Properties

Label 2252.1.d.a
Level 22522252
Weight 11
Character orbit 2252.d
Self dual yes
Analytic conductor 1.1241.124
Analytic rank 00
Dimension 99
Projective image D27D_{27}
CM discriminant -563
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2252,1,Mod(1125,2252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2252, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2252.1125"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2252=22563 2252 = 2^{2} \cdot 563
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2252.d (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.123894408451.12389440845
Analytic rank: 00
Dimension: 99
Coefficient field: Q(ζ54)+\Q(\zeta_{54})^+
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x99x7+27x530x3+9x1 x^{9} - 9x^{7} + 27x^{5} - 30x^{3} + 9x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D27D_{27}
Projective field: Galois closure of Q[x]/(x27)\mathbb{Q}[x]/(x^{27} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β81,\beta_1,\ldots,\beta_{8} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3+β4q7+(β2+1)q9+(β6+β3)q11+β6q13β7q17+(β7β2)q19+(β5β3)q21++(β8β6++β1)q99+O(q100) q - \beta_1 q^{3} + \beta_{4} q^{7} + (\beta_{2} + 1) q^{9} + ( - \beta_{6} + \beta_{3}) q^{11} + \beta_{6} q^{13} - \beta_{7} q^{17} + (\beta_{7} - \beta_{2}) q^{19} + ( - \beta_{5} - \beta_{3}) q^{21}+ \cdots + ( - \beta_{8} - \beta_{6} + \cdots + \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q+9q9+9q25+9q49+9q81+O(q100) 9 q + 9 q^{9} + 9 q^{25} + 9 q^{49} + 9 q^{81}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ54+ζ541\nu = \zeta_{54} + \zeta_{54}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
β3\beta_{3}== ν33ν \nu^{3} - 3\nu Copy content Toggle raw display
β4\beta_{4}== ν44ν2+2 \nu^{4} - 4\nu^{2} + 2 Copy content Toggle raw display
β5\beta_{5}== ν55ν3+5ν \nu^{5} - 5\nu^{3} + 5\nu Copy content Toggle raw display
β6\beta_{6}== ν66ν4+9ν22 \nu^{6} - 6\nu^{4} + 9\nu^{2} - 2 Copy content Toggle raw display
β7\beta_{7}== ν77ν5+14ν37ν \nu^{7} - 7\nu^{5} + 14\nu^{3} - 7\nu Copy content Toggle raw display
β8\beta_{8}== ν88ν6+20ν416ν2+2 \nu^{8} - 8\nu^{6} + 20\nu^{4} - 16\nu^{2} + 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display
ν3\nu^{3}== β3+3β1 \beta_{3} + 3\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β4+4β2+6 \beta_{4} + 4\beta_{2} + 6 Copy content Toggle raw display
ν5\nu^{5}== β5+5β3+10β1 \beta_{5} + 5\beta_{3} + 10\beta_1 Copy content Toggle raw display
ν6\nu^{6}== β6+6β4+15β2+20 \beta_{6} + 6\beta_{4} + 15\beta_{2} + 20 Copy content Toggle raw display
ν7\nu^{7}== β7+7β5+21β3+35β1 \beta_{7} + 7\beta_{5} + 21\beta_{3} + 35\beta_1 Copy content Toggle raw display
ν8\nu^{8}== β8+8β6+28β4+56β2+70 \beta_{8} + 8\beta_{6} + 28\beta_{4} + 56\beta_{2} + 70 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2252Z)×\left(\mathbb{Z}/2252\mathbb{Z}\right)^\times.

nn 565565 11271127
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1125.1
1.98648
1.67098
1.37248
0.573606
0.116290
−0.792160
−1.19432
−1.78727
−1.94609
0 −1.98648 0 0 0 1.78727 0 2.94609 0
1125.2 0 −1.67098 0 0 0 −1.37248 0 1.79216 0
1125.3 0 −1.37248 0 0 0 −1.98648 0 0.883710 0
1125.4 0 −0.573606 0 0 0 0.792160 0 −0.670976 0
1125.5 0 −0.116290 0 0 0 1.94609 0 −0.986477 0
1125.6 0 0.792160 0 0 0 −0.116290 0 −0.372483 0
1125.7 0 1.19432 0 0 0 −1.67098 0 0.426394 0
1125.8 0 1.78727 0 0 0 −0.573606 0 2.19432 0
1125.9 0 1.94609 0 0 0 1.19432 0 2.78727 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1125.9
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
563.b odd 2 1 CM by Q(563)\Q(\sqrt{-563})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2252.1.d.a 9
563.b odd 2 1 CM 2252.1.d.a 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2252.1.d.a 9 1.a even 1 1 trivial
2252.1.d.a 9 563.b odd 2 1 CM

Hecke kernels

This newform subspace is the entire newspace S1new(2252,[χ])S_{1}^{\mathrm{new}}(2252, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T9 T^{9} Copy content Toggle raw display
33 T99T7++1 T^{9} - 9 T^{7} + \cdots + 1 Copy content Toggle raw display
55 T9 T^{9} Copy content Toggle raw display
77 T99T7++1 T^{9} - 9 T^{7} + \cdots + 1 Copy content Toggle raw display
1111 (T33T+1)3 (T^{3} - 3 T + 1)^{3} Copy content Toggle raw display
1313 (T33T+1)3 (T^{3} - 3 T + 1)^{3} Copy content Toggle raw display
1717 T99T7++1 T^{9} - 9 T^{7} + \cdots + 1 Copy content Toggle raw display
1919 T99T7++1 T^{9} - 9 T^{7} + \cdots + 1 Copy content Toggle raw display
2323 T99T7++1 T^{9} - 9 T^{7} + \cdots + 1 Copy content Toggle raw display
2929 T9 T^{9} Copy content Toggle raw display
3131 T9 T^{9} Copy content Toggle raw display
3737 T9 T^{9} Copy content Toggle raw display
4141 T9 T^{9} Copy content Toggle raw display
4343 T9 T^{9} Copy content Toggle raw display
4747 T99T7++1 T^{9} - 9 T^{7} + \cdots + 1 Copy content Toggle raw display
5353 T9 T^{9} Copy content Toggle raw display
5959 T99T7++1 T^{9} - 9 T^{7} + \cdots + 1 Copy content Toggle raw display
6161 T99T7++1 T^{9} - 9 T^{7} + \cdots + 1 Copy content Toggle raw display
6767 T99T7++1 T^{9} - 9 T^{7} + \cdots + 1 Copy content Toggle raw display
7171 T99T7++1 T^{9} - 9 T^{7} + \cdots + 1 Copy content Toggle raw display
7373 T9 T^{9} Copy content Toggle raw display
7979 T9 T^{9} Copy content Toggle raw display
8383 T9 T^{9} Copy content Toggle raw display
8989 T9 T^{9} Copy content Toggle raw display
9797 T9 T^{9} Copy content Toggle raw display
show more
show less