gp: [N,k,chi] = [2252,1,Mod(1125,2252)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2252, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2252.1125");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 8 1,\beta_1,\ldots,\beta_{8} 1 , β 1 , … , β 8 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of ν = ζ 54 + ζ 54 − 1 \nu = \zeta_{54} + \zeta_{54}^{-1} ν = ζ 5 4 + ζ 5 4 − 1 :
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − 2 \nu^{2} - 2 ν 2 − 2
v^2 - 2
β 3 \beta_{3} β 3 = = =
ν 3 − 3 ν \nu^{3} - 3\nu ν 3 − 3 ν
v^3 - 3*v
β 4 \beta_{4} β 4 = = =
ν 4 − 4 ν 2 + 2 \nu^{4} - 4\nu^{2} + 2 ν 4 − 4 ν 2 + 2
v^4 - 4*v^2 + 2
β 5 \beta_{5} β 5 = = =
ν 5 − 5 ν 3 + 5 ν \nu^{5} - 5\nu^{3} + 5\nu ν 5 − 5 ν 3 + 5 ν
v^5 - 5*v^3 + 5*v
β 6 \beta_{6} β 6 = = =
ν 6 − 6 ν 4 + 9 ν 2 − 2 \nu^{6} - 6\nu^{4} + 9\nu^{2} - 2 ν 6 − 6 ν 4 + 9 ν 2 − 2
v^6 - 6*v^4 + 9*v^2 - 2
β 7 \beta_{7} β 7 = = =
ν 7 − 7 ν 5 + 14 ν 3 − 7 ν \nu^{7} - 7\nu^{5} + 14\nu^{3} - 7\nu ν 7 − 7 ν 5 + 1 4 ν 3 − 7 ν
v^7 - 7*v^5 + 14*v^3 - 7*v
β 8 \beta_{8} β 8 = = =
ν 8 − 8 ν 6 + 20 ν 4 − 16 ν 2 + 2 \nu^{8} - 8\nu^{6} + 20\nu^{4} - 16\nu^{2} + 2 ν 8 − 8 ν 6 + 2 0 ν 4 − 1 6 ν 2 + 2
v^8 - 8*v^6 + 20*v^4 - 16*v^2 + 2
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + 2 \beta_{2} + 2 β 2 + 2
b2 + 2
ν 3 \nu^{3} ν 3 = = =
β 3 + 3 β 1 \beta_{3} + 3\beta_1 β 3 + 3 β 1
b3 + 3*b1
ν 4 \nu^{4} ν 4 = = =
β 4 + 4 β 2 + 6 \beta_{4} + 4\beta_{2} + 6 β 4 + 4 β 2 + 6
b4 + 4*b2 + 6
ν 5 \nu^{5} ν 5 = = =
β 5 + 5 β 3 + 10 β 1 \beta_{5} + 5\beta_{3} + 10\beta_1 β 5 + 5 β 3 + 1 0 β 1
b5 + 5*b3 + 10*b1
ν 6 \nu^{6} ν 6 = = =
β 6 + 6 β 4 + 15 β 2 + 20 \beta_{6} + 6\beta_{4} + 15\beta_{2} + 20 β 6 + 6 β 4 + 1 5 β 2 + 2 0
b6 + 6*b4 + 15*b2 + 20
ν 7 \nu^{7} ν 7 = = =
β 7 + 7 β 5 + 21 β 3 + 35 β 1 \beta_{7} + 7\beta_{5} + 21\beta_{3} + 35\beta_1 β 7 + 7 β 5 + 2 1 β 3 + 3 5 β 1
b7 + 7*b5 + 21*b3 + 35*b1
ν 8 \nu^{8} ν 8 = = =
β 8 + 8 β 6 + 28 β 4 + 56 β 2 + 70 \beta_{8} + 8\beta_{6} + 28\beta_{4} + 56\beta_{2} + 70 β 8 + 8 β 6 + 2 8 β 4 + 5 6 β 2 + 7 0
b8 + 8*b6 + 28*b4 + 56*b2 + 70
Character values
We give the values of χ \chi χ on generators for ( Z / 2252 Z ) × \left(\mathbb{Z}/2252\mathbb{Z}\right)^\times ( Z / 2 2 5 2 Z ) × .
n n n
565 565 5 6 5
1127 1127 1 1 2 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 1 n e w ( 2252 , [ χ ] ) S_{1}^{\mathrm{new}}(2252, [\chi]) S 1 n e w ( 2 2 5 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 9 T^{9} T 9
T^9
3 3 3
T 9 − 9 T 7 + ⋯ + 1 T^{9} - 9 T^{7} + \cdots + 1 T 9 − 9 T 7 + ⋯ + 1
T^9 - 9*T^7 + 27*T^5 - 30*T^3 + 9*T + 1
5 5 5
T 9 T^{9} T 9
T^9
7 7 7
T 9 − 9 T 7 + ⋯ + 1 T^{9} - 9 T^{7} + \cdots + 1 T 9 − 9 T 7 + ⋯ + 1
T^9 - 9*T^7 + 27*T^5 - 30*T^3 + 9*T + 1
11 11 1 1
( T 3 − 3 T + 1 ) 3 (T^{3} - 3 T + 1)^{3} ( T 3 − 3 T + 1 ) 3
(T^3 - 3*T + 1)^3
13 13 1 3
( T 3 − 3 T + 1 ) 3 (T^{3} - 3 T + 1)^{3} ( T 3 − 3 T + 1 ) 3
(T^3 - 3*T + 1)^3
17 17 1 7
T 9 − 9 T 7 + ⋯ + 1 T^{9} - 9 T^{7} + \cdots + 1 T 9 − 9 T 7 + ⋯ + 1
T^9 - 9*T^7 + 27*T^5 - 30*T^3 + 9*T + 1
19 19 1 9
T 9 − 9 T 7 + ⋯ + 1 T^{9} - 9 T^{7} + \cdots + 1 T 9 − 9 T 7 + ⋯ + 1
T^9 - 9*T^7 + 27*T^5 - 30*T^3 + 9*T + 1
23 23 2 3
T 9 − 9 T 7 + ⋯ + 1 T^{9} - 9 T^{7} + \cdots + 1 T 9 − 9 T 7 + ⋯ + 1
T^9 - 9*T^7 + 27*T^5 - 30*T^3 + 9*T + 1
29 29 2 9
T 9 T^{9} T 9
T^9
31 31 3 1
T 9 T^{9} T 9
T^9
37 37 3 7
T 9 T^{9} T 9
T^9
41 41 4 1
T 9 T^{9} T 9
T^9
43 43 4 3
T 9 T^{9} T 9
T^9
47 47 4 7
T 9 − 9 T 7 + ⋯ + 1 T^{9} - 9 T^{7} + \cdots + 1 T 9 − 9 T 7 + ⋯ + 1
T^9 - 9*T^7 + 27*T^5 - 30*T^3 + 9*T + 1
53 53 5 3
T 9 T^{9} T 9
T^9
59 59 5 9
T 9 − 9 T 7 + ⋯ + 1 T^{9} - 9 T^{7} + \cdots + 1 T 9 − 9 T 7 + ⋯ + 1
T^9 - 9*T^7 + 27*T^5 - 30*T^3 + 9*T + 1
61 61 6 1
T 9 − 9 T 7 + ⋯ + 1 T^{9} - 9 T^{7} + \cdots + 1 T 9 − 9 T 7 + ⋯ + 1
T^9 - 9*T^7 + 27*T^5 - 30*T^3 + 9*T + 1
67 67 6 7
T 9 − 9 T 7 + ⋯ + 1 T^{9} - 9 T^{7} + \cdots + 1 T 9 − 9 T 7 + ⋯ + 1
T^9 - 9*T^7 + 27*T^5 - 30*T^3 + 9*T + 1
71 71 7 1
T 9 − 9 T 7 + ⋯ + 1 T^{9} - 9 T^{7} + \cdots + 1 T 9 − 9 T 7 + ⋯ + 1
T^9 - 9*T^7 + 27*T^5 - 30*T^3 + 9*T + 1
73 73 7 3
T 9 T^{9} T 9
T^9
79 79 7 9
T 9 T^{9} T 9
T^9
83 83 8 3
T 9 T^{9} T 9
T^9
89 89 8 9
T 9 T^{9} T 9
T^9
97 97 9 7
T 9 T^{9} T 9
T^9
show more
show less