Properties

Label 2268.1
Level 2268
Weight 1
Dimension 64
Nonzero newspaces 7
Newform subspaces 20
Sturm bound 279936
Trace bound 25

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 7 \)
Newform subspaces: \( 20 \)
Sturm bound: \(279936\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(2268))\).

Total New Old
Modular forms 3473 624 2849
Cusp forms 233 64 169
Eisenstein series 3240 560 2680

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 64 0 0 0

Trace form

\( 64q - 4q^{4} + q^{7} + O(q^{10}) \) \( 64q - 4q^{4} + q^{7} - 2q^{13} + 4q^{19} + 8q^{22} + 10q^{25} - 4q^{28} + 4q^{31} + 2q^{43} - 12q^{46} + 3q^{49} - 4q^{58} + 4q^{61} + 8q^{64} + 4q^{70} + 4q^{73} + 6q^{79} + 14q^{85} - 2q^{91} - 2q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(2268))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2268.1.c \(\chi_{2268}(1457, \cdot)\) None 0 1
2268.1.d \(\chi_{2268}(1945, \cdot)\) None 0 1
2268.1.g \(\chi_{2268}(1135, \cdot)\) None 0 1
2268.1.h \(\chi_{2268}(2267, \cdot)\) 2268.1.h.a 8 1
2268.1.m \(\chi_{2268}(53, \cdot)\) 2268.1.m.a 2 2
2268.1.m.b 2
2268.1.p \(\chi_{2268}(1081, \cdot)\) 2268.1.p.a 2 2
2268.1.p.b 2
2268.1.q \(\chi_{2268}(647, \cdot)\) None 0 2
2268.1.r \(\chi_{2268}(215, \cdot)\) None 0 2
2268.1.s \(\chi_{2268}(755, \cdot)\) 2268.1.s.a 2 2
2268.1.s.b 2
2268.1.s.c 2
2268.1.s.d 2
2268.1.s.e 8
2268.1.s.f 8
2268.1.s.g 8
2268.1.u \(\chi_{2268}(919, \cdot)\) None 0 2
2268.1.v \(\chi_{2268}(379, \cdot)\) None 0 2
2268.1.y \(\chi_{2268}(163, \cdot)\) None 0 2
2268.1.z \(\chi_{2268}(325, \cdot)\) None 0 2
2268.1.bc \(\chi_{2268}(433, \cdot)\) 2268.1.bc.a 2 2
2268.1.bc.b 2
2268.1.bc.c 2
2268.1.bc.d 2
2268.1.bd \(\chi_{2268}(1405, \cdot)\) 2268.1.bd.a 2 2
2268.1.bd.b 2
2268.1.bg \(\chi_{2268}(701, \cdot)\) None 0 2
2268.1.bh \(\chi_{2268}(1565, \cdot)\) 2268.1.bh.a 2 2
2268.1.bh.b 2
2268.1.bk \(\chi_{2268}(485, \cdot)\) None 0 2
2268.1.bl \(\chi_{2268}(1243, \cdot)\) None 0 2
2268.1.bn \(\chi_{2268}(1727, \cdot)\) None 0 2
2268.1.br \(\chi_{2268}(73, \cdot)\) None 0 6
2268.1.bu \(\chi_{2268}(233, \cdot)\) None 0 6
2268.1.bv \(\chi_{2268}(251, \cdot)\) None 0 6
2268.1.bw \(\chi_{2268}(395, \cdot)\) None 0 6
2268.1.by \(\chi_{2268}(127, \cdot)\) None 0 6
2268.1.bz \(\chi_{2268}(667, \cdot)\) None 0 6
2268.1.cb \(\chi_{2268}(197, \cdot)\) None 0 6
2268.1.ce \(\chi_{2268}(557, \cdot)\) None 0 6
2268.1.cg \(\chi_{2268}(181, \cdot)\) None 0 6
2268.1.ch \(\chi_{2268}(397, \cdot)\) None 0 6
2268.1.cj \(\chi_{2268}(235, \cdot)\) None 0 6
2268.1.cl \(\chi_{2268}(143, \cdot)\) None 0 6
2268.1.cp \(\chi_{2268}(137, \cdot)\) None 0 18
2268.1.cq \(\chi_{2268}(131, \cdot)\) None 0 18
2268.1.cv \(\chi_{2268}(61, \cdot)\) None 0 18
2268.1.cw \(\chi_{2268}(13, \cdot)\) None 0 18
2268.1.cx \(\chi_{2268}(43, \cdot)\) None 0 18
2268.1.cy \(\chi_{2268}(67, \cdot)\) None 0 18
2268.1.cz \(\chi_{2268}(83, \cdot)\) None 0 18
2268.1.da \(\chi_{2268}(47, \cdot)\) None 0 18
2268.1.db \(\chi_{2268}(65, \cdot)\) None 0 18
2268.1.dc \(\chi_{2268}(29, \cdot)\) None 0 18
2268.1.di \(\chi_{2268}(151, \cdot)\) None 0 18
2268.1.dj \(\chi_{2268}(229, \cdot)\) None 0 18

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(2268))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(2268)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(189))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(252))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(324))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(567))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(756))\)\(^{\oplus 2}\)