\) 31.1769i 1.65470i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 16.9706i − 0.895672i −0.894116 0.447836i \(-0.852195\pi\)
0.894116 0.447836i \(-0.147805\pi\)
\(360\) 0 0
\(361\) −8.00000 −0.421053
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 38.1838i − 1.99863i
\(366\) 0 0
\(367\) − 25.9808i − 1.35618i −0.734977 0.678092i \(-0.762807\pi\)
0.734977 0.678092i \(-0.237193\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.00000 −0.362446 −0.181223 0.983442i \(-0.558006\pi\)
−0.181223 + 0.983442i \(0.558006\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −14.6969 −0.756931
\(378\) 0 0
\(379\) −5.00000 −0.256833 −0.128416 0.991720i \(-0.540989\pi\)
−0.128416 + 0.991720i \(0.540989\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.79796 −0.500652 −0.250326 0.968162i \(-0.580538\pi\)
−0.250326 + 0.968162i \(0.580538\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.24264i 0.215110i 0.994199 + 0.107555i \(0.0343022\pi\)
−0.994199 + 0.107555i \(0.965698\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 26.9444 1.35572
\(396\) 0 0
\(397\) 8.66025i 0.434646i 0.976100 + 0.217323i \(0.0697324\pi\)
−0.976100 + 0.217323i \(0.930268\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.48528i 0.423735i 0.977298 + 0.211867i \(0.0679545\pi\)
−0.977298 + 0.211867i \(0.932046\pi\)
\(402\) 0 0
\(403\) −3.00000 −0.149441
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 21.2132i − 1.05150i
\(408\) 0 0
\(409\) 8.66025i 0.428222i 0.976809 + 0.214111i \(0.0686854\pi\)
−0.976809 + 0.214111i \(0.931315\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 30.0000 1.47264
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −26.9444 −1.31632 −0.658160 0.752878i \(-0.728665\pi\)
−0.658160 + 0.752878i \(0.728665\pi\)
\(420\) 0 0
\(421\) 35.0000 1.70580 0.852898 0.522078i \(-0.174843\pi\)
0.852898 + 0.522078i \(0.174843\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.89898 −0.237635
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.2132i 1.02180i 0.859639 + 0.510902i \(0.170689\pi\)
−0.859639 + 0.510902i \(0.829311\pi\)
\(432\) 0 0
\(433\) − 12.1244i − 0.582659i −0.956623 0.291330i \(-0.905902\pi\)
0.956623 0.291330i \(-0.0940977\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) − 41.5692i − 1.98399i −0.126275 0.991995i \(-0.540302\pi\)
0.126275 0.991995i \(-0.459698\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 36.0000 1.70656
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 12.7279i − 0.600668i −0.953834 0.300334i \(-0.902902\pi\)
0.953834 0.300334i \(-0.0970981\pi\)
\(450\) 0 0
\(451\) 51.9615i 2.44677i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13.0000 0.608114 0.304057 0.952654i \(-0.401659\pi\)
0.304057 + 0.952654i \(0.401659\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.89898 0.228168 0.114084 0.993471i \(-0.463607\pi\)
0.114084 + 0.993471i \(0.463607\pi\)
\(462\) 0 0
\(463\) 29.0000 1.34774 0.673872 0.738848i \(-0.264630\pi\)
0.673872 + 0.738848i \(0.264630\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.34847 0.340047 0.170023 0.985440i \(-0.445616\pi\)
0.170023 + 0.985440i \(0.445616\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 46.6690i − 2.14585i
\(474\) 0 0
\(475\) 5.19615i 0.238416i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.89898 0.223840 0.111920 0.993717i \(-0.464300\pi\)
0.111920 + 0.993717i \(0.464300\pi\)
\(480\) 0 0
\(481\) − 8.66025i − 0.394874i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.48528i 0.385297i
\(486\) 0 0
\(487\) 7.00000 0.317200 0.158600 0.987343i \(-0.449302\pi\)
0.158600 + 0.987343i \(0.449302\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 33.9411i 1.53174i 0.642995 + 0.765871i \(0.277692\pi\)
−0.642995 + 0.765871i \(0.722308\pi\)
\(492\) 0 0
\(493\) − 41.5692i − 1.87218i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −35.0000 −1.56682 −0.783408 0.621508i \(-0.786520\pi\)
−0.783408 + 0.621508i \(0.786520\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.44949 −0.109217 −0.0546087 0.998508i \(-0.517391\pi\)
−0.0546087 + 0.998508i \(0.517391\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.1464 −0.760002 −0.380001 0.924986i \(-0.624076\pi\)
−0.380001 + 0.924986i \(0.624076\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 21.2132i 0.934765i
\(516\) 0 0
\(517\) 10.3923i 0.457053i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.89898 0.214628 0.107314 0.994225i \(-0.465775\pi\)
0.107314 + 0.994225i \(0.465775\pi\)
\(522\) 0 0
\(523\) − 8.66025i − 0.378686i −0.981911 0.189343i \(-0.939364\pi\)
0.981911 0.189343i \(-0.0606359\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 8.48528i − 0.369625i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 21.2132i 0.918846i
\(534\) 0 0
\(535\) 20.7846i 0.898597i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −19.0000 −0.816874 −0.408437 0.912787i \(-0.633926\pi\)
−0.408437 + 0.912787i \(0.633926\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.2474 −0.524623
\(546\) 0 0
\(547\) 2.00000 0.0855138 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −44.0908 −1.87833
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 21.2132i − 0.898832i −0.893323 0.449416i \(-0.851632\pi\)
0.893323 0.449416i \(-0.148368\pi\)
\(558\) 0 0
\(559\) − 19.0526i − 0.805837i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.34847 −0.309701 −0.154851 0.987938i \(-0.549490\pi\)
−0.154851 + 0.987938i \(0.549490\pi\)
\(564\) 0 0
\(565\) − 10.3923i − 0.437208i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 21.2132i − 0.889304i −0.895703 0.444652i \(-0.853327\pi\)
0.895703 0.444652i \(-0.146673\pi\)
\(570\) 0 0
\(571\) −7.00000 −0.292941 −0.146470 0.989215i \(-0.546791\pi\)
−0.146470 + 0.989215i \(0.546791\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 39.8372i 1.65844i 0.558920 + 0.829222i \(0.311216\pi\)
−0.558920 + 0.829222i \(0.688784\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 36.0000 1.49097
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.6969 0.606608 0.303304 0.952894i \(-0.401910\pi\)
0.303304 + 0.952894i \(0.401910\pi\)
\(588\) 0 0
\(589\) −9.00000 −0.370839
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.44949 −0.100588 −0.0502942 0.998734i \(-0.516016\pi\)
−0.0502942 + 0.998734i \(0.516016\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.9706i 0.693398i 0.937976 + 0.346699i \(0.112698\pi\)
−0.937976 + 0.346699i \(0.887302\pi\)
\(600\) 0 0
\(601\) 43.3013i 1.76630i 0.469095 + 0.883148i \(0.344580\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −17.1464 −0.697101
\(606\) 0 0
\(607\) 25.9808i 1.05453i 0.849702 + 0.527263i \(0.176782\pi\)
−0.849702 + 0.527263i \(0.823218\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.24264i 0.171639i
\(612\) 0 0
\(613\) 8.00000 0.323117 0.161558 0.986863i \(-0.448348\pi\)
0.161558 + 0.986863i \(0.448348\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.2132i 0.854011i 0.904249 + 0.427006i \(0.140432\pi\)
−0.904249 + 0.427006i \(0.859568\pi\)
\(618\) 0 0
\(619\) − 8.66025i − 0.348085i −0.984738 0.174042i \(-0.944317\pi\)
0.984738 0.174042i \(-0.0556830\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 24.4949 0.976676
\(630\) 0 0
\(631\) −22.0000 −0.875806 −0.437903 0.899022i \(-0.644279\pi\)
−0.437903 + 0.899022i \(0.644279\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 12.2474 0.486025
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.48528i 0.335148i 0.985859 + 0.167574i \(0.0535934\pi\)
−0.985859 + 0.167574i \(0.946407\pi\)
\(642\) 0 0
\(643\) − 32.9090i − 1.29780i −0.760872 0.648901i \(-0.775229\pi\)
0.760872 0.648901i \(-0.224771\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −22.0454 −0.866694 −0.433347 0.901227i \(-0.642668\pi\)
−0.433347 + 0.901227i \(0.642668\pi\)
\(648\) 0 0
\(649\) 20.7846i 0.815867i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 21.2132i 0.830137i 0.909790 + 0.415068i \(0.136242\pi\)
−0.909790 + 0.415068i \(0.863758\pi\)
\(654\) 0 0
\(655\) 18.0000 0.703318
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 16.9706i − 0.661079i −0.943792 0.330540i \(-0.892769\pi\)
0.943792 0.330540i \(-0.107231\pi\)
\(660\) 0 0
\(661\) − 5.19615i − 0.202107i −0.994881 0.101053i \(-0.967779\pi\)
0.994881 0.101053i \(-0.0322213\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.6969 0.567369
\(672\) 0 0
\(673\) 19.0000 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.3939 1.12970 0.564849 0.825194i \(-0.308934\pi\)
0.564849 + 0.825194i \(0.308934\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 8.48528i − 0.324680i −0.986735 0.162340i \(-0.948096\pi\)
0.986735 0.162340i \(-0.0519042\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14.6969 0.559909
\(690\) 0 0
\(691\) 19.0526i 0.724793i 0.932024 + 0.362397i \(0.118041\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 4.24264i − 0.160933i
\(696\) 0 0
\(697\) −60.0000 −2.27266
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 33.9411i − 1.28194i −0.767567 0.640969i \(-0.778533\pi\)
0.767567 0.640969i \(-0.221467\pi\)
\(702\) 0 0
\(703\) − 25.9808i − 0.979883i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 16.0000 0.600893 0.300446 0.953799i \(-0.402864\pi\)
0.300446 + 0.953799i \(0.402864\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −18.0000 −0.673162
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 26.9444 1.00486 0.502428 0.864619i \(-0.332440\pi\)
0.502428 + 0.864619i \(0.332440\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.48528i 0.315135i
\(726\) 0 0
\(727\) 39.8372i 1.47748i 0.673991 + 0.738739i \(0.264579\pi\)
−0.673991 + 0.738739i \(0.735421\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 53.8888 1.99315
\(732\) 0 0
\(733\) 8.66025i 0.319874i 0.987127 + 0.159937i \(0.0511291\pi\)
−0.987127 + 0.159937i \(0.948871\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 29.6985i − 1.09396i
\(738\) 0 0
\(739\) −19.0000 −0.698926 −0.349463 0.936950i \(-0.613636\pi\)
−0.349463 + 0.936950i \(0.613636\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.7279i 0.466942i 0.972364 + 0.233471i \(0.0750084\pi\)
−0.972364 + 0.233471i \(0.924992\pi\)
\(744\) 0 0
\(745\) − 41.5692i − 1.52298i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −5.00000 −0.182453 −0.0912263 0.995830i \(-0.529079\pi\)
−0.0912263 + 0.995830i \(0.529079\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.89898 −0.178292
\(756\) 0 0
\(757\) −14.0000 −0.508839 −0.254419 0.967094i \(-0.581884\pi\)
−0.254419 + 0.967094i \(0.581884\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.2929 1.24312 0.621558 0.783369i \(-0.286500\pi\)
0.621558 + 0.783369i \(0.286500\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.48528i 0.306386i
\(768\) 0 0
\(769\) − 15.5885i − 0.562134i −0.959688 0.281067i \(-0.909312\pi\)
0.959688 0.281067i \(-0.0906883\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −41.6413 −1.49773 −0.748867 0.662720i \(-0.769402\pi\)
−0.748867 + 0.662720i \(0.769402\pi\)
\(774\) 0 0
\(775\) 1.73205i 0.0622171i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 63.6396i 2.28013i
\(780\) 0 0
\(781\) −54.0000 −1.93227
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 25.4558i 0.908558i
\(786\) 0 0
\(787\) − 17.3205i − 0.617409i −0.951158 0.308705i \(-0.900105\pi\)
0.951158 0.308705i \(-0.0998955\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.00000 0.213066
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) −12.0000 −0.424529
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 66.1362 2.33390
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 21.2132i 0.745817i 0.927868 + 0.372908i \(0.121639\pi\)
−0.927868 + 0.372908i \(0.878361\pi\)
\(810\) 0 0
\(811\) 31.1769i 1.09477i 0.836881 + 0.547385i \(0.184377\pi\)
−0.836881 + 0.547385i \(0.815623\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −53.8888 −1.88764
\(816\) 0 0
\(817\) − 57.1577i − 1.99969i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.2132i 0.740346i 0.928963 + 0.370173i \(0.120702\pi\)
−0.928963 + 0.370173i \(0.879298\pi\)
\(822\) 0 0
\(823\) 26.0000 0.906303 0.453152 0.891434i \(-0.350300\pi\)
0.453152 + 0.891434i \(0.350300\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.6985i 1.03272i 0.856372 + 0.516359i \(0.172713\pi\)
−0.856372 + 0.516359i \(0.827287\pi\)
\(828\) 0 0
\(829\) − 36.3731i − 1.26329i −0.775258 0.631644i \(-0.782380\pi\)
0.775258 0.631644i \(-0.217620\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 42.0000 1.45347
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 53.8888 1.86045 0.930224 0.366993i \(-0.119613\pi\)
0.930224 + 0.366993i \(0.119613\pi\)
\(840\) 0 0
\(841\) −43.0000 −1.48276
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 24.4949 0.842650
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 25.9808i − 0.889564i −0.895639 0.444782i \(-0.853281\pi\)
0.895639 0.444782i \(-0.146719\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 39.1918 1.33877 0.669384 0.742917i \(-0.266558\pi\)
0.669384 + 0.742917i \(0.266558\pi\)
\(858\) 0 0
\(859\) 45.0333i 1.53652i 0.640140 + 0.768259i \(0.278876\pi\)
−0.640140 + 0.768259i \(0.721124\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 38.1838i − 1.29979i −0.760024 0.649895i \(-0.774813\pi\)
0.760024 0.649895i \(-0.225187\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 46.6690i 1.58314i
\(870\) 0 0
\(871\) − 12.1244i − 0.410818i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −28.0000 −0.945493 −0.472746 0.881199i \(-0.656737\pi\)
−0.472746 + 0.881199i \(0.656737\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 29.3939 0.990305 0.495152 0.868806i \(-0.335112\pi\)
0.495152 + 0.868806i \(0.335112\pi\)
\(882\) 0 0
\(883\) 1.00000 0.0336527 0.0168263 0.999858i \(-0.494644\pi\)
0.0168263 + 0.999858i \(0.494644\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −56.3383 −1.89165 −0.945827 0.324671i \(-0.894746\pi\)
−0.945827 + 0.324671i \(0.894746\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12.7279i 0.425924i
\(894\) 0 0
\(895\) 31.1769i 1.04213i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −14.6969 −0.490170
\(900\) 0 0
\(901\) 41.5692i 1.38487i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 12.7279i − 0.423090i
\(906\) 0 0
\(907\) 7.00000 0.232431 0.116216 0.993224i \(-0.462924\pi\)
0.116216 + 0.993224i \(0.462924\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 8.48528i − 0.281130i −0.990071 0.140565i \(-0.955108\pi\)
0.990071 0.140565i \(-0.0448919\pi\)
\(912\) 0 0
\(913\) 51.9615i 1.71968i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −41.0000 −1.35247 −0.676233 0.736688i \(-0.736389\pi\)
−0.676233 + 0.736688i \(0.736389\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −22.0454 −0.725633
\(924\) 0 0
\(925\) −5.00000 −0.164399
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −26.9444 −0.884017 −0.442008 0.897011i \(-0.645734\pi\)
−0.442008 + 0.897011i \(0.645734\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 50.9117i − 1.66499i
\(936\) 0 0
\(937\) 19.0526i 0.622420i 0.950341 + 0.311210i \(0.100734\pi\)
−0.950341 + 0.311210i \(0.899266\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 19.5959 0.638809 0.319404 0.947619i \(-0.396517\pi\)
0.319404 + 0.947619i \(0.396517\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 55.1543i 1.79227i 0.443777 + 0.896137i \(0.353638\pi\)
−0.443777 + 0.896137i \(0.646362\pi\)
\(948\) 0 0
\(949\) 27.0000 0.876457
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 33.9411i 1.09946i 0.835342 + 0.549730i \(0.185270\pi\)
−0.835342 + 0.549730i \(0.814730\pi\)
\(954\) 0 0
\(955\) 10.3923i 0.336287i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 28.0000 0.903226
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 46.5403 1.49819
\(966\) 0 0
\(967\) −43.0000 −1.38279 −0.691393 0.722478i \(-0.743003\pi\)
−0.691393 + 0.722478i \(0.743003\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −9.79796 −0.314431 −0.157216 0.987564i \(-0.550252\pi\)
−0.157216 + 0.987564i \(0.550252\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 38.1838i 1.22161i 0.791782 + 0.610803i \(0.209153\pi\)
−0.791782 + 0.610803i \(0.790847\pi\)
\(978\) 0 0
\(979\) 62.3538i 1.99284i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −53.8888 −1.71878 −0.859392 0.511316i \(-0.829158\pi\)
−0.859392 + 0.511316i \(0.829158\pi\)
\(984\) 0 0
\(985\) 20.7846i 0.662253i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 13.0000 0.412959 0.206479 0.978451i \(-0.433799\pi\)
0.206479 + 0.978451i \(0.433799\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 33.9411i 1.07601i
\(996\) 0 0
\(997\) 50.2295i 1.59078i 0.606096 + 0.795392i \(0.292735\pi\)
−0.606096 + 0.795392i \(0.707265\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.f.a.881.4 4
3.2 odd 2 inner 1764.2.f.a.881.1 4
4.3 odd 2 7056.2.k.a.881.3 4
7.2 even 3 252.2.t.a.17.1 4
7.3 odd 6 252.2.t.a.89.2 yes 4
7.4 even 3 1764.2.t.a.1097.1 4
7.5 odd 6 1764.2.t.a.521.2 4
7.6 odd 2 inner 1764.2.f.a.881.2 4
12.11 even 2 7056.2.k.a.881.2 4
21.2 odd 6 252.2.t.a.17.2 yes 4
21.5 even 6 1764.2.t.a.521.1 4
21.11 odd 6 1764.2.t.a.1097.2 4
21.17 even 6 252.2.t.a.89.1 yes 4
21.20 even 2 inner 1764.2.f.a.881.3 4
28.3 even 6 1008.2.bt.a.593.2 4
28.23 odd 6 1008.2.bt.a.17.1 4
28.27 even 2 7056.2.k.a.881.1 4
35.2 odd 12 6300.2.dd.a.4049.3 8
35.3 even 12 6300.2.dd.a.1349.4 8
35.9 even 6 6300.2.ch.a.4301.1 4
35.17 even 12 6300.2.dd.a.1349.2 8
35.23 odd 12 6300.2.dd.a.4049.1 8
35.24 odd 6 6300.2.ch.a.1601.2 4
63.2 odd 6 2268.2.bm.g.1025.1 4
63.16 even 3 2268.2.bm.g.1025.2 4
63.23 odd 6 2268.2.w.h.269.2 4
63.31 odd 6 2268.2.bm.g.593.1 4
63.38 even 6 2268.2.w.h.1349.1 4
63.52 odd 6 2268.2.w.h.1349.2 4
63.58 even 3 2268.2.w.h.269.1 4
63.59 even 6 2268.2.bm.g.593.2 4
84.23 even 6 1008.2.bt.a.17.2 4
84.59 odd 6 1008.2.bt.a.593.1 4
84.83 odd 2 7056.2.k.a.881.4 4
105.2 even 12 6300.2.dd.a.4049.4 8
105.17 odd 12 6300.2.dd.a.1349.1 8
105.23 even 12 6300.2.dd.a.4049.2 8
105.38 odd 12 6300.2.dd.a.1349.3 8
105.44 odd 6 6300.2.ch.a.4301.2 4
105.59 even 6 6300.2.ch.a.1601.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.t.a.17.1 4 7.2 even 3
252.2.t.a.17.2 yes 4 21.2 odd 6
252.2.t.a.89.1 yes 4 21.17 even 6
252.2.t.a.89.2 yes 4 7.3 odd 6
1008.2.bt.a.17.1 4 28.23 odd 6
1008.2.bt.a.17.2 4 84.23 even 6
1008.2.bt.a.593.1 4 84.59 odd 6
1008.2.bt.a.593.2 4 28.3 even 6
1764.2.f.a.881.1 4 3.2 odd 2 inner
1764.2.f.a.881.2 4 7.6 odd 2 inner
1764.2.f.a.881.3 4 21.20 even 2 inner
1764.2.f.a.881.4 4 1.1 even 1 trivial
1764.2.t.a.521.1 4 21.5 even 6
1764.2.t.a.521.2 4 7.5 odd 6
1764.2.t.a.1097.1 4 7.4 even 3
1764.2.t.a.1097.2 4 21.11 odd 6
2268.2.w.h.269.1 4 63.58 even 3
2268.2.w.h.269.2 4 63.23 odd 6
2268.2.w.h.1349.1 4 63.38 even 6
2268.2.w.h.1349.2 4 63.52 odd 6
2268.2.bm.g.593.1 4 63.31 odd 6
2268.2.bm.g.593.2 4 63.59 even 6
2268.2.bm.g.1025.1 4 63.2 odd 6
2268.2.bm.g.1025.2 4 63.16 even 3
6300.2.ch.a.1601.1 4 105.59 even 6
6300.2.ch.a.1601.2 4 35.24 odd 6
6300.2.ch.a.4301.1 4 35.9 even 6
6300.2.ch.a.4301.2 4 105.44 odd 6
6300.2.dd.a.1349.1 8 105.17 odd 12
6300.2.dd.a.1349.2 8 35.17 even 12
6300.2.dd.a.1349.3 8 105.38 odd 12
6300.2.dd.a.1349.4 8 35.3 even 12
6300.2.dd.a.4049.1 8 35.23 odd 12
6300.2.dd.a.4049.2 8 105.23 even 12
6300.2.dd.a.4049.3 8 35.2 odd 12
6300.2.dd.a.4049.4 8 105.2 even 12
7056.2.k.a.881.1 4 28.27 even 2
7056.2.k.a.881.2 4 12.11 even 2
7056.2.k.a.881.3 4 4.3 odd 2
7056.2.k.a.881.4 4 84.83 odd 2