Properties

Label 2254.2.a.r.1.4
Level $2254$
Weight $2$
Character 2254.1
Self dual yes
Analytic conductor $17.998$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2254,2,Mod(1,2254)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2254.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2254, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,-1,4,5,1,0,-4,-1,-5,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.9982806156\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.8957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 322)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.84483\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.84483 q^{3} +1.00000 q^{4} +3.70618 q^{5} -1.84483 q^{6} -1.00000 q^{8} +0.403401 q^{9} -3.70618 q^{10} +0.357320 q^{11} +1.84483 q^{12} +2.14761 q^{13} +6.83727 q^{15} +1.00000 q^{16} -0.706176 q^{17} -0.403401 q^{18} -2.79029 q^{19} +3.70618 q^{20} -0.357320 q^{22} -1.00000 q^{23} -1.84483 q^{24} +8.73574 q^{25} -2.14761 q^{26} -4.79029 q^{27} +5.79924 q^{29} -6.83727 q^{30} +3.16412 q^{31} -1.00000 q^{32} +0.659195 q^{33} +0.706176 q^{34} +0.403401 q^{36} +8.15656 q^{37} +2.79029 q^{38} +3.96197 q^{39} -3.70618 q^{40} +6.51708 q^{41} -6.33234 q^{43} +0.357320 q^{44} +1.49507 q^{45} +1.00000 q^{46} -5.64407 q^{47} +1.84483 q^{48} -8.73574 q^{50} -1.30278 q^{51} +2.14761 q^{52} +11.5345 q^{53} +4.79029 q^{54} +1.32429 q^{55} -5.14761 q^{57} -5.79924 q^{58} +9.44143 q^{59} +6.83727 q^{60} -0.983485 q^{61} -3.16412 q^{62} +1.00000 q^{64} +7.95941 q^{65} -0.659195 q^{66} +15.0310 q^{67} -0.706176 q^{68} -1.84483 q^{69} -14.1655 q^{71} -0.403401 q^{72} -2.21520 q^{73} -8.15656 q^{74} +16.1160 q^{75} -2.79029 q^{76} -3.96197 q^{78} +12.8923 q^{79} +3.70618 q^{80} -10.0475 q^{81} -6.51708 q^{82} -4.38689 q^{83} -2.61721 q^{85} +6.33234 q^{86} +10.6986 q^{87} -0.357320 q^{88} +5.20971 q^{89} -1.49507 q^{90} -1.00000 q^{92} +5.83727 q^{93} +5.64407 q^{94} -10.3413 q^{95} -1.84483 q^{96} -15.7000 q^{97} +0.144143 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - q^{3} + 4 q^{4} + 5 q^{5} + q^{6} - 4 q^{8} - q^{9} - 5 q^{10} - 2 q^{11} - q^{12} - 7 q^{13} - 5 q^{15} + 4 q^{16} + 7 q^{17} + q^{18} + q^{19} + 5 q^{20} + 2 q^{22} - 4 q^{23} + q^{24}+ \cdots - 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.84483 1.06511 0.532557 0.846394i \(-0.321231\pi\)
0.532557 + 0.846394i \(0.321231\pi\)
\(4\) 1.00000 0.500000
\(5\) 3.70618 1.65745 0.828726 0.559654i \(-0.189066\pi\)
0.828726 + 0.559654i \(0.189066\pi\)
\(6\) −1.84483 −0.753149
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0.403401 0.134467
\(10\) −3.70618 −1.17200
\(11\) 0.357320 0.107736 0.0538680 0.998548i \(-0.482845\pi\)
0.0538680 + 0.998548i \(0.482845\pi\)
\(12\) 1.84483 0.532557
\(13\) 2.14761 0.595639 0.297819 0.954622i \(-0.403741\pi\)
0.297819 + 0.954622i \(0.403741\pi\)
\(14\) 0 0
\(15\) 6.83727 1.76537
\(16\) 1.00000 0.250000
\(17\) −0.706176 −0.171273 −0.0856364 0.996326i \(-0.527292\pi\)
−0.0856364 + 0.996326i \(0.527292\pi\)
\(18\) −0.403401 −0.0950824
\(19\) −2.79029 −0.640136 −0.320068 0.947395i \(-0.603706\pi\)
−0.320068 + 0.947395i \(0.603706\pi\)
\(20\) 3.70618 0.828726
\(21\) 0 0
\(22\) −0.357320 −0.0761809
\(23\) −1.00000 −0.208514
\(24\) −1.84483 −0.376575
\(25\) 8.73574 1.74715
\(26\) −2.14761 −0.421180
\(27\) −4.79029 −0.921891
\(28\) 0 0
\(29\) 5.79924 1.07689 0.538446 0.842660i \(-0.319012\pi\)
0.538446 + 0.842660i \(0.319012\pi\)
\(30\) −6.83727 −1.24831
\(31\) 3.16412 0.568293 0.284146 0.958781i \(-0.408290\pi\)
0.284146 + 0.958781i \(0.408290\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.659195 0.114751
\(34\) 0.706176 0.121108
\(35\) 0 0
\(36\) 0.403401 0.0672334
\(37\) 8.15656 1.34093 0.670465 0.741941i \(-0.266095\pi\)
0.670465 + 0.741941i \(0.266095\pi\)
\(38\) 2.79029 0.452644
\(39\) 3.96197 0.634423
\(40\) −3.70618 −0.585998
\(41\) 6.51708 1.01780 0.508898 0.860827i \(-0.330053\pi\)
0.508898 + 0.860827i \(0.330053\pi\)
\(42\) 0 0
\(43\) −6.33234 −0.965673 −0.482837 0.875711i \(-0.660393\pi\)
−0.482837 + 0.875711i \(0.660393\pi\)
\(44\) 0.357320 0.0538680
\(45\) 1.49507 0.222872
\(46\) 1.00000 0.147442
\(47\) −5.64407 −0.823272 −0.411636 0.911348i \(-0.635043\pi\)
−0.411636 + 0.911348i \(0.635043\pi\)
\(48\) 1.84483 0.266278
\(49\) 0 0
\(50\) −8.73574 −1.23542
\(51\) −1.30278 −0.182425
\(52\) 2.14761 0.297819
\(53\) 11.5345 1.58438 0.792192 0.610272i \(-0.208940\pi\)
0.792192 + 0.610272i \(0.208940\pi\)
\(54\) 4.79029 0.651875
\(55\) 1.32429 0.178567
\(56\) 0 0
\(57\) −5.14761 −0.681817
\(58\) −5.79924 −0.761477
\(59\) 9.44143 1.22917 0.614585 0.788851i \(-0.289324\pi\)
0.614585 + 0.788851i \(0.289324\pi\)
\(60\) 6.83727 0.882687
\(61\) −0.983485 −0.125922 −0.0629612 0.998016i \(-0.520054\pi\)
−0.0629612 + 0.998016i \(0.520054\pi\)
\(62\) −3.16412 −0.401844
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 7.95941 0.987243
\(66\) −0.659195 −0.0811413
\(67\) 15.0310 1.83632 0.918162 0.396206i \(-0.129673\pi\)
0.918162 + 0.396206i \(0.129673\pi\)
\(68\) −0.706176 −0.0856364
\(69\) −1.84483 −0.222092
\(70\) 0 0
\(71\) −14.1655 −1.68114 −0.840568 0.541705i \(-0.817779\pi\)
−0.840568 + 0.541705i \(0.817779\pi\)
\(72\) −0.403401 −0.0475412
\(73\) −2.21520 −0.259270 −0.129635 0.991562i \(-0.541381\pi\)
−0.129635 + 0.991562i \(0.541381\pi\)
\(74\) −8.15656 −0.948181
\(75\) 16.1160 1.86091
\(76\) −2.79029 −0.320068
\(77\) 0 0
\(78\) −3.96197 −0.448605
\(79\) 12.8923 1.45050 0.725249 0.688487i \(-0.241725\pi\)
0.725249 + 0.688487i \(0.241725\pi\)
\(80\) 3.70618 0.414363
\(81\) −10.0475 −1.11639
\(82\) −6.51708 −0.719691
\(83\) −4.38689 −0.481523 −0.240762 0.970584i \(-0.577397\pi\)
−0.240762 + 0.970584i \(0.577397\pi\)
\(84\) 0 0
\(85\) −2.61721 −0.283877
\(86\) 6.33234 0.682834
\(87\) 10.6986 1.14701
\(88\) −0.357320 −0.0380904
\(89\) 5.20971 0.552229 0.276114 0.961125i \(-0.410953\pi\)
0.276114 + 0.961125i \(0.410953\pi\)
\(90\) −1.49507 −0.157595
\(91\) 0 0
\(92\) −1.00000 −0.104257
\(93\) 5.83727 0.605296
\(94\) 5.64407 0.582141
\(95\) −10.3413 −1.06099
\(96\) −1.84483 −0.188287
\(97\) −15.7000 −1.59409 −0.797047 0.603917i \(-0.793606\pi\)
−0.797047 + 0.603917i \(0.793606\pi\)
\(98\) 0 0
\(99\) 0.144143 0.0144869
\(100\) 8.73574 0.873574
\(101\) 13.9718 1.39025 0.695124 0.718890i \(-0.255349\pi\)
0.695124 + 0.718890i \(0.255349\pi\)
\(102\) 1.30278 0.128994
\(103\) 10.9970 1.08357 0.541785 0.840517i \(-0.317749\pi\)
0.541785 + 0.840517i \(0.317749\pi\)
\(104\) −2.14761 −0.210590
\(105\) 0 0
\(106\) −11.5345 −1.12033
\(107\) −16.8421 −1.62819 −0.814095 0.580732i \(-0.802766\pi\)
−0.814095 + 0.580732i \(0.802766\pi\)
\(108\) −4.79029 −0.460946
\(109\) −10.4715 −1.00299 −0.501493 0.865162i \(-0.667216\pi\)
−0.501493 + 0.865162i \(0.667216\pi\)
\(110\) −1.32429 −0.126266
\(111\) 15.0475 1.42824
\(112\) 0 0
\(113\) −2.13865 −0.201188 −0.100594 0.994928i \(-0.532074\pi\)
−0.100594 + 0.994928i \(0.532074\pi\)
\(114\) 5.14761 0.482118
\(115\) −3.70618 −0.345603
\(116\) 5.79924 0.538446
\(117\) 0.866346 0.0800937
\(118\) −9.44143 −0.869154
\(119\) 0 0
\(120\) −6.83727 −0.624154
\(121\) −10.8723 −0.988393
\(122\) 0.983485 0.0890406
\(123\) 12.0229 1.08407
\(124\) 3.16412 0.284146
\(125\) 13.8453 1.23836
\(126\) 0 0
\(127\) 1.66420 0.147673 0.0738367 0.997270i \(-0.476476\pi\)
0.0738367 + 0.997270i \(0.476476\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −11.6821 −1.02855
\(130\) −7.95941 −0.698086
\(131\) −12.8047 −1.11875 −0.559377 0.828913i \(-0.688960\pi\)
−0.559377 + 0.828913i \(0.688960\pi\)
\(132\) 0.659195 0.0573755
\(133\) 0 0
\(134\) −15.0310 −1.29848
\(135\) −17.7536 −1.52799
\(136\) 0.706176 0.0605541
\(137\) −10.3883 −0.887530 −0.443765 0.896143i \(-0.646358\pi\)
−0.443765 + 0.896143i \(0.646358\pi\)
\(138\) 1.84483 0.157042
\(139\) −18.1536 −1.53977 −0.769883 0.638185i \(-0.779686\pi\)
−0.769883 + 0.638185i \(0.779686\pi\)
\(140\) 0 0
\(141\) −10.4124 −0.876878
\(142\) 14.1655 1.18874
\(143\) 0.767383 0.0641718
\(144\) 0.403401 0.0336167
\(145\) 21.4930 1.78490
\(146\) 2.21520 0.183331
\(147\) 0 0
\(148\) 8.15656 0.670465
\(149\) −19.6745 −1.61180 −0.805900 0.592051i \(-0.798318\pi\)
−0.805900 + 0.592051i \(0.798318\pi\)
\(150\) −16.1160 −1.31586
\(151\) 2.56267 0.208547 0.104274 0.994549i \(-0.466748\pi\)
0.104274 + 0.994549i \(0.466748\pi\)
\(152\) 2.79029 0.226322
\(153\) −0.284872 −0.0230305
\(154\) 0 0
\(155\) 11.7268 0.941918
\(156\) 3.96197 0.317212
\(157\) −16.4433 −1.31232 −0.656159 0.754622i \(-0.727820\pi\)
−0.656159 + 0.754622i \(0.727820\pi\)
\(158\) −12.8923 −1.02566
\(159\) 21.2792 1.68755
\(160\) −3.70618 −0.292999
\(161\) 0 0
\(162\) 10.0475 0.789404
\(163\) −19.0530 −1.49234 −0.746171 0.665754i \(-0.768110\pi\)
−0.746171 + 0.665754i \(0.768110\pi\)
\(164\) 6.51708 0.508898
\(165\) 2.44309 0.190194
\(166\) 4.38689 0.340488
\(167\) 11.6154 0.898827 0.449413 0.893324i \(-0.351633\pi\)
0.449413 + 0.893324i \(0.351633\pi\)
\(168\) 0 0
\(169\) −8.38779 −0.645214
\(170\) 2.61721 0.200731
\(171\) −1.12560 −0.0860770
\(172\) −6.33234 −0.482837
\(173\) −12.1951 −0.927174 −0.463587 0.886051i \(-0.653438\pi\)
−0.463587 + 0.886051i \(0.653438\pi\)
\(174\) −10.6986 −0.811060
\(175\) 0 0
\(176\) 0.357320 0.0269340
\(177\) 17.4178 1.30921
\(178\) −5.20971 −0.390485
\(179\) 2.15107 0.160779 0.0803893 0.996764i \(-0.474384\pi\)
0.0803893 + 0.996764i \(0.474384\pi\)
\(180\) 1.49507 0.111436
\(181\) 15.7236 1.16873 0.584363 0.811493i \(-0.301345\pi\)
0.584363 + 0.811493i \(0.301345\pi\)
\(182\) 0 0
\(183\) −1.81436 −0.134122
\(184\) 1.00000 0.0737210
\(185\) 30.2296 2.22253
\(186\) −5.83727 −0.428009
\(187\) −0.252331 −0.0184523
\(188\) −5.64407 −0.411636
\(189\) 0 0
\(190\) 10.3413 0.750236
\(191\) −6.69376 −0.484344 −0.242172 0.970233i \(-0.577860\pi\)
−0.242172 + 0.970233i \(0.577860\pi\)
\(192\) 1.84483 0.133139
\(193\) 5.09855 0.367002 0.183501 0.983020i \(-0.441257\pi\)
0.183501 + 0.983020i \(0.441257\pi\)
\(194\) 15.7000 1.12719
\(195\) 14.6838 1.05153
\(196\) 0 0
\(197\) 4.36217 0.310792 0.155396 0.987852i \(-0.450335\pi\)
0.155396 + 0.987852i \(0.450335\pi\)
\(198\) −0.144143 −0.0102438
\(199\) −1.71374 −0.121484 −0.0607419 0.998154i \(-0.519347\pi\)
−0.0607419 + 0.998154i \(0.519347\pi\)
\(200\) −8.73574 −0.617710
\(201\) 27.7296 1.95589
\(202\) −13.9718 −0.983054
\(203\) 0 0
\(204\) −1.30278 −0.0912125
\(205\) 24.1534 1.68695
\(206\) −10.9970 −0.766199
\(207\) −0.403401 −0.0280383
\(208\) 2.14761 0.148910
\(209\) −0.997025 −0.0689657
\(210\) 0 0
\(211\) 1.64129 0.112991 0.0564956 0.998403i \(-0.482007\pi\)
0.0564956 + 0.998403i \(0.482007\pi\)
\(212\) 11.5345 0.792192
\(213\) −26.1330 −1.79060
\(214\) 16.8421 1.15130
\(215\) −23.4688 −1.60056
\(216\) 4.79029 0.325938
\(217\) 0 0
\(218\) 10.4715 0.709218
\(219\) −4.08667 −0.276152
\(220\) 1.32429 0.0892837
\(221\) −1.51659 −0.102017
\(222\) −15.0475 −1.00992
\(223\) 3.51361 0.235289 0.117644 0.993056i \(-0.462466\pi\)
0.117644 + 0.993056i \(0.462466\pi\)
\(224\) 0 0
\(225\) 3.52400 0.234934
\(226\) 2.13865 0.142261
\(227\) 20.7126 1.37474 0.687371 0.726307i \(-0.258765\pi\)
0.687371 + 0.726307i \(0.258765\pi\)
\(228\) −5.14761 −0.340909
\(229\) 14.4353 0.953909 0.476954 0.878928i \(-0.341741\pi\)
0.476954 + 0.878928i \(0.341741\pi\)
\(230\) 3.70618 0.244378
\(231\) 0 0
\(232\) −5.79924 −0.380739
\(233\) −5.58543 −0.365913 −0.182957 0.983121i \(-0.558567\pi\)
−0.182957 + 0.983121i \(0.558567\pi\)
\(234\) −0.866346 −0.0566348
\(235\) −20.9179 −1.36453
\(236\) 9.44143 0.614585
\(237\) 23.7841 1.54494
\(238\) 0 0
\(239\) 10.5760 0.684104 0.342052 0.939681i \(-0.388878\pi\)
0.342052 + 0.939681i \(0.388878\pi\)
\(240\) 6.83727 0.441344
\(241\) 1.43158 0.0922160 0.0461080 0.998936i \(-0.485318\pi\)
0.0461080 + 0.998936i \(0.485318\pi\)
\(242\) 10.8723 0.698899
\(243\) −4.16502 −0.267186
\(244\) −0.983485 −0.0629612
\(245\) 0 0
\(246\) −12.0229 −0.766552
\(247\) −5.99244 −0.381290
\(248\) −3.16412 −0.200922
\(249\) −8.09306 −0.512877
\(250\) −13.8453 −0.875655
\(251\) −17.0163 −1.07406 −0.537030 0.843563i \(-0.680454\pi\)
−0.537030 + 0.843563i \(0.680454\pi\)
\(252\) 0 0
\(253\) −0.357320 −0.0224645
\(254\) −1.66420 −0.104421
\(255\) −4.82832 −0.302361
\(256\) 1.00000 0.0625000
\(257\) 27.7670 1.73206 0.866028 0.499996i \(-0.166665\pi\)
0.866028 + 0.499996i \(0.166665\pi\)
\(258\) 11.6821 0.727296
\(259\) 0 0
\(260\) 7.95941 0.493622
\(261\) 2.33942 0.144806
\(262\) 12.8047 0.791079
\(263\) 11.2072 0.691067 0.345534 0.938406i \(-0.387698\pi\)
0.345534 + 0.938406i \(0.387698\pi\)
\(264\) −0.659195 −0.0405706
\(265\) 42.7489 2.62604
\(266\) 0 0
\(267\) 9.61104 0.588186
\(268\) 15.0310 0.918162
\(269\) 29.5104 1.79928 0.899641 0.436631i \(-0.143828\pi\)
0.899641 + 0.436631i \(0.143828\pi\)
\(270\) 17.7536 1.08045
\(271\) −19.0435 −1.15681 −0.578406 0.815749i \(-0.696325\pi\)
−0.578406 + 0.815749i \(0.696325\pi\)
\(272\) −0.706176 −0.0428182
\(273\) 0 0
\(274\) 10.3883 0.627579
\(275\) 3.12145 0.188231
\(276\) −1.84483 −0.111046
\(277\) 3.79119 0.227790 0.113895 0.993493i \(-0.463667\pi\)
0.113895 + 0.993493i \(0.463667\pi\)
\(278\) 18.1536 1.08878
\(279\) 1.27641 0.0764166
\(280\) 0 0
\(281\) −14.5489 −0.867917 −0.433958 0.900933i \(-0.642883\pi\)
−0.433958 + 0.900933i \(0.642883\pi\)
\(282\) 10.4124 0.620047
\(283\) 0.452945 0.0269248 0.0134624 0.999909i \(-0.495715\pi\)
0.0134624 + 0.999909i \(0.495715\pi\)
\(284\) −14.1655 −0.840568
\(285\) −19.0779 −1.13008
\(286\) −0.767383 −0.0453763
\(287\) 0 0
\(288\) −0.403401 −0.0237706
\(289\) −16.5013 −0.970666
\(290\) −21.4930 −1.26211
\(291\) −28.9638 −1.69789
\(292\) −2.21520 −0.129635
\(293\) −8.36766 −0.488844 −0.244422 0.969669i \(-0.578598\pi\)
−0.244422 + 0.969669i \(0.578598\pi\)
\(294\) 0 0
\(295\) 34.9916 2.03729
\(296\) −8.15656 −0.474090
\(297\) −1.71166 −0.0993209
\(298\) 19.6745 1.13972
\(299\) −2.14761 −0.124199
\(300\) 16.1160 0.930456
\(301\) 0 0
\(302\) −2.56267 −0.147465
\(303\) 25.7756 1.48077
\(304\) −2.79029 −0.160034
\(305\) −3.64497 −0.208710
\(306\) 0.284872 0.0162850
\(307\) −24.8636 −1.41904 −0.709521 0.704684i \(-0.751089\pi\)
−0.709521 + 0.704684i \(0.751089\pi\)
\(308\) 0 0
\(309\) 20.2877 1.15412
\(310\) −11.7268 −0.666037
\(311\) −16.2246 −0.920015 −0.460008 0.887915i \(-0.652153\pi\)
−0.460008 + 0.887915i \(0.652153\pi\)
\(312\) −3.96197 −0.224302
\(313\) 0.957606 0.0541271 0.0270636 0.999634i \(-0.491384\pi\)
0.0270636 + 0.999634i \(0.491384\pi\)
\(314\) 16.4433 0.927950
\(315\) 0 0
\(316\) 12.8923 0.725249
\(317\) 17.3051 0.971954 0.485977 0.873972i \(-0.338464\pi\)
0.485977 + 0.873972i \(0.338464\pi\)
\(318\) −21.2792 −1.19328
\(319\) 2.07218 0.116020
\(320\) 3.70618 0.207182
\(321\) −31.0709 −1.73421
\(322\) 0 0
\(323\) 1.97043 0.109638
\(324\) −10.0475 −0.558193
\(325\) 18.7609 1.04067
\(326\) 19.0530 1.05525
\(327\) −19.3181 −1.06829
\(328\) −6.51708 −0.359845
\(329\) 0 0
\(330\) −2.44309 −0.134488
\(331\) 4.70208 0.258450 0.129225 0.991615i \(-0.458751\pi\)
0.129225 + 0.991615i \(0.458751\pi\)
\(332\) −4.38689 −0.240762
\(333\) 3.29036 0.180311
\(334\) −11.6154 −0.635567
\(335\) 55.7074 3.04362
\(336\) 0 0
\(337\) −34.5382 −1.88142 −0.940709 0.339214i \(-0.889839\pi\)
−0.940709 + 0.339214i \(0.889839\pi\)
\(338\) 8.38779 0.456235
\(339\) −3.94546 −0.214288
\(340\) −2.61721 −0.141938
\(341\) 1.13060 0.0612256
\(342\) 1.12560 0.0608657
\(343\) 0 0
\(344\) 6.33234 0.341417
\(345\) −6.83727 −0.368106
\(346\) 12.1951 0.655611
\(347\) −3.01700 −0.161961 −0.0809806 0.996716i \(-0.525805\pi\)
−0.0809806 + 0.996716i \(0.525805\pi\)
\(348\) 10.6986 0.573506
\(349\) −19.1069 −1.02277 −0.511384 0.859353i \(-0.670867\pi\)
−0.511384 + 0.859353i \(0.670867\pi\)
\(350\) 0 0
\(351\) −10.2877 −0.549114
\(352\) −0.357320 −0.0190452
\(353\) −4.99515 −0.265865 −0.132932 0.991125i \(-0.542439\pi\)
−0.132932 + 0.991125i \(0.542439\pi\)
\(354\) −17.4178 −0.925748
\(355\) −52.4999 −2.78640
\(356\) 5.20971 0.276114
\(357\) 0 0
\(358\) −2.15107 −0.113688
\(359\) −17.8137 −0.940170 −0.470085 0.882621i \(-0.655777\pi\)
−0.470085 + 0.882621i \(0.655777\pi\)
\(360\) −1.49507 −0.0787973
\(361\) −11.2143 −0.590226
\(362\) −15.7236 −0.826414
\(363\) −20.0576 −1.05275
\(364\) 0 0
\(365\) −8.20993 −0.429727
\(366\) 1.81436 0.0948383
\(367\) −8.99244 −0.469401 −0.234701 0.972068i \(-0.575411\pi\)
−0.234701 + 0.972068i \(0.575411\pi\)
\(368\) −1.00000 −0.0521286
\(369\) 2.62899 0.136860
\(370\) −30.2296 −1.57156
\(371\) 0 0
\(372\) 5.83727 0.302648
\(373\) 9.61909 0.498058 0.249029 0.968496i \(-0.419889\pi\)
0.249029 + 0.968496i \(0.419889\pi\)
\(374\) 0.252331 0.0130477
\(375\) 25.5423 1.31900
\(376\) 5.64407 0.291071
\(377\) 12.4545 0.641438
\(378\) 0 0
\(379\) −4.72457 −0.242685 −0.121342 0.992611i \(-0.538720\pi\)
−0.121342 + 0.992611i \(0.538720\pi\)
\(380\) −10.3413 −0.530497
\(381\) 3.07016 0.157289
\(382\) 6.69376 0.342483
\(383\) −5.38501 −0.275161 −0.137581 0.990491i \(-0.543933\pi\)
−0.137581 + 0.990491i \(0.543933\pi\)
\(384\) −1.84483 −0.0941436
\(385\) 0 0
\(386\) −5.09855 −0.259509
\(387\) −2.55447 −0.129851
\(388\) −15.7000 −0.797047
\(389\) 33.8055 1.71401 0.857003 0.515312i \(-0.172324\pi\)
0.857003 + 0.515312i \(0.172324\pi\)
\(390\) −14.6838 −0.743541
\(391\) 0.706176 0.0357129
\(392\) 0 0
\(393\) −23.6226 −1.19160
\(394\) −4.36217 −0.219763
\(395\) 47.7811 2.40413
\(396\) 0.144143 0.00724346
\(397\) −9.32685 −0.468101 −0.234051 0.972224i \(-0.575198\pi\)
−0.234051 + 0.972224i \(0.575198\pi\)
\(398\) 1.71374 0.0859020
\(399\) 0 0
\(400\) 8.73574 0.436787
\(401\) −13.9152 −0.694892 −0.347446 0.937700i \(-0.612951\pi\)
−0.347446 + 0.937700i \(0.612951\pi\)
\(402\) −27.7296 −1.38303
\(403\) 6.79529 0.338497
\(404\) 13.9718 0.695124
\(405\) −37.2377 −1.85036
\(406\) 0 0
\(407\) 2.91450 0.144466
\(408\) 1.30278 0.0644970
\(409\) 25.1840 1.24527 0.622636 0.782512i \(-0.286062\pi\)
0.622636 + 0.782512i \(0.286062\pi\)
\(410\) −24.1534 −1.19285
\(411\) −19.1646 −0.945320
\(412\) 10.9970 0.541785
\(413\) 0 0
\(414\) 0.403401 0.0198261
\(415\) −16.2586 −0.798102
\(416\) −2.14761 −0.105295
\(417\) −33.4903 −1.64003
\(418\) 0.997025 0.0487661
\(419\) 26.6155 1.30025 0.650126 0.759827i \(-0.274716\pi\)
0.650126 + 0.759827i \(0.274716\pi\)
\(420\) 0 0
\(421\) 13.2888 0.647655 0.323828 0.946116i \(-0.395030\pi\)
0.323828 + 0.946116i \(0.395030\pi\)
\(422\) −1.64129 −0.0798968
\(423\) −2.27682 −0.110703
\(424\) −11.5345 −0.560164
\(425\) −6.16897 −0.299239
\(426\) 26.1330 1.26615
\(427\) 0 0
\(428\) −16.8421 −0.814095
\(429\) 1.41569 0.0683502
\(430\) 23.4688 1.13176
\(431\) −7.64704 −0.368345 −0.184173 0.982894i \(-0.558961\pi\)
−0.184173 + 0.982894i \(0.558961\pi\)
\(432\) −4.79029 −0.230473
\(433\) 15.5384 0.746730 0.373365 0.927685i \(-0.378204\pi\)
0.373365 + 0.927685i \(0.378204\pi\)
\(434\) 0 0
\(435\) 39.6509 1.90112
\(436\) −10.4715 −0.501493
\(437\) 2.79029 0.133478
\(438\) 4.08667 0.195269
\(439\) −36.9647 −1.76423 −0.882116 0.471033i \(-0.843881\pi\)
−0.882116 + 0.471033i \(0.843881\pi\)
\(440\) −1.32429 −0.0631331
\(441\) 0 0
\(442\) 1.51659 0.0721368
\(443\) 35.8529 1.70343 0.851713 0.524009i \(-0.175564\pi\)
0.851713 + 0.524009i \(0.175564\pi\)
\(444\) 15.0475 0.714121
\(445\) 19.3081 0.915292
\(446\) −3.51361 −0.166374
\(447\) −36.2962 −1.71675
\(448\) 0 0
\(449\) 26.6931 1.25972 0.629862 0.776707i \(-0.283111\pi\)
0.629862 + 0.776707i \(0.283111\pi\)
\(450\) −3.52400 −0.166123
\(451\) 2.32868 0.109653
\(452\) −2.13865 −0.100594
\(453\) 4.72769 0.222126
\(454\) −20.7126 −0.972089
\(455\) 0 0
\(456\) 5.14761 0.241059
\(457\) −37.1541 −1.73799 −0.868997 0.494817i \(-0.835235\pi\)
−0.868997 + 0.494817i \(0.835235\pi\)
\(458\) −14.4353 −0.674515
\(459\) 3.38279 0.157895
\(460\) −3.70618 −0.172801
\(461\) 8.56316 0.398826 0.199413 0.979916i \(-0.436096\pi\)
0.199413 + 0.979916i \(0.436096\pi\)
\(462\) 0 0
\(463\) −32.2691 −1.49967 −0.749835 0.661625i \(-0.769867\pi\)
−0.749835 + 0.661625i \(0.769867\pi\)
\(464\) 5.79924 0.269223
\(465\) 21.6339 1.00325
\(466\) 5.58543 0.258740
\(467\) 31.5664 1.46072 0.730360 0.683062i \(-0.239352\pi\)
0.730360 + 0.683062i \(0.239352\pi\)
\(468\) 0.866346 0.0400468
\(469\) 0 0
\(470\) 20.9179 0.964871
\(471\) −30.3351 −1.39777
\(472\) −9.44143 −0.434577
\(473\) −2.26267 −0.104038
\(474\) −23.7841 −1.09244
\(475\) −24.3752 −1.11841
\(476\) 0 0
\(477\) 4.65302 0.213047
\(478\) −10.5760 −0.483734
\(479\) 4.55511 0.208128 0.104064 0.994571i \(-0.466815\pi\)
0.104064 + 0.994571i \(0.466815\pi\)
\(480\) −6.83727 −0.312077
\(481\) 17.5171 0.798710
\(482\) −1.43158 −0.0652066
\(483\) 0 0
\(484\) −10.8723 −0.494196
\(485\) −58.1870 −2.64213
\(486\) 4.16502 0.188929
\(487\) −28.2113 −1.27838 −0.639189 0.769050i \(-0.720730\pi\)
−0.639189 + 0.769050i \(0.720730\pi\)
\(488\) 0.983485 0.0445203
\(489\) −35.1495 −1.58951
\(490\) 0 0
\(491\) 21.1781 0.955756 0.477878 0.878426i \(-0.341406\pi\)
0.477878 + 0.878426i \(0.341406\pi\)
\(492\) 12.0229 0.542034
\(493\) −4.09528 −0.184442
\(494\) 5.99244 0.269612
\(495\) 0.534220 0.0240114
\(496\) 3.16412 0.142073
\(497\) 0 0
\(498\) 8.09306 0.362659
\(499\) 41.3353 1.85042 0.925212 0.379450i \(-0.123887\pi\)
0.925212 + 0.379450i \(0.123887\pi\)
\(500\) 13.8453 0.619181
\(501\) 21.4285 0.957353
\(502\) 17.0163 0.759475
\(503\) 10.1646 0.453218 0.226609 0.973986i \(-0.427236\pi\)
0.226609 + 0.973986i \(0.427236\pi\)
\(504\) 0 0
\(505\) 51.7820 2.30427
\(506\) 0.357320 0.0158848
\(507\) −15.4740 −0.687227
\(508\) 1.66420 0.0738367
\(509\) 2.37654 0.105339 0.0526693 0.998612i \(-0.483227\pi\)
0.0526693 + 0.998612i \(0.483227\pi\)
\(510\) 4.82832 0.213801
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 13.3663 0.590135
\(514\) −27.7670 −1.22475
\(515\) 40.7569 1.79596
\(516\) −11.6821 −0.514276
\(517\) −2.01674 −0.0886960
\(518\) 0 0
\(519\) −22.4979 −0.987546
\(520\) −7.95941 −0.349043
\(521\) −44.8249 −1.96382 −0.981908 0.189360i \(-0.939359\pi\)
−0.981908 + 0.189360i \(0.939359\pi\)
\(522\) −2.33942 −0.102393
\(523\) −30.1568 −1.31866 −0.659332 0.751852i \(-0.729161\pi\)
−0.659332 + 0.751852i \(0.729161\pi\)
\(524\) −12.8047 −0.559377
\(525\) 0 0
\(526\) −11.2072 −0.488658
\(527\) −2.23443 −0.0973332
\(528\) 0.659195 0.0286878
\(529\) 1.00000 0.0434783
\(530\) −42.7489 −1.85689
\(531\) 3.80868 0.165283
\(532\) 0 0
\(533\) 13.9961 0.606239
\(534\) −9.61104 −0.415910
\(535\) −62.4199 −2.69865
\(536\) −15.0310 −0.649238
\(537\) 3.96836 0.171247
\(538\) −29.5104 −1.27228
\(539\) 0 0
\(540\) −17.7536 −0.763995
\(541\) −26.0317 −1.11919 −0.559595 0.828766i \(-0.689043\pi\)
−0.559595 + 0.828766i \(0.689043\pi\)
\(542\) 19.0435 0.817989
\(543\) 29.0074 1.24483
\(544\) 0.706176 0.0302771
\(545\) −38.8092 −1.66240
\(546\) 0 0
\(547\) 1.81734 0.0777038 0.0388519 0.999245i \(-0.487630\pi\)
0.0388519 + 0.999245i \(0.487630\pi\)
\(548\) −10.3883 −0.443765
\(549\) −0.396739 −0.0169324
\(550\) −3.12145 −0.133099
\(551\) −16.1815 −0.689357
\(552\) 1.84483 0.0785212
\(553\) 0 0
\(554\) −3.79119 −0.161072
\(555\) 55.7686 2.36724
\(556\) −18.1536 −0.769883
\(557\) 22.3523 0.947098 0.473549 0.880767i \(-0.342973\pi\)
0.473549 + 0.880767i \(0.342973\pi\)
\(558\) −1.27641 −0.0540347
\(559\) −13.5994 −0.575192
\(560\) 0 0
\(561\) −0.465508 −0.0196537
\(562\) 14.5489 0.613710
\(563\) −30.0445 −1.26622 −0.633112 0.774060i \(-0.718223\pi\)
−0.633112 + 0.774060i \(0.718223\pi\)
\(564\) −10.4124 −0.438439
\(565\) −7.92623 −0.333459
\(566\) −0.452945 −0.0190387
\(567\) 0 0
\(568\) 14.1655 0.594372
\(569\) 4.31722 0.180987 0.0904936 0.995897i \(-0.471156\pi\)
0.0904936 + 0.995897i \(0.471156\pi\)
\(570\) 19.0779 0.799087
\(571\) −24.5801 −1.02864 −0.514322 0.857597i \(-0.671956\pi\)
−0.514322 + 0.857597i \(0.671956\pi\)
\(572\) 0.767383 0.0320859
\(573\) −12.3489 −0.515881
\(574\) 0 0
\(575\) −8.73574 −0.364306
\(576\) 0.403401 0.0168084
\(577\) −10.8024 −0.449711 −0.224856 0.974392i \(-0.572191\pi\)
−0.224856 + 0.974392i \(0.572191\pi\)
\(578\) 16.5013 0.686364
\(579\) 9.40596 0.390898
\(580\) 21.4930 0.892448
\(581\) 0 0
\(582\) 28.9638 1.20059
\(583\) 4.12150 0.170695
\(584\) 2.21520 0.0916657
\(585\) 3.21083 0.132751
\(586\) 8.36766 0.345665
\(587\) −22.8859 −0.944601 −0.472300 0.881438i \(-0.656576\pi\)
−0.472300 + 0.881438i \(0.656576\pi\)
\(588\) 0 0
\(589\) −8.82880 −0.363785
\(590\) −34.9916 −1.44058
\(591\) 8.04747 0.331029
\(592\) 8.15656 0.335232
\(593\) −20.1132 −0.825950 −0.412975 0.910742i \(-0.635510\pi\)
−0.412975 + 0.910742i \(0.635510\pi\)
\(594\) 1.71166 0.0702305
\(595\) 0 0
\(596\) −19.6745 −0.805900
\(597\) −3.16156 −0.129394
\(598\) 2.14761 0.0878222
\(599\) −4.86620 −0.198827 −0.0994137 0.995046i \(-0.531697\pi\)
−0.0994137 + 0.995046i \(0.531697\pi\)
\(600\) −16.1160 −0.657932
\(601\) 27.3566 1.11590 0.557950 0.829874i \(-0.311588\pi\)
0.557950 + 0.829874i \(0.311588\pi\)
\(602\) 0 0
\(603\) 6.06350 0.246925
\(604\) 2.56267 0.104274
\(605\) −40.2947 −1.63821
\(606\) −25.7756 −1.04706
\(607\) −2.61609 −0.106184 −0.0530919 0.998590i \(-0.516908\pi\)
−0.0530919 + 0.998590i \(0.516908\pi\)
\(608\) 2.79029 0.113161
\(609\) 0 0
\(610\) 3.64497 0.147581
\(611\) −12.1212 −0.490373
\(612\) −0.284872 −0.0115153
\(613\) −28.3739 −1.14601 −0.573006 0.819551i \(-0.694223\pi\)
−0.573006 + 0.819551i \(0.694223\pi\)
\(614\) 24.8636 1.00341
\(615\) 44.5590 1.79679
\(616\) 0 0
\(617\) −0.343632 −0.0138341 −0.00691706 0.999976i \(-0.502202\pi\)
−0.00691706 + 0.999976i \(0.502202\pi\)
\(618\) −20.2877 −0.816089
\(619\) 35.8082 1.43925 0.719626 0.694362i \(-0.244313\pi\)
0.719626 + 0.694362i \(0.244313\pi\)
\(620\) 11.7268 0.470959
\(621\) 4.79029 0.192228
\(622\) 16.2246 0.650549
\(623\) 0 0
\(624\) 3.96197 0.158606
\(625\) 7.63448 0.305379
\(626\) −0.957606 −0.0382736
\(627\) −1.83934 −0.0734563
\(628\) −16.4433 −0.656159
\(629\) −5.75997 −0.229665
\(630\) 0 0
\(631\) 11.2216 0.446726 0.223363 0.974735i \(-0.428296\pi\)
0.223363 + 0.974735i \(0.428296\pi\)
\(632\) −12.8923 −0.512828
\(633\) 3.02790 0.120348
\(634\) −17.3051 −0.687275
\(635\) 6.16780 0.244762
\(636\) 21.2792 0.843775
\(637\) 0 0
\(638\) −2.07218 −0.0820385
\(639\) −5.71438 −0.226057
\(640\) −3.70618 −0.146499
\(641\) −44.4507 −1.75570 −0.877848 0.478939i \(-0.841021\pi\)
−0.877848 + 0.478939i \(0.841021\pi\)
\(642\) 31.0709 1.22627
\(643\) 33.8157 1.33356 0.666781 0.745254i \(-0.267672\pi\)
0.666781 + 0.745254i \(0.267672\pi\)
\(644\) 0 0
\(645\) −43.2959 −1.70478
\(646\) −1.97043 −0.0775257
\(647\) −34.8325 −1.36941 −0.684703 0.728822i \(-0.740068\pi\)
−0.684703 + 0.728822i \(0.740068\pi\)
\(648\) 10.0475 0.394702
\(649\) 3.37361 0.132426
\(650\) −18.7609 −0.735864
\(651\) 0 0
\(652\) −19.0530 −0.746171
\(653\) 42.5042 1.66332 0.831660 0.555286i \(-0.187391\pi\)
0.831660 + 0.555286i \(0.187391\pi\)
\(654\) 19.3181 0.755398
\(655\) −47.4566 −1.85428
\(656\) 6.51708 0.254449
\(657\) −0.893614 −0.0348632
\(658\) 0 0
\(659\) 5.96821 0.232489 0.116244 0.993221i \(-0.462914\pi\)
0.116244 + 0.993221i \(0.462914\pi\)
\(660\) 2.44309 0.0950972
\(661\) −44.2990 −1.72303 −0.861515 0.507732i \(-0.830484\pi\)
−0.861515 + 0.507732i \(0.830484\pi\)
\(662\) −4.70208 −0.182751
\(663\) −2.79785 −0.108659
\(664\) 4.38689 0.170244
\(665\) 0 0
\(666\) −3.29036 −0.127499
\(667\) −5.79924 −0.224547
\(668\) 11.6154 0.449413
\(669\) 6.48202 0.250609
\(670\) −55.7074 −2.15216
\(671\) −0.351419 −0.0135664
\(672\) 0 0
\(673\) −29.5675 −1.13974 −0.569872 0.821733i \(-0.693007\pi\)
−0.569872 + 0.821733i \(0.693007\pi\)
\(674\) 34.5382 1.33036
\(675\) −41.8467 −1.61068
\(676\) −8.38779 −0.322607
\(677\) 36.8707 1.41706 0.708529 0.705682i \(-0.249359\pi\)
0.708529 + 0.705682i \(0.249359\pi\)
\(678\) 3.94546 0.151524
\(679\) 0 0
\(680\) 2.61721 0.100366
\(681\) 38.2112 1.46426
\(682\) −1.13060 −0.0432930
\(683\) −19.5932 −0.749713 −0.374857 0.927083i \(-0.622308\pi\)
−0.374857 + 0.927083i \(0.622308\pi\)
\(684\) −1.12560 −0.0430385
\(685\) −38.5008 −1.47104
\(686\) 0 0
\(687\) 26.6306 1.01602
\(688\) −6.33234 −0.241418
\(689\) 24.7715 0.943721
\(690\) 6.83727 0.260290
\(691\) 17.5149 0.666296 0.333148 0.942874i \(-0.391889\pi\)
0.333148 + 0.942874i \(0.391889\pi\)
\(692\) −12.1951 −0.463587
\(693\) 0 0
\(694\) 3.01700 0.114524
\(695\) −67.2804 −2.55209
\(696\) −10.6986 −0.405530
\(697\) −4.60220 −0.174321
\(698\) 19.1069 0.723206
\(699\) −10.3042 −0.389739
\(700\) 0 0
\(701\) 3.82144 0.144334 0.0721669 0.997393i \(-0.477009\pi\)
0.0721669 + 0.997393i \(0.477009\pi\)
\(702\) 10.2877 0.388282
\(703\) −22.7591 −0.858377
\(704\) 0.357320 0.0134670
\(705\) −38.5900 −1.45338
\(706\) 4.99515 0.187995
\(707\) 0 0
\(708\) 17.4178 0.654603
\(709\) 17.0586 0.640651 0.320325 0.947308i \(-0.396208\pi\)
0.320325 + 0.947308i \(0.396208\pi\)
\(710\) 52.4999 1.97029
\(711\) 5.20076 0.195044
\(712\) −5.20971 −0.195242
\(713\) −3.16412 −0.118497
\(714\) 0 0
\(715\) 2.84405 0.106362
\(716\) 2.15107 0.0803893
\(717\) 19.5109 0.728648
\(718\) 17.8137 0.664801
\(719\) 9.51320 0.354783 0.177391 0.984140i \(-0.443234\pi\)
0.177391 + 0.984140i \(0.443234\pi\)
\(720\) 1.49507 0.0557181
\(721\) 0 0
\(722\) 11.2143 0.417353
\(723\) 2.64102 0.0982205
\(724\) 15.7236 0.584363
\(725\) 50.6607 1.88149
\(726\) 20.0576 0.744407
\(727\) 10.6189 0.393835 0.196917 0.980420i \(-0.436907\pi\)
0.196917 + 0.980420i \(0.436907\pi\)
\(728\) 0 0
\(729\) 22.4586 0.831802
\(730\) 8.20993 0.303863
\(731\) 4.47175 0.165394
\(732\) −1.81436 −0.0670608
\(733\) −21.0303 −0.776773 −0.388386 0.921497i \(-0.626967\pi\)
−0.388386 + 0.921497i \(0.626967\pi\)
\(734\) 8.99244 0.331917
\(735\) 0 0
\(736\) 1.00000 0.0368605
\(737\) 5.37086 0.197838
\(738\) −2.62899 −0.0967746
\(739\) −35.2670 −1.29732 −0.648659 0.761079i \(-0.724670\pi\)
−0.648659 + 0.761079i \(0.724670\pi\)
\(740\) 30.2296 1.11126
\(741\) −11.0550 −0.406117
\(742\) 0 0
\(743\) −7.12534 −0.261403 −0.130702 0.991422i \(-0.541723\pi\)
−0.130702 + 0.991422i \(0.541723\pi\)
\(744\) −5.83727 −0.214005
\(745\) −72.9173 −2.67148
\(746\) −9.61909 −0.352180
\(747\) −1.76967 −0.0647489
\(748\) −0.252331 −0.00922613
\(749\) 0 0
\(750\) −25.5423 −0.932672
\(751\) 11.8613 0.432827 0.216413 0.976302i \(-0.430564\pi\)
0.216413 + 0.976302i \(0.430564\pi\)
\(752\) −5.64407 −0.205818
\(753\) −31.3922 −1.14400
\(754\) −12.4545 −0.453565
\(755\) 9.49770 0.345657
\(756\) 0 0
\(757\) −42.2269 −1.53476 −0.767382 0.641190i \(-0.778441\pi\)
−0.767382 + 0.641190i \(0.778441\pi\)
\(758\) 4.72457 0.171604
\(759\) −0.659195 −0.0239273
\(760\) 10.3413 0.375118
\(761\) 39.2591 1.42314 0.711570 0.702615i \(-0.247984\pi\)
0.711570 + 0.702615i \(0.247984\pi\)
\(762\) −3.07016 −0.111220
\(763\) 0 0
\(764\) −6.69376 −0.242172
\(765\) −1.05579 −0.0381720
\(766\) 5.38501 0.194568
\(767\) 20.2765 0.732141
\(768\) 1.84483 0.0665696
\(769\) 29.8728 1.07724 0.538621 0.842548i \(-0.318946\pi\)
0.538621 + 0.842548i \(0.318946\pi\)
\(770\) 0 0
\(771\) 51.2253 1.84484
\(772\) 5.09855 0.183501
\(773\) 39.9927 1.43844 0.719219 0.694783i \(-0.244500\pi\)
0.719219 + 0.694783i \(0.244500\pi\)
\(774\) 2.55447 0.0918185
\(775\) 27.6409 0.992892
\(776\) 15.7000 0.563597
\(777\) 0 0
\(778\) −33.8055 −1.21199
\(779\) −18.1845 −0.651528
\(780\) 14.6838 0.525763
\(781\) −5.06162 −0.181119
\(782\) −0.706176 −0.0252528
\(783\) −27.7800 −0.992777
\(784\) 0 0
\(785\) −60.9418 −2.17511
\(786\) 23.6226 0.842589
\(787\) 14.4288 0.514332 0.257166 0.966367i \(-0.417211\pi\)
0.257166 + 0.966367i \(0.417211\pi\)
\(788\) 4.36217 0.155396
\(789\) 20.6754 0.736065
\(790\) −47.7811 −1.69998
\(791\) 0 0
\(792\) −0.144143 −0.00512190
\(793\) −2.11214 −0.0750043
\(794\) 9.32685 0.330998
\(795\) 78.8644 2.79703
\(796\) −1.71374 −0.0607419
\(797\) −20.9087 −0.740626 −0.370313 0.928907i \(-0.620749\pi\)
−0.370313 + 0.928907i \(0.620749\pi\)
\(798\) 0 0
\(799\) 3.98571 0.141004
\(800\) −8.73574 −0.308855
\(801\) 2.10160 0.0742564
\(802\) 13.9152 0.491363
\(803\) −0.791536 −0.0279327
\(804\) 27.7296 0.977946
\(805\) 0 0
\(806\) −6.79529 −0.239354
\(807\) 54.4417 1.91644
\(808\) −13.9718 −0.491527
\(809\) 26.3090 0.924976 0.462488 0.886626i \(-0.346957\pi\)
0.462488 + 0.886626i \(0.346957\pi\)
\(810\) 37.2377 1.30840
\(811\) −2.50790 −0.0880643 −0.0440322 0.999030i \(-0.514020\pi\)
−0.0440322 + 0.999030i \(0.514020\pi\)
\(812\) 0 0
\(813\) −35.1321 −1.23214
\(814\) −2.91450 −0.102153
\(815\) −70.6136 −2.47349
\(816\) −1.30278 −0.0456063
\(817\) 17.6690 0.618162
\(818\) −25.1840 −0.880540
\(819\) 0 0
\(820\) 24.1534 0.843475
\(821\) −22.8349 −0.796945 −0.398472 0.917180i \(-0.630459\pi\)
−0.398472 + 0.917180i \(0.630459\pi\)
\(822\) 19.1646 0.668443
\(823\) −9.72818 −0.339103 −0.169552 0.985521i \(-0.554232\pi\)
−0.169552 + 0.985521i \(0.554232\pi\)
\(824\) −10.9970 −0.383100
\(825\) 5.75856 0.200487
\(826\) 0 0
\(827\) 53.9493 1.87600 0.938000 0.346635i \(-0.112676\pi\)
0.938000 + 0.346635i \(0.112676\pi\)
\(828\) −0.403401 −0.0140191
\(829\) 38.6876 1.34368 0.671838 0.740698i \(-0.265505\pi\)
0.671838 + 0.740698i \(0.265505\pi\)
\(830\) 16.2586 0.564343
\(831\) 6.99410 0.242623
\(832\) 2.14761 0.0744549
\(833\) 0 0
\(834\) 33.4903 1.15967
\(835\) 43.0487 1.48976
\(836\) −0.997025 −0.0344828
\(837\) −15.1570 −0.523904
\(838\) −26.6155 −0.919416
\(839\) 33.0600 1.14136 0.570680 0.821173i \(-0.306680\pi\)
0.570680 + 0.821173i \(0.306680\pi\)
\(840\) 0 0
\(841\) 4.63117 0.159695
\(842\) −13.2888 −0.457961
\(843\) −26.8403 −0.924430
\(844\) 1.64129 0.0564956
\(845\) −31.0866 −1.06941
\(846\) 2.27682 0.0782787
\(847\) 0 0
\(848\) 11.5345 0.396096
\(849\) 0.835606 0.0286779
\(850\) 6.16897 0.211594
\(851\) −8.15656 −0.279603
\(852\) −26.1330 −0.895301
\(853\) 22.0257 0.754145 0.377072 0.926184i \(-0.376931\pi\)
0.377072 + 0.926184i \(0.376931\pi\)
\(854\) 0 0
\(855\) −4.17168 −0.142669
\(856\) 16.8421 0.575652
\(857\) 19.6258 0.670405 0.335203 0.942146i \(-0.391195\pi\)
0.335203 + 0.942146i \(0.391195\pi\)
\(858\) −1.41569 −0.0483309
\(859\) 17.5735 0.599600 0.299800 0.954002i \(-0.403080\pi\)
0.299800 + 0.954002i \(0.403080\pi\)
\(860\) −23.4688 −0.800279
\(861\) 0 0
\(862\) 7.64704 0.260459
\(863\) −40.9092 −1.39257 −0.696283 0.717767i \(-0.745164\pi\)
−0.696283 + 0.717767i \(0.745164\pi\)
\(864\) 4.79029 0.162969
\(865\) −45.1971 −1.53675
\(866\) −15.5384 −0.528018
\(867\) −30.4421 −1.03387
\(868\) 0 0
\(869\) 4.60668 0.156271
\(870\) −39.6509 −1.34429
\(871\) 32.2806 1.09379
\(872\) 10.4715 0.354609
\(873\) −6.33339 −0.214353
\(874\) −2.79029 −0.0943828
\(875\) 0 0
\(876\) −4.08667 −0.138076
\(877\) −19.8401 −0.669953 −0.334977 0.942226i \(-0.608728\pi\)
−0.334977 + 0.942226i \(0.608728\pi\)
\(878\) 36.9647 1.24750
\(879\) −15.4369 −0.520674
\(880\) 1.32429 0.0446418
\(881\) 9.43289 0.317802 0.158901 0.987295i \(-0.449205\pi\)
0.158901 + 0.987295i \(0.449205\pi\)
\(882\) 0 0
\(883\) −19.2276 −0.647061 −0.323530 0.946218i \(-0.604870\pi\)
−0.323530 + 0.946218i \(0.604870\pi\)
\(884\) −1.51659 −0.0510084
\(885\) 64.5536 2.16995
\(886\) −35.8529 −1.20450
\(887\) −29.9117 −1.00434 −0.502168 0.864770i \(-0.667464\pi\)
−0.502168 + 0.864770i \(0.667464\pi\)
\(888\) −15.0475 −0.504960
\(889\) 0 0
\(890\) −19.3081 −0.647210
\(891\) −3.59016 −0.120275
\(892\) 3.51361 0.117644
\(893\) 15.7486 0.527006
\(894\) 36.2962 1.21393
\(895\) 7.97224 0.266483
\(896\) 0 0
\(897\) −3.96197 −0.132286
\(898\) −26.6931 −0.890759
\(899\) 18.3495 0.611990
\(900\) 3.52400 0.117467
\(901\) −8.14538 −0.271362
\(902\) −2.32868 −0.0775366
\(903\) 0 0
\(904\) 2.13865 0.0711306
\(905\) 58.2744 1.93711
\(906\) −4.72769 −0.157067
\(907\) −21.4948 −0.713723 −0.356862 0.934157i \(-0.616153\pi\)
−0.356862 + 0.934157i \(0.616153\pi\)
\(908\) 20.7126 0.687371
\(909\) 5.63624 0.186942
\(910\) 0 0
\(911\) −7.80285 −0.258520 −0.129260 0.991611i \(-0.541260\pi\)
−0.129260 + 0.991611i \(0.541260\pi\)
\(912\) −5.14761 −0.170454
\(913\) −1.56752 −0.0518774
\(914\) 37.1541 1.22895
\(915\) −6.72435 −0.222300
\(916\) 14.4353 0.476954
\(917\) 0 0
\(918\) −3.38279 −0.111649
\(919\) 13.4341 0.443150 0.221575 0.975143i \(-0.428880\pi\)
0.221575 + 0.975143i \(0.428880\pi\)
\(920\) 3.70618 0.122189
\(921\) −45.8692 −1.51144
\(922\) −8.56316 −0.282013
\(923\) −30.4219 −1.00135
\(924\) 0 0
\(925\) 71.2536 2.34280
\(926\) 32.2691 1.06043
\(927\) 4.43621 0.145704
\(928\) −5.79924 −0.190369
\(929\) 13.3685 0.438606 0.219303 0.975657i \(-0.429622\pi\)
0.219303 + 0.975657i \(0.429622\pi\)
\(930\) −21.6339 −0.709405
\(931\) 0 0
\(932\) −5.58543 −0.182957
\(933\) −29.9317 −0.979920
\(934\) −31.5664 −1.03288
\(935\) −0.935183 −0.0305837
\(936\) −0.866346 −0.0283174
\(937\) 28.2477 0.922814 0.461407 0.887189i \(-0.347345\pi\)
0.461407 + 0.887189i \(0.347345\pi\)
\(938\) 0 0
\(939\) 1.76662 0.0576515
\(940\) −20.9179 −0.682267
\(941\) 42.8686 1.39748 0.698739 0.715377i \(-0.253745\pi\)
0.698739 + 0.715377i \(0.253745\pi\)
\(942\) 30.3351 0.988372
\(943\) −6.51708 −0.212225
\(944\) 9.44143 0.307292
\(945\) 0 0
\(946\) 2.26267 0.0735658
\(947\) −43.1245 −1.40136 −0.700679 0.713477i \(-0.747119\pi\)
−0.700679 + 0.713477i \(0.747119\pi\)
\(948\) 23.7841 0.772472
\(949\) −4.75738 −0.154431
\(950\) 24.3752 0.790837
\(951\) 31.9251 1.03524
\(952\) 0 0
\(953\) 6.64034 0.215102 0.107551 0.994200i \(-0.465699\pi\)
0.107551 + 0.994200i \(0.465699\pi\)
\(954\) −4.65302 −0.150647
\(955\) −24.8083 −0.802776
\(956\) 10.5760 0.342052
\(957\) 3.82283 0.123574
\(958\) −4.55511 −0.147169
\(959\) 0 0
\(960\) 6.83727 0.220672
\(961\) −20.9883 −0.677043
\(962\) −17.5171 −0.564773
\(963\) −6.79412 −0.218937
\(964\) 1.43158 0.0461080
\(965\) 18.8961 0.608288
\(966\) 0 0
\(967\) −18.5854 −0.597667 −0.298833 0.954305i \(-0.596598\pi\)
−0.298833 + 0.954305i \(0.596598\pi\)
\(968\) 10.8723 0.349450
\(969\) 3.63512 0.116777
\(970\) 58.1870 1.86827
\(971\) 9.92201 0.318413 0.159206 0.987245i \(-0.449107\pi\)
0.159206 + 0.987245i \(0.449107\pi\)
\(972\) −4.16502 −0.133593
\(973\) 0 0
\(974\) 28.2113 0.903949
\(975\) 34.6108 1.10843
\(976\) −0.983485 −0.0314806
\(977\) 0.716741 0.0229306 0.0114653 0.999934i \(-0.496350\pi\)
0.0114653 + 0.999934i \(0.496350\pi\)
\(978\) 35.1495 1.12396
\(979\) 1.86153 0.0594949
\(980\) 0 0
\(981\) −4.22420 −0.134868
\(982\) −21.1781 −0.675822
\(983\) 23.1139 0.737220 0.368610 0.929584i \(-0.379834\pi\)
0.368610 + 0.929584i \(0.379834\pi\)
\(984\) −12.0229 −0.383276
\(985\) 16.1670 0.515123
\(986\) 4.09528 0.130420
\(987\) 0 0
\(988\) −5.99244 −0.190645
\(989\) 6.33234 0.201357
\(990\) −0.534220 −0.0169786
\(991\) −25.6970 −0.816291 −0.408145 0.912917i \(-0.633824\pi\)
−0.408145 + 0.912917i \(0.633824\pi\)
\(992\) −3.16412 −0.100461
\(993\) 8.67454 0.275278
\(994\) 0 0
\(995\) −6.35142 −0.201354
\(996\) −8.09306 −0.256438
\(997\) −0.923377 −0.0292436 −0.0146218 0.999893i \(-0.504654\pi\)
−0.0146218 + 0.999893i \(0.504654\pi\)
\(998\) −41.3353 −1.30845
\(999\) −39.0723 −1.23619
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.2.a.r.1.4 4
7.3 odd 6 322.2.e.d.93.4 8
7.5 odd 6 322.2.e.d.277.4 yes 8
7.6 odd 2 2254.2.a.u.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
322.2.e.d.93.4 8 7.3 odd 6
322.2.e.d.277.4 yes 8 7.5 odd 6
2254.2.a.r.1.4 4 1.1 even 1 trivial
2254.2.a.u.1.1 4 7.6 odd 2