# Properties

 Label 2268.1.p.a Level $2268$ Weight $1$ Character orbit 2268.p Analytic conductor $1.132$ Analytic rank $0$ Dimension $2$ Projective image $D_{6}$ CM discriminant -3 Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2268 = 2^{2} \cdot 3^{4} \cdot 7$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 2268.p (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.13187944865$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 756) Projective image: $$D_{6}$$ Projective field: Galois closure of 6.0.196036848.1

## $q$-expansion

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q - q^{7} +O(q^{10})$$ $$q - q^{7} + ( 1 + \zeta_{6} ) q^{19} + q^{25} + ( 1 + \zeta_{6} ) q^{31} -2 \zeta_{6}^{2} q^{37} + \zeta_{6}^{2} q^{43} + q^{49} + ( 1 - \zeta_{6}^{2} ) q^{61} + 2 \zeta_{6}^{2} q^{67} + ( -1 + \zeta_{6}^{2} ) q^{73} -2 \zeta_{6} q^{79} + ( 1 + \zeta_{6} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{7} + O(q^{10})$$ $$2q - 2q^{7} + 3q^{19} + 2q^{25} + 3q^{31} + 2q^{37} - q^{43} + 2q^{49} + 3q^{61} - 2q^{67} - 3q^{73} - 2q^{79} + 3q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$1135$$ $$1541$$ $$\chi(n)$$ $$-\zeta_{6}^{2}$$ $$1$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1081.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0 0 0 0 −1.00000 0 0 0
2161.1 0 0 0 0 0 −1.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
63.k odd 6 1 inner
63.s even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.1.p.a 2
3.b odd 2 1 CM 2268.1.p.a 2
7.d odd 6 1 2268.1.bd.b 2
9.c even 3 1 756.1.z.a 2
9.c even 3 1 2268.1.bd.b 2
9.d odd 6 1 756.1.z.a 2
9.d odd 6 1 2268.1.bd.b 2
21.g even 6 1 2268.1.bd.b 2
36.f odd 6 1 3024.1.cg.a 2
36.h even 6 1 3024.1.cg.a 2
63.i even 6 1 756.1.z.a 2
63.k odd 6 1 inner 2268.1.p.a 2
63.s even 6 1 inner 2268.1.p.a 2
63.t odd 6 1 756.1.z.a 2
252.r odd 6 1 3024.1.cg.a 2
252.bj even 6 1 3024.1.cg.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.1.z.a 2 9.c even 3 1
756.1.z.a 2 9.d odd 6 1
756.1.z.a 2 63.i even 6 1
756.1.z.a 2 63.t odd 6 1
2268.1.p.a 2 1.a even 1 1 trivial
2268.1.p.a 2 3.b odd 2 1 CM
2268.1.p.a 2 63.k odd 6 1 inner
2268.1.p.a 2 63.s even 6 1 inner
2268.1.bd.b 2 7.d odd 6 1
2268.1.bd.b 2 9.c even 3 1
2268.1.bd.b 2 9.d odd 6 1
2268.1.bd.b 2 21.g even 6 1
3024.1.cg.a 2 36.f odd 6 1
3024.1.cg.a 2 36.h even 6 1
3024.1.cg.a 2 252.r odd 6 1
3024.1.cg.a 2 252.bj even 6 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{13}$$ acting on $$S_{1}^{\mathrm{new}}(2268, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$( 1 + T )^{2}$$
$11$ $$T^{2}$$
$13$ $$T^{2}$$
$17$ $$T^{2}$$
$19$ $$3 - 3 T + T^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$3 - 3 T + T^{2}$$
$37$ $$4 - 2 T + T^{2}$$
$41$ $$T^{2}$$
$43$ $$1 + T + T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$3 - 3 T + T^{2}$$
$67$ $$4 + 2 T + T^{2}$$
$71$ $$T^{2}$$
$73$ $$3 + 3 T + T^{2}$$
$79$ $$4 + 2 T + T^{2}$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$3 - 3 T + T^{2}$$