Properties

Label 2252.1.d.a.1125.4
Level 22522252
Weight 11
Character 2252.1125
Self dual yes
Analytic conductor 1.1241.124
Analytic rank 00
Dimension 99
Projective image D27D_{27}
CM discriminant -563
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2252,1,Mod(1125,2252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2252.1125"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2252, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 2252=22563 2252 = 2^{2} \cdot 563
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2252.d (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.123894408451.12389440845
Analytic rank: 00
Dimension: 99
Coefficient field: Q(ζ54)+\Q(\zeta_{54})^+
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x99x7+27x530x3+9x1 x^{9} - 9x^{7} + 27x^{5} - 30x^{3} + 9x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D27D_{27}
Projective field: Galois closure of Q[x]/(x27)\mathbb{Q}[x]/(x^{27} - \cdots)

Embedding invariants

Embedding label 1125.4
Root 0.5736060.573606 of defining polynomial
Character χ\chi == 2252.1125

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q0.573606q3+0.792160q70.670976q91.87939q11+0.347296q13+1.78727q170.116290q190.454388q21+1.19432q23+1.00000q25+0.958482q27+1.07803q330.199211q39+1.94609q470.372483q491.02519q51+0.0667045q571.98648q59+1.94609q610.531520q63+1.78727q670.685068q691.37248q710.573606q751.48877q77+0.121184q81+0.275114q91+1.26102q99+O(q100)q-0.573606 q^{3} +0.792160 q^{7} -0.670976 q^{9} -1.87939 q^{11} +0.347296 q^{13} +1.78727 q^{17} -0.116290 q^{19} -0.454388 q^{21} +1.19432 q^{23} +1.00000 q^{25} +0.958482 q^{27} +1.07803 q^{33} -0.199211 q^{39} +1.94609 q^{47} -0.372483 q^{49} -1.02519 q^{51} +0.0667045 q^{57} -1.98648 q^{59} +1.94609 q^{61} -0.531520 q^{63} +1.78727 q^{67} -0.685068 q^{69} -1.37248 q^{71} -0.573606 q^{75} -1.48877 q^{77} +0.121184 q^{81} +0.275114 q^{91} +1.26102 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q+9q9+9q25+9q49+9q81+O(q100) 9 q + 9 q^{9} + 9 q^{25} + 9 q^{49} + 9 q^{81}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2252Z)×\left(\mathbb{Z}/2252\mathbb{Z}\right)^\times.

nn 565565 11271127
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
44 0 0
55 0 0 1.00000 00
−1.00000 π\pi
66 0 0
77 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
88 0 0
99 −0.670976 −0.670976
1010 0 0
1111 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
1212 0 0
1313 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
1414 0 0
1515 0 0
1616 0 0
1717 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
1818 0 0
1919 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
2020 0 0
2121 −0.454388 −0.454388
2222 0 0
2323 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
2424 0 0
2525 1.00000 1.00000
2626 0 0
2727 0.958482 0.958482
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 0 0
3333 1.07803 1.07803
3434 0 0
3535 0 0
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 −0.199211 −0.199211
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 0 0
4646 0 0
4747 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
4848 0 0
4949 −0.372483 −0.372483
5050 0 0
5151 −1.02519 −1.02519
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0 0
5757 0.0667045 0.0667045
5858 0 0
5959 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
6060 0 0
6161 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
6262 0 0
6363 −0.531520 −0.531520
6464 0 0
6565 0 0
6666 0 0
6767 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
6868 0 0
6969 −0.685068 −0.685068
7070 0 0
7171 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 −0.573606 −0.573606
7676 0 0
7777 −1.48877 −1.48877
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 0.121184 0.121184
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0.275114 0.275114
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0 0
9999 1.26102 1.26102
100100 0 0
101101 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
102102 0 0
103103 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
104104 0 0
105105 0 0
106106 0 0
107107 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
114114 0 0
115115 0 0
116116 0 0
117117 −0.233027 −0.233027
118118 0 0
119119 1.41580 1.41580
120120 0 0
121121 2.53209 2.53209
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 −0.0921200 −0.0921200
134134 0 0
135135 0 0
136136 0 0
137137 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 −1.11629 −1.11629
142142 0 0
143143 −0.652704 −0.652704
144144 0 0
145145 0 0
146146 0 0
147147 0.213659 0.213659
148148 0 0
149149 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 −1.19921 −1.19921
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 0 0
161161 0.946090 0.946090
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 −0.879385 −0.879385
170170 0 0
171171 0.0780275 0.0780275
172172 0 0
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 0.792160 0.792160
176176 0 0
177177 1.13946 1.13946
178178 0 0
179179 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
180180 0 0
181181 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
182182 0 0
183183 −1.11629 −1.11629
184184 0 0
185185 0 0
186186 0 0
187187 −3.35896 −3.35896
188188 0 0
189189 0.759271 0.759271
190190 0 0
191191 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
192192 0 0
193193 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
194194 0 0
195195 0 0
196196 0 0
197197 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 −1.02519 −1.02519
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 −0.801358 −0.801358
208208 0 0
209209 0.218553 0.218553
210210 0 0
211211 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
212212 0 0
213213 0.787265 0.787265
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0.620711 0.620711
222222 0 0
223223 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
224224 0 0
225225 −0.670976 −0.670976
226226 0 0
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0.853970 0.853970
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
242242 0 0
243243 −1.02799 −1.02799
244244 0 0
245245 0 0
246246 0 0
247247 −0.0403870 −0.0403870
248248 0 0
249249 0 0
250250 0 0
251251 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
252252 0 0
253253 −2.24458 −2.24458
254254 0 0
255255 0 0
256256 0 0
257257 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
270270 0 0
271271 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
272272 0 0
273273 −0.157807 −0.157807
274274 0 0
275275 −1.87939 −1.87939
276276 0 0
277277 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
278278 0 0
279279 0 0
280280 0 0
281281 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 2.19432 2.19432
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 −1.80136 −1.80136
298298 0 0
299299 0.414782 0.414782
300300 0 0
301301 0 0
302302 0 0
303303 −0.454388 −0.454388
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 −0.878816 −0.878816
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 0 0
321321 0.958482 0.958482
322322 0 0
323323 −0.207840 −0.207840
324324 0 0
325325 0.347296 0.347296
326326 0 0
327327 0 0
328328 0 0
329329 1.54161 1.54161
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
338338 0 0
339339 1.13946 1.13946
340340 0 0
341341 0 0
342342 0 0
343343 −1.08723 −1.08723
344344 0 0
345345 0 0
346346 0 0
347347 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
348348 0 0
349349 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
350350 0 0
351351 0.332877 0.332877
352352 0 0
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 −0.812112 −0.812112
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 −0.986477 −0.986477
362362 0 0
363363 −1.45242 −1.45242
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
380380 0 0
381381 0.787265 0.787265
382382 0 0
383383 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 2.13456 2.13456
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0.0528406 0.0528406
400400 0 0
401401 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
410410 0 0
411411 −0.878816 −0.878816
412412 0 0
413413 −1.57361 −1.57361
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
422422 0 0
423423 −1.30578 −1.30578
424424 0 0
425425 1.78727 1.78727
426426 0 0
427427 1.54161 1.54161
428428 0 0
429429 0.374395 0.374395
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 −0.138887 −0.138887
438438 0 0
439439 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
440440 0 0
441441 0.249927 0.249927
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 −1.11629 −1.11629
448448 0 0
449449 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 1.71306 1.71306
460460 0 0
461461 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
468468 0 0
469469 1.41580 1.41580
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 −0.116290 −0.116290
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 −0.542683 −0.542683
484484 0 0
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 −1.08723 −1.08723
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 0 0
501501 0 0
502502 0 0
503503 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
504504 0 0
505505 0 0
506506 0 0
507507 0.504421 0.504421
508508 0 0
509509 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
510510 0 0
511511 0 0
512512 0 0
513513 −0.111462 −0.111462
514514 0 0
515515 0 0
516516 0 0
517517 −3.65745 −3.65745
518518 0 0
519519 0 0
520520 0 0
521521 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 −0.454388 −0.454388
526526 0 0
527527 0 0
528528 0 0
529529 0.426394 0.426394
530530 0 0
531531 1.33288 1.33288
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 −0.199211 −0.199211
538538 0 0
539539 0.700040 0.700040
540540 0 0
541541 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
542542 0 0
543543 −0.685068 −0.685068
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 −1.30578 −1.30578
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
558558 0 0
559559 0 0
560560 0 0
561561 1.92672 1.92672
562562 0 0
563563 1.00000 1.00000
564564 0 0
565565 0 0
566566 0 0
567567 0.0959970 0.0959970
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0.958482 0.958482
574574 0 0
575575 1.19432 1.19432
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 0.329024 0.329024
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0.573606 0.573606
592592 0 0
593593 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 2.00000 2.00000 1.00000 00
1.00000 00
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 −1.19921 −1.19921
604604 0 0
605605 0 0
606606 0 0
607607 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
608608 0 0
609609 0 0
610610 0 0
611611 0.675870 0.675870
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 1.14473 1.14473
622622 0 0
623623 0 0
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 −0.125363 −0.125363
628628 0 0
629629 0 0
630630 0 0
631631 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
632632 0 0
633633 −0.685068 −0.685068
634634 0 0
635635 0 0
636636 0 0
637637 −0.129362 −0.129362
638638 0 0
639639 0.920903 0.920903
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
648648 0 0
649649 3.73336 3.73336
650650 0 0
651651 0 0
652652 0 0
653653 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 −0.356044 −0.356044
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0.958482 0.958482
670670 0 0
671671 −3.65745 −3.65745
672672 0 0
673673 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
674674 0 0
675675 0.958482 0.958482
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 0 0
693693 0.998930 0.998930
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0.627517 0.627517
708708 0 0
709709 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
720720 0 0
721721 1.21366 1.21366
722722 0 0
723723 1.13946 1.13946
724724 0 0
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 0.468480 0.468480
730730 0 0
731731 0 0
732732 0 0
733733 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
734734 0 0
735735 0 0
736736 0 0
737737 −3.35896 −3.35896
738738 0 0
739739 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
740740 0 0
741741 0.0231662 0.0231662
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 −1.32368 −1.32368
750750 0 0
751751 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
752752 0 0
753753 0.573606 0.573606
754754 0 0
755755 0 0
756756 0 0
757757 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
758758 0 0
759759 1.28751 1.28751
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 −0.689896 −0.689896
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 −0.199211 −0.199211
772772 0 0
773773 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 2.57942 2.57942
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 0 0
790790 0 0
791791 −1.57361 −1.57361
792792 0 0
793793 0.675870 0.675870
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 3.47818 3.47818
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0.958482 0.958482
808808 0 0
809809 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
810810 0 0
811811 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
812812 0 0
813813 1.07803 1.07803
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 −0.184595 −0.184595
820820 0 0
821821 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 1.07803 1.07803
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0.0667045 0.0667045
832832 0 0
833833 −0.665726 −0.665726
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0.787265 0.787265
844844 0 0
845845 0 0
846846 0 0
847847 2.00582 2.00582
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
860860 0 0
861861 0 0
862862 0 0
863863 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
864864 0 0
865865 0 0
866866 0 0
867867 −1.25867 −1.25867
868868 0 0
869869 0 0
870870 0 0
871871 0.620711 0.620711
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
878878 0 0
879879 0 0
880880 0 0
881881 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 2.00000 2.00000 1.00000 00
1.00000 00
888888 0 0
889889 −1.08723 −1.08723
890890 0 0
891891 −0.227751 −0.227751
892892 0 0
893893 −0.226310 −0.226310
894894 0 0
895895 0 0
896896 0 0
897897 −0.237922 −0.237922
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
908908 0 0
909909 −0.531520 −0.531520
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 0 0
923923 −0.476658 −0.476658
924924 0 0
925925 0 0
926926 0 0
927927 −1.02799 −1.02799
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0.0433160 0.0433160
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 1.21366 1.21366
960960 0 0
961961 1.00000 1.00000
962962 0 0
963963 1.12118 1.12118
964964 0 0
965965 0 0
966966 0 0
967967 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
968968 0 0
969969 0.119219 0.119219
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 −0.199211 −0.199211
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 −0.884279 −0.884279
988988 0 0
989989 0 0
990990 0 0
991991 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2252.1.d.a.1125.4 9
563.562 odd 2 CM 2252.1.d.a.1125.4 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2252.1.d.a.1125.4 9 1.1 even 1 trivial
2252.1.d.a.1125.4 9 563.562 odd 2 CM