Properties

Label 225.9.d.c.224.8
Level $225$
Weight $9$
Character 225.224
Analytic conductor $91.660$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,9,Mod(224,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.224"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 225.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(91.6601872638\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 224.8
Character \(\chi\) \(=\) 225.224
Dual form 225.9.d.c.224.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-19.1733 q^{2} +111.617 q^{4} +367.611i q^{7} +2768.31 q^{8} +9369.90i q^{11} +28955.0i q^{13} -7048.33i q^{14} -81651.6 q^{16} -51768.6 q^{17} +66954.5 q^{19} -179652. i q^{22} -118225. q^{23} -555165. i q^{26} +41031.5i q^{28} +1.18592e6i q^{29} -231474. q^{31} +856845. q^{32} +992576. q^{34} -1.63980e6i q^{37} -1.28374e6 q^{38} +2.74156e6i q^{41} -1.44556e6i q^{43} +1.04584e6i q^{44} +2.26677e6 q^{46} -6.90683e6 q^{47} +5.62966e6 q^{49} +3.23186e6i q^{52} +1.26381e7 q^{53} +1.01766e6i q^{56} -2.27381e7i q^{58} +4.74840e6i q^{59} +7.53776e6 q^{61} +4.43813e6 q^{62} +4.47424e6 q^{64} +2.64406e7i q^{67} -5.77823e6 q^{68} +3.33257e7i q^{71} -4.47705e7i q^{73} +3.14404e7i q^{74} +7.47323e6 q^{76} -3.44448e6 q^{77} +7.76913e7 q^{79} -5.25649e7i q^{82} +2.37418e7 q^{83} +2.77161e7i q^{86} +2.59388e7i q^{88} -522787. i q^{89} -1.06442e7 q^{91} -1.31959e7 q^{92} +1.32427e8 q^{94} -3.64707e7i q^{97} -1.07939e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 5048 q^{4} + 595144 q^{16} - 249920 q^{19} - 1241936 q^{31} - 14972992 q^{34} - 14323536 q^{46} - 42020312 q^{49} + 56906192 q^{61} + 338779896 q^{64} - 511347840 q^{76} + 127619024 q^{79} - 593698576 q^{91}+ \cdots - 51203776 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −19.1733 −1.19833 −0.599167 0.800624i \(-0.704501\pi\)
−0.599167 + 0.800624i \(0.704501\pi\)
\(3\) 0 0
\(4\) 111.617 0.436002
\(5\) 0 0
\(6\) 0 0
\(7\) 367.611i 0.153108i 0.997065 + 0.0765538i \(0.0243917\pi\)
−0.997065 + 0.0765538i \(0.975608\pi\)
\(8\) 2768.31 0.675857
\(9\) 0 0
\(10\) 0 0
\(11\) 9369.90i 0.639977i 0.947421 + 0.319988i \(0.103679\pi\)
−0.947421 + 0.319988i \(0.896321\pi\)
\(12\) 0 0
\(13\) 28955.0i 1.01380i 0.862006 + 0.506898i \(0.169208\pi\)
−0.862006 + 0.506898i \(0.830792\pi\)
\(14\) − 7048.33i − 0.183474i
\(15\) 0 0
\(16\) −81651.6 −1.24590
\(17\) −51768.6 −0.619827 −0.309914 0.950765i \(-0.600300\pi\)
−0.309914 + 0.950765i \(0.600300\pi\)
\(18\) 0 0
\(19\) 66954.5 0.513766 0.256883 0.966442i \(-0.417304\pi\)
0.256883 + 0.966442i \(0.417304\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 179652.i − 0.766905i
\(23\) −118225. −0.422472 −0.211236 0.977435i \(-0.567749\pi\)
−0.211236 + 0.977435i \(0.567749\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 555165.i − 1.21487i
\(27\) 0 0
\(28\) 41031.5i 0.0667552i
\(29\) 1.18592e6i 1.67674i 0.545105 + 0.838368i \(0.316490\pi\)
−0.545105 + 0.838368i \(0.683510\pi\)
\(30\) 0 0
\(31\) −231474. −0.250643 −0.125322 0.992116i \(-0.539996\pi\)
−0.125322 + 0.992116i \(0.539996\pi\)
\(32\) 856845. 0.817151
\(33\) 0 0
\(34\) 992576. 0.742759
\(35\) 0 0
\(36\) 0 0
\(37\) − 1.63980e6i − 0.874951i −0.899230 0.437476i \(-0.855873\pi\)
0.899230 0.437476i \(-0.144127\pi\)
\(38\) −1.28374e6 −0.615663
\(39\) 0 0
\(40\) 0 0
\(41\) 2.74156e6i 0.970203i 0.874458 + 0.485102i \(0.161217\pi\)
−0.874458 + 0.485102i \(0.838783\pi\)
\(42\) 0 0
\(43\) − 1.44556e6i − 0.422826i −0.977397 0.211413i \(-0.932194\pi\)
0.977397 0.211413i \(-0.0678065\pi\)
\(44\) 1.04584e6i 0.279031i
\(45\) 0 0
\(46\) 2.26677e6 0.506263
\(47\) −6.90683e6 −1.41543 −0.707714 0.706499i \(-0.750273\pi\)
−0.707714 + 0.706499i \(0.750273\pi\)
\(48\) 0 0
\(49\) 5.62966e6 0.976558
\(50\) 0 0
\(51\) 0 0
\(52\) 3.23186e6i 0.442018i
\(53\) 1.26381e7 1.60168 0.800842 0.598876i \(-0.204386\pi\)
0.800842 + 0.598876i \(0.204386\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.01766e6i 0.103479i
\(57\) 0 0
\(58\) − 2.27381e7i − 2.00929i
\(59\) 4.74840e6i 0.391867i 0.980617 + 0.195934i \(0.0627737\pi\)
−0.980617 + 0.195934i \(0.937226\pi\)
\(60\) 0 0
\(61\) 7.53776e6 0.544406 0.272203 0.962240i \(-0.412248\pi\)
0.272203 + 0.962240i \(0.412248\pi\)
\(62\) 4.43813e6 0.300354
\(63\) 0 0
\(64\) 4.47424e6 0.266685
\(65\) 0 0
\(66\) 0 0
\(67\) 2.64406e7i 1.31212i 0.754711 + 0.656058i \(0.227777\pi\)
−0.754711 + 0.656058i \(0.772223\pi\)
\(68\) −5.77823e6 −0.270246
\(69\) 0 0
\(70\) 0 0
\(71\) 3.33257e7i 1.31143i 0.755007 + 0.655716i \(0.227633\pi\)
−0.755007 + 0.655716i \(0.772367\pi\)
\(72\) 0 0
\(73\) − 4.47705e7i − 1.57653i −0.615339 0.788263i \(-0.710981\pi\)
0.615339 0.788263i \(-0.289019\pi\)
\(74\) 3.14404e7i 1.04848i
\(75\) 0 0
\(76\) 7.47323e6 0.224003
\(77\) −3.44448e6 −0.0979852
\(78\) 0 0
\(79\) 7.76913e7 1.99464 0.997318 0.0731864i \(-0.0233168\pi\)
0.997318 + 0.0731864i \(0.0233168\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 5.25649e7i − 1.16263i
\(83\) 2.37418e7 0.500266 0.250133 0.968211i \(-0.419526\pi\)
0.250133 + 0.968211i \(0.419526\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.77161e7i 0.506686i
\(87\) 0 0
\(88\) 2.59388e7i 0.432533i
\(89\) − 522787.i − 0.00833230i −0.999991 0.00416615i \(-0.998674\pi\)
0.999991 0.00416615i \(-0.00132613\pi\)
\(90\) 0 0
\(91\) −1.06442e7 −0.155220
\(92\) −1.31959e7 −0.184199
\(93\) 0 0
\(94\) 1.32427e8 1.69615
\(95\) 0 0
\(96\) 0 0
\(97\) − 3.64707e7i − 0.411962i −0.978556 0.205981i \(-0.933961\pi\)
0.978556 0.205981i \(-0.0660385\pi\)
\(98\) −1.07939e8 −1.17024
\(99\) 0 0
\(100\) 0 0
\(101\) 4.14714e7i 0.398532i 0.979945 + 0.199266i \(0.0638557\pi\)
−0.979945 + 0.199266i \(0.936144\pi\)
\(102\) 0 0
\(103\) − 1.94830e8i − 1.73104i −0.500872 0.865521i \(-0.666987\pi\)
0.500872 0.865521i \(-0.333013\pi\)
\(104\) 8.01566e7i 0.685182i
\(105\) 0 0
\(106\) −2.42314e8 −1.91935
\(107\) −3.97292e7 −0.303092 −0.151546 0.988450i \(-0.548425\pi\)
−0.151546 + 0.988450i \(0.548425\pi\)
\(108\) 0 0
\(109\) −2.05517e8 −1.45593 −0.727967 0.685613i \(-0.759534\pi\)
−0.727967 + 0.685613i \(0.759534\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 3.00160e7i − 0.190757i
\(113\) −2.40531e8 −1.47522 −0.737610 0.675227i \(-0.764046\pi\)
−0.737610 + 0.675227i \(0.764046\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.32369e8i 0.731060i
\(117\) 0 0
\(118\) − 9.10426e7i − 0.469588i
\(119\) − 1.90307e7i − 0.0949002i
\(120\) 0 0
\(121\) 1.26564e8 0.590430
\(122\) −1.44524e8 −0.652379
\(123\) 0 0
\(124\) −2.58364e7 −0.109281
\(125\) 0 0
\(126\) 0 0
\(127\) 1.42272e8i 0.546895i 0.961887 + 0.273448i \(0.0881640\pi\)
−0.961887 + 0.273448i \(0.911836\pi\)
\(128\) −3.05138e8 −1.13673
\(129\) 0 0
\(130\) 0 0
\(131\) 1.82412e8i 0.619397i 0.950835 + 0.309698i \(0.100228\pi\)
−0.950835 + 0.309698i \(0.899772\pi\)
\(132\) 0 0
\(133\) 2.46132e7i 0.0786615i
\(134\) − 5.06954e8i − 1.57235i
\(135\) 0 0
\(136\) −1.43312e8 −0.418915
\(137\) −4.63606e8 −1.31603 −0.658016 0.753004i \(-0.728604\pi\)
−0.658016 + 0.753004i \(0.728604\pi\)
\(138\) 0 0
\(139\) −6.61605e8 −1.77231 −0.886154 0.463390i \(-0.846633\pi\)
−0.886154 + 0.463390i \(0.846633\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 6.38965e8i − 1.57153i
\(143\) −2.71306e8 −0.648806
\(144\) 0 0
\(145\) 0 0
\(146\) 8.58400e8i 1.88920i
\(147\) 0 0
\(148\) − 1.83029e8i − 0.381481i
\(149\) − 5.85816e8i − 1.18855i −0.804263 0.594273i \(-0.797440\pi\)
0.804263 0.594273i \(-0.202560\pi\)
\(150\) 0 0
\(151\) −8.85940e8 −1.70411 −0.852053 0.523455i \(-0.824643\pi\)
−0.852053 + 0.523455i \(0.824643\pi\)
\(152\) 1.85351e8 0.347233
\(153\) 0 0
\(154\) 6.60421e7 0.117419
\(155\) 0 0
\(156\) 0 0
\(157\) 2.79032e8i 0.459257i 0.973278 + 0.229629i \(0.0737512\pi\)
−0.973278 + 0.229629i \(0.926249\pi\)
\(158\) −1.48960e9 −2.39024
\(159\) 0 0
\(160\) 0 0
\(161\) − 4.34609e7i − 0.0646837i
\(162\) 0 0
\(163\) 2.91436e7i 0.0412851i 0.999787 + 0.0206425i \(0.00657119\pi\)
−0.999787 + 0.0206425i \(0.993429\pi\)
\(164\) 3.06004e8i 0.423011i
\(165\) 0 0
\(166\) −4.55209e8 −0.599486
\(167\) 4.73192e8 0.608376 0.304188 0.952612i \(-0.401615\pi\)
0.304188 + 0.952612i \(0.401615\pi\)
\(168\) 0 0
\(169\) −2.26641e7 −0.0277838
\(170\) 0 0
\(171\) 0 0
\(172\) − 1.61348e8i − 0.184353i
\(173\) −6.61443e8 −0.738428 −0.369214 0.929344i \(-0.620373\pi\)
−0.369214 + 0.929344i \(0.620373\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 7.65067e8i − 0.797350i
\(177\) 0 0
\(178\) 1.00236e7i 0.00998487i
\(179\) − 6.35798e8i − 0.619308i −0.950849 0.309654i \(-0.899787\pi\)
0.950849 0.309654i \(-0.100213\pi\)
\(180\) 0 0
\(181\) −1.03463e9 −0.963987 −0.481993 0.876175i \(-0.660087\pi\)
−0.481993 + 0.876175i \(0.660087\pi\)
\(182\) 2.04085e8 0.186005
\(183\) 0 0
\(184\) −3.27284e8 −0.285531
\(185\) 0 0
\(186\) 0 0
\(187\) − 4.85066e8i − 0.396675i
\(188\) −7.70917e8 −0.617129
\(189\) 0 0
\(190\) 0 0
\(191\) 5.10686e8i 0.383725i 0.981422 + 0.191863i \(0.0614528\pi\)
−0.981422 + 0.191863i \(0.938547\pi\)
\(192\) 0 0
\(193\) 4.69155e8i 0.338133i 0.985605 + 0.169066i \(0.0540753\pi\)
−0.985605 + 0.169066i \(0.945925\pi\)
\(194\) 6.99265e8i 0.493668i
\(195\) 0 0
\(196\) 6.28363e8 0.425781
\(197\) −2.47608e9 −1.64399 −0.821997 0.569492i \(-0.807140\pi\)
−0.821997 + 0.569492i \(0.807140\pi\)
\(198\) 0 0
\(199\) 1.69051e9 1.07797 0.538983 0.842317i \(-0.318809\pi\)
0.538983 + 0.842317i \(0.318809\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 7.95144e8i − 0.477574i
\(203\) −4.35959e8 −0.256721
\(204\) 0 0
\(205\) 0 0
\(206\) 3.73555e9i 2.07437i
\(207\) 0 0
\(208\) − 2.36423e9i − 1.26309i
\(209\) 6.27357e8i 0.328798i
\(210\) 0 0
\(211\) −9.62123e8 −0.485401 −0.242701 0.970101i \(-0.578033\pi\)
−0.242701 + 0.970101i \(0.578033\pi\)
\(212\) 1.41062e9 0.698337
\(213\) 0 0
\(214\) 7.61741e8 0.363205
\(215\) 0 0
\(216\) 0 0
\(217\) − 8.50925e7i − 0.0383754i
\(218\) 3.94044e9 1.74469
\(219\) 0 0
\(220\) 0 0
\(221\) − 1.49896e9i − 0.628379i
\(222\) 0 0
\(223\) − 3.57620e9i − 1.44611i −0.690789 0.723056i \(-0.742737\pi\)
0.690789 0.723056i \(-0.257263\pi\)
\(224\) 3.14986e8i 0.125112i
\(225\) 0 0
\(226\) 4.61178e9 1.76781
\(227\) −6.58041e8 −0.247828 −0.123914 0.992293i \(-0.539545\pi\)
−0.123914 + 0.992293i \(0.539545\pi\)
\(228\) 0 0
\(229\) 2.03547e8 0.0740154 0.0370077 0.999315i \(-0.488217\pi\)
0.0370077 + 0.999315i \(0.488217\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.28300e9i 1.13323i
\(233\) 2.56183e9 0.869214 0.434607 0.900620i \(-0.356887\pi\)
0.434607 + 0.900620i \(0.356887\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 5.30000e8i 0.170855i
\(237\) 0 0
\(238\) 3.64882e8i 0.113722i
\(239\) 5.62808e9i 1.72492i 0.506127 + 0.862459i \(0.331077\pi\)
−0.506127 + 0.862459i \(0.668923\pi\)
\(240\) 0 0
\(241\) 1.91504e9 0.567687 0.283843 0.958871i \(-0.408390\pi\)
0.283843 + 0.958871i \(0.408390\pi\)
\(242\) −2.42665e9 −0.707532
\(243\) 0 0
\(244\) 8.41338e8 0.237362
\(245\) 0 0
\(246\) 0 0
\(247\) 1.93867e9i 0.520855i
\(248\) −6.40793e8 −0.169399
\(249\) 0 0
\(250\) 0 0
\(251\) − 5.39207e9i − 1.35850i −0.733906 0.679252i \(-0.762305\pi\)
0.733906 0.679252i \(-0.237695\pi\)
\(252\) 0 0
\(253\) − 1.10776e9i − 0.270372i
\(254\) − 2.72782e9i − 0.655362i
\(255\) 0 0
\(256\) 4.70511e9 1.09549
\(257\) 3.32416e9 0.761990 0.380995 0.924577i \(-0.375581\pi\)
0.380995 + 0.924577i \(0.375581\pi\)
\(258\) 0 0
\(259\) 6.02809e8 0.133962
\(260\) 0 0
\(261\) 0 0
\(262\) − 3.49745e9i − 0.742244i
\(263\) 1.80944e9 0.378199 0.189099 0.981958i \(-0.439443\pi\)
0.189099 + 0.981958i \(0.439443\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 4.71918e8i − 0.0942627i
\(267\) 0 0
\(268\) 2.95121e9i 0.572085i
\(269\) − 1.19480e8i − 0.0228184i −0.999935 0.0114092i \(-0.996368\pi\)
0.999935 0.0114092i \(-0.00363175\pi\)
\(270\) 0 0
\(271\) −9.26363e9 −1.71753 −0.858764 0.512371i \(-0.828767\pi\)
−0.858764 + 0.512371i \(0.828767\pi\)
\(272\) 4.22699e9 0.772245
\(273\) 0 0
\(274\) 8.88886e9 1.57704
\(275\) 0 0
\(276\) 0 0
\(277\) 5.45978e9i 0.927376i 0.885998 + 0.463688i \(0.153474\pi\)
−0.885998 + 0.463688i \(0.846526\pi\)
\(278\) 1.26852e10 2.12382
\(279\) 0 0
\(280\) 0 0
\(281\) − 2.23569e9i − 0.358581i −0.983796 0.179290i \(-0.942620\pi\)
0.983796 0.179290i \(-0.0573801\pi\)
\(282\) 0 0
\(283\) 1.19652e10i 1.86540i 0.360648 + 0.932702i \(0.382556\pi\)
−0.360648 + 0.932702i \(0.617444\pi\)
\(284\) 3.71970e9i 0.571787i
\(285\) 0 0
\(286\) 5.20184e9 0.777486
\(287\) −1.00783e9 −0.148545
\(288\) 0 0
\(289\) −4.29577e9 −0.615814
\(290\) 0 0
\(291\) 0 0
\(292\) − 4.99713e9i − 0.687368i
\(293\) 1.64130e9 0.222699 0.111349 0.993781i \(-0.464483\pi\)
0.111349 + 0.993781i \(0.464483\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 4.53948e9i − 0.591342i
\(297\) 0 0
\(298\) 1.12320e10i 1.42428i
\(299\) − 3.42321e9i − 0.428301i
\(300\) 0 0
\(301\) 5.31403e8 0.0647378
\(302\) 1.69864e10 2.04209
\(303\) 0 0
\(304\) −5.46694e9 −0.640104
\(305\) 0 0
\(306\) 0 0
\(307\) − 7.60508e8i − 0.0856150i −0.999083 0.0428075i \(-0.986370\pi\)
0.999083 0.0428075i \(-0.0136302\pi\)
\(308\) −3.84461e8 −0.0427218
\(309\) 0 0
\(310\) 0 0
\(311\) − 1.70174e10i − 1.81908i −0.415621 0.909538i \(-0.636436\pi\)
0.415621 0.909538i \(-0.363564\pi\)
\(312\) 0 0
\(313\) − 3.58579e7i − 0.00373601i −0.999998 0.00186800i \(-0.999405\pi\)
0.999998 0.00186800i \(-0.000594605\pi\)
\(314\) − 5.34998e9i − 0.550343i
\(315\) 0 0
\(316\) 8.67163e9 0.869666
\(317\) −7.55878e9 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(318\) 0 0
\(319\) −1.11120e10 −1.07307
\(320\) 0 0
\(321\) 0 0
\(322\) 8.33290e8i 0.0775126i
\(323\) −3.46614e9 −0.318446
\(324\) 0 0
\(325\) 0 0
\(326\) − 5.58780e8i − 0.0494733i
\(327\) 0 0
\(328\) 7.58950e9i 0.655719i
\(329\) − 2.53903e9i − 0.216713i
\(330\) 0 0
\(331\) −5.31316e8 −0.0442630 −0.0221315 0.999755i \(-0.507045\pi\)
−0.0221315 + 0.999755i \(0.507045\pi\)
\(332\) 2.64998e9 0.218117
\(333\) 0 0
\(334\) −9.07267e9 −0.729037
\(335\) 0 0
\(336\) 0 0
\(337\) 1.49671e10i 1.16042i 0.814466 + 0.580212i \(0.197030\pi\)
−0.814466 + 0.580212i \(0.802970\pi\)
\(338\) 4.34547e8 0.0332943
\(339\) 0 0
\(340\) 0 0
\(341\) − 2.16889e9i − 0.160406i
\(342\) 0 0
\(343\) 4.18873e9i 0.302626i
\(344\) − 4.00175e9i − 0.285770i
\(345\) 0 0
\(346\) 1.26821e10 0.884882
\(347\) −1.64170e10 −1.13234 −0.566170 0.824288i \(-0.691576\pi\)
−0.566170 + 0.824288i \(0.691576\pi\)
\(348\) 0 0
\(349\) −2.55575e10 −1.72273 −0.861363 0.507990i \(-0.830389\pi\)
−0.861363 + 0.507990i \(0.830389\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 8.02855e9i 0.522957i
\(353\) 9.98085e9 0.642789 0.321395 0.946945i \(-0.395848\pi\)
0.321395 + 0.946945i \(0.395848\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 5.83517e7i − 0.00363290i
\(357\) 0 0
\(358\) 1.21904e10i 0.742138i
\(359\) − 1.89263e10i − 1.13943i −0.821843 0.569715i \(-0.807054\pi\)
0.821843 0.569715i \(-0.192946\pi\)
\(360\) 0 0
\(361\) −1.25007e10 −0.736044
\(362\) 1.98373e10 1.15518
\(363\) 0 0
\(364\) −1.18807e9 −0.0676762
\(365\) 0 0
\(366\) 0 0
\(367\) − 1.65661e10i − 0.913180i −0.889677 0.456590i \(-0.849071\pi\)
0.889677 0.456590i \(-0.150929\pi\)
\(368\) 9.65327e9 0.526360
\(369\) 0 0
\(370\) 0 0
\(371\) 4.64589e9i 0.245230i
\(372\) 0 0
\(373\) − 8.78219e9i − 0.453698i −0.973930 0.226849i \(-0.927158\pi\)
0.973930 0.226849i \(-0.0728425\pi\)
\(374\) 9.30033e9i 0.475349i
\(375\) 0 0
\(376\) −1.91203e10 −0.956627
\(377\) −3.43385e10 −1.69987
\(378\) 0 0
\(379\) 4.27282e9 0.207090 0.103545 0.994625i \(-0.466981\pi\)
0.103545 + 0.994625i \(0.466981\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 9.79155e9i − 0.459831i
\(383\) −7.68672e9 −0.357229 −0.178614 0.983919i \(-0.557161\pi\)
−0.178614 + 0.983919i \(0.557161\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 8.99527e9i − 0.405196i
\(387\) 0 0
\(388\) − 4.07074e9i − 0.179616i
\(389\) 6.14689e9i 0.268446i 0.990951 + 0.134223i \(0.0428539\pi\)
−0.990951 + 0.134223i \(0.957146\pi\)
\(390\) 0 0
\(391\) 6.12035e9 0.261860
\(392\) 1.55847e10 0.660014
\(393\) 0 0
\(394\) 4.74747e10 1.97005
\(395\) 0 0
\(396\) 0 0
\(397\) 2.20936e9i 0.0889413i 0.999011 + 0.0444707i \(0.0141601\pi\)
−0.999011 + 0.0444707i \(0.985840\pi\)
\(398\) −3.24127e10 −1.29176
\(399\) 0 0
\(400\) 0 0
\(401\) 1.68791e10i 0.652786i 0.945234 + 0.326393i \(0.105833\pi\)
−0.945234 + 0.326393i \(0.894167\pi\)
\(402\) 0 0
\(403\) − 6.70235e9i − 0.254101i
\(404\) 4.62889e9i 0.173761i
\(405\) 0 0
\(406\) 8.35878e9 0.307637
\(407\) 1.53648e10 0.559948
\(408\) 0 0
\(409\) −1.62285e10 −0.579944 −0.289972 0.957035i \(-0.593646\pi\)
−0.289972 + 0.957035i \(0.593646\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 2.17463e10i − 0.754738i
\(413\) −1.74556e9 −0.0599979
\(414\) 0 0
\(415\) 0 0
\(416\) 2.48100e10i 0.828425i
\(417\) 0 0
\(418\) − 1.20285e10i − 0.394010i
\(419\) 4.80952e10i 1.56043i 0.625509 + 0.780217i \(0.284891\pi\)
−0.625509 + 0.780217i \(0.715109\pi\)
\(420\) 0 0
\(421\) 8.87073e9 0.282378 0.141189 0.989983i \(-0.454907\pi\)
0.141189 + 0.989983i \(0.454907\pi\)
\(422\) 1.84471e10 0.581672
\(423\) 0 0
\(424\) 3.49861e10 1.08251
\(425\) 0 0
\(426\) 0 0
\(427\) 2.77096e9i 0.0833526i
\(428\) −4.43444e9 −0.132149
\(429\) 0 0
\(430\) 0 0
\(431\) − 3.08343e10i − 0.893564i −0.894643 0.446782i \(-0.852570\pi\)
0.894643 0.446782i \(-0.147430\pi\)
\(432\) 0 0
\(433\) − 5.61968e10i − 1.59867i −0.600883 0.799337i \(-0.705184\pi\)
0.600883 0.799337i \(-0.294816\pi\)
\(434\) 1.63151e9i 0.0459865i
\(435\) 0 0
\(436\) −2.29391e10 −0.634790
\(437\) −7.91571e9 −0.217052
\(438\) 0 0
\(439\) 5.11998e10 1.37851 0.689256 0.724518i \(-0.257938\pi\)
0.689256 + 0.724518i \(0.257938\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.87401e10i 0.753007i
\(443\) −2.08745e10 −0.542001 −0.271001 0.962579i \(-0.587355\pi\)
−0.271001 + 0.962579i \(0.587355\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6.85676e10i 1.73292i
\(447\) 0 0
\(448\) 1.64478e9i 0.0408315i
\(449\) 1.21070e10i 0.297888i 0.988846 + 0.148944i \(0.0475874\pi\)
−0.988846 + 0.148944i \(0.952413\pi\)
\(450\) 0 0
\(451\) −2.56882e10 −0.620907
\(452\) −2.68472e10 −0.643199
\(453\) 0 0
\(454\) 1.26168e10 0.296980
\(455\) 0 0
\(456\) 0 0
\(457\) − 2.67225e9i − 0.0612650i −0.999531 0.0306325i \(-0.990248\pi\)
0.999531 0.0306325i \(-0.00975215\pi\)
\(458\) −3.90266e9 −0.0886950
\(459\) 0 0
\(460\) 0 0
\(461\) 6.53060e10i 1.44594i 0.690881 + 0.722968i \(0.257223\pi\)
−0.690881 + 0.722968i \(0.742777\pi\)
\(462\) 0 0
\(463\) − 3.77041e10i − 0.820474i −0.911979 0.410237i \(-0.865446\pi\)
0.911979 0.410237i \(-0.134554\pi\)
\(464\) − 9.68325e10i − 2.08905i
\(465\) 0 0
\(466\) −4.91188e10 −1.04161
\(467\) −5.49774e10 −1.15589 −0.577946 0.816075i \(-0.696145\pi\)
−0.577946 + 0.816075i \(0.696145\pi\)
\(468\) 0 0
\(469\) −9.71986e9 −0.200895
\(470\) 0 0
\(471\) 0 0
\(472\) 1.31450e10i 0.264846i
\(473\) 1.35447e10 0.270599
\(474\) 0 0
\(475\) 0 0
\(476\) − 2.12414e9i − 0.0413767i
\(477\) 0 0
\(478\) − 1.07909e11i − 2.06703i
\(479\) 8.38732e10i 1.59324i 0.604481 + 0.796620i \(0.293381\pi\)
−0.604481 + 0.796620i \(0.706619\pi\)
\(480\) 0 0
\(481\) 4.74805e10 0.887023
\(482\) −3.67176e10 −0.680278
\(483\) 0 0
\(484\) 1.41266e10 0.257429
\(485\) 0 0
\(486\) 0 0
\(487\) − 8.98198e10i − 1.59682i −0.602113 0.798411i \(-0.705674\pi\)
0.602113 0.798411i \(-0.294326\pi\)
\(488\) 2.08669e10 0.367941
\(489\) 0 0
\(490\) 0 0
\(491\) 5.33288e10i 0.917563i 0.888549 + 0.458782i \(0.151714\pi\)
−0.888549 + 0.458782i \(0.848286\pi\)
\(492\) 0 0
\(493\) − 6.13935e10i − 1.03929i
\(494\) − 3.71708e10i − 0.624157i
\(495\) 0 0
\(496\) 1.89002e10 0.312277
\(497\) −1.22509e10 −0.200790
\(498\) 0 0
\(499\) −7.91014e9 −0.127580 −0.0637899 0.997963i \(-0.520319\pi\)
−0.0637899 + 0.997963i \(0.520319\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1.03384e11i 1.62794i
\(503\) −1.24445e11 −1.94404 −0.972019 0.234902i \(-0.924523\pi\)
−0.972019 + 0.234902i \(0.924523\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2.12394e10i 0.323996i
\(507\) 0 0
\(508\) 1.58799e10i 0.238447i
\(509\) 1.71577e9i 0.0255616i 0.999918 + 0.0127808i \(0.00406837\pi\)
−0.999918 + 0.0127808i \(0.995932\pi\)
\(510\) 0 0
\(511\) 1.64582e10 0.241378
\(512\) −1.20973e10 −0.176038
\(513\) 0 0
\(514\) −6.37352e10 −0.913118
\(515\) 0 0
\(516\) 0 0
\(517\) − 6.47163e10i − 0.905840i
\(518\) −1.15579e10 −0.160531
\(519\) 0 0
\(520\) 0 0
\(521\) − 9.22868e10i − 1.25253i −0.779610 0.626266i \(-0.784582\pi\)
0.779610 0.626266i \(-0.215418\pi\)
\(522\) 0 0
\(523\) 1.19364e11i 1.59539i 0.603060 + 0.797696i \(0.293948\pi\)
−0.603060 + 0.797696i \(0.706052\pi\)
\(524\) 2.03602e10i 0.270058i
\(525\) 0 0
\(526\) −3.46929e10 −0.453208
\(527\) 1.19831e10 0.155355
\(528\) 0 0
\(529\) −6.43338e10 −0.821517
\(530\) 0 0
\(531\) 0 0
\(532\) 2.74724e9i 0.0342966i
\(533\) −7.93821e10 −0.983589
\(534\) 0 0
\(535\) 0 0
\(536\) 7.31958e10i 0.886803i
\(537\) 0 0
\(538\) 2.29083e9i 0.0273441i
\(539\) 5.27494e10i 0.624974i
\(540\) 0 0
\(541\) −2.52941e10 −0.295277 −0.147639 0.989041i \(-0.547167\pi\)
−0.147639 + 0.989041i \(0.547167\pi\)
\(542\) 1.77615e11 2.05817
\(543\) 0 0
\(544\) −4.43576e10 −0.506492
\(545\) 0 0
\(546\) 0 0
\(547\) − 7.76113e10i − 0.866913i −0.901174 0.433457i \(-0.857294\pi\)
0.901174 0.433457i \(-0.142706\pi\)
\(548\) −5.17461e10 −0.573793
\(549\) 0 0
\(550\) 0 0
\(551\) 7.94029e10i 0.861450i
\(552\) 0 0
\(553\) 2.85602e10i 0.305394i
\(554\) − 1.04682e11i − 1.11131i
\(555\) 0 0
\(556\) −7.38460e10 −0.772730
\(557\) −1.57686e11 −1.63822 −0.819109 0.573638i \(-0.805532\pi\)
−0.819109 + 0.573638i \(0.805532\pi\)
\(558\) 0 0
\(559\) 4.18562e10 0.428659
\(560\) 0 0
\(561\) 0 0
\(562\) 4.28657e10i 0.429699i
\(563\) −1.71164e10 −0.170364 −0.0851822 0.996365i \(-0.527147\pi\)
−0.0851822 + 0.996365i \(0.527147\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 2.29412e11i − 2.23538i
\(567\) 0 0
\(568\) 9.22559e10i 0.886341i
\(569\) − 3.67008e10i − 0.350128i −0.984557 0.175064i \(-0.943987\pi\)
0.984557 0.175064i \(-0.0560132\pi\)
\(570\) 0 0
\(571\) −1.67307e11 −1.57387 −0.786936 0.617034i \(-0.788334\pi\)
−0.786936 + 0.617034i \(0.788334\pi\)
\(572\) −3.02822e10 −0.282881
\(573\) 0 0
\(574\) 1.93234e10 0.178007
\(575\) 0 0
\(576\) 0 0
\(577\) − 1.32539e11i − 1.19575i −0.801590 0.597874i \(-0.796012\pi\)
0.801590 0.597874i \(-0.203988\pi\)
\(578\) 8.23643e10 0.737951
\(579\) 0 0
\(580\) 0 0
\(581\) 8.72775e9i 0.0765946i
\(582\) 0 0
\(583\) 1.18417e11i 1.02504i
\(584\) − 1.23939e11i − 1.06551i
\(585\) 0 0
\(586\) −3.14692e10 −0.266867
\(587\) 1.04094e11 0.876745 0.438372 0.898793i \(-0.355555\pi\)
0.438372 + 0.898793i \(0.355555\pi\)
\(588\) 0 0
\(589\) −1.54983e10 −0.128772
\(590\) 0 0
\(591\) 0 0
\(592\) 1.33892e11i 1.09011i
\(593\) 3.74947e10 0.303215 0.151608 0.988441i \(-0.451555\pi\)
0.151608 + 0.988441i \(0.451555\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 6.53868e10i − 0.518209i
\(597\) 0 0
\(598\) 6.56344e10i 0.513247i
\(599\) − 5.15028e10i − 0.400058i −0.979790 0.200029i \(-0.935896\pi\)
0.979790 0.200029i \(-0.0641037\pi\)
\(600\) 0 0
\(601\) 2.14744e11 1.64597 0.822987 0.568061i \(-0.192306\pi\)
0.822987 + 0.568061i \(0.192306\pi\)
\(602\) −1.01888e10 −0.0775774
\(603\) 0 0
\(604\) −9.88856e10 −0.742994
\(605\) 0 0
\(606\) 0 0
\(607\) − 1.52816e11i − 1.12568i −0.826566 0.562839i \(-0.809709\pi\)
0.826566 0.562839i \(-0.190291\pi\)
\(608\) 5.73696e10 0.419825
\(609\) 0 0
\(610\) 0 0
\(611\) − 1.99988e11i − 1.43496i
\(612\) 0 0
\(613\) 1.27601e11i 0.903672i 0.892101 + 0.451836i \(0.149231\pi\)
−0.892101 + 0.451836i \(0.850769\pi\)
\(614\) 1.45815e10i 0.102595i
\(615\) 0 0
\(616\) −9.53539e9 −0.0662240
\(617\) 9.12840e10 0.629874 0.314937 0.949113i \(-0.398017\pi\)
0.314937 + 0.949113i \(0.398017\pi\)
\(618\) 0 0
\(619\) −2.09670e11 −1.42815 −0.714076 0.700068i \(-0.753153\pi\)
−0.714076 + 0.700068i \(0.753153\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 3.26280e11i 2.17986i
\(623\) 1.92182e8 0.00127574
\(624\) 0 0
\(625\) 0 0
\(626\) 6.87516e8i 0.00447698i
\(627\) 0 0
\(628\) 3.11446e10i 0.200237i
\(629\) 8.48901e10i 0.542319i
\(630\) 0 0
\(631\) 1.84086e11 1.16119 0.580595 0.814192i \(-0.302820\pi\)
0.580595 + 0.814192i \(0.302820\pi\)
\(632\) 2.15074e11 1.34809
\(633\) 0 0
\(634\) 1.44927e11 0.896999
\(635\) 0 0
\(636\) 0 0
\(637\) 1.63007e11i 0.990031i
\(638\) 2.13054e11 1.28590
\(639\) 0 0
\(640\) 0 0
\(641\) 2.67533e11i 1.58469i 0.610073 + 0.792345i \(0.291140\pi\)
−0.610073 + 0.792345i \(0.708860\pi\)
\(642\) 0 0
\(643\) − 2.16257e11i − 1.26510i −0.774519 0.632551i \(-0.782008\pi\)
0.774519 0.632551i \(-0.217992\pi\)
\(644\) − 4.85095e9i − 0.0282022i
\(645\) 0 0
\(646\) 6.64575e10 0.381605
\(647\) −9.78698e10 −0.558511 −0.279255 0.960217i \(-0.590088\pi\)
−0.279255 + 0.960217i \(0.590088\pi\)
\(648\) 0 0
\(649\) −4.44920e10 −0.250786
\(650\) 0 0
\(651\) 0 0
\(652\) 3.25291e9i 0.0180004i
\(653\) 1.06692e11 0.586787 0.293394 0.955992i \(-0.405215\pi\)
0.293394 + 0.955992i \(0.405215\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 2.23853e11i − 1.20878i
\(657\) 0 0
\(658\) 4.86816e10i 0.259694i
\(659\) 2.41804e11i 1.28210i 0.767498 + 0.641051i \(0.221501\pi\)
−0.767498 + 0.641051i \(0.778499\pi\)
\(660\) 0 0
\(661\) 3.16280e11 1.65678 0.828392 0.560149i \(-0.189256\pi\)
0.828392 + 0.560149i \(0.189256\pi\)
\(662\) 1.01871e10 0.0530418
\(663\) 0 0
\(664\) 6.57247e10 0.338109
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.40206e11i − 0.708374i
\(668\) 5.28161e10 0.265253
\(669\) 0 0
\(670\) 0 0
\(671\) 7.06280e10i 0.348407i
\(672\) 0 0
\(673\) − 8.47380e10i − 0.413065i −0.978440 0.206532i \(-0.933782\pi\)
0.978440 0.206532i \(-0.0662179\pi\)
\(674\) − 2.86968e11i − 1.39057i
\(675\) 0 0
\(676\) −2.52969e9 −0.0121138
\(677\) −1.37689e11 −0.655460 −0.327730 0.944771i \(-0.606284\pi\)
−0.327730 + 0.944771i \(0.606284\pi\)
\(678\) 0 0
\(679\) 1.34070e10 0.0630745
\(680\) 0 0
\(681\) 0 0
\(682\) 4.15848e10i 0.192220i
\(683\) 3.20959e11 1.47491 0.737457 0.675394i \(-0.236026\pi\)
0.737457 + 0.675394i \(0.236026\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 8.03119e10i − 0.362647i
\(687\) 0 0
\(688\) 1.18032e11i 0.526800i
\(689\) 3.65935e11i 1.62378i
\(690\) 0 0
\(691\) 9.13185e10 0.400540 0.200270 0.979741i \(-0.435818\pi\)
0.200270 + 0.979741i \(0.435818\pi\)
\(692\) −7.38280e10 −0.321956
\(693\) 0 0
\(694\) 3.14769e11 1.35692
\(695\) 0 0
\(696\) 0 0
\(697\) − 1.41927e11i − 0.601358i
\(698\) 4.90022e11 2.06440
\(699\) 0 0
\(700\) 0 0
\(701\) − 3.75287e11i − 1.55415i −0.629411 0.777073i \(-0.716704\pi\)
0.629411 0.777073i \(-0.283296\pi\)
\(702\) 0 0
\(703\) − 1.09792e11i − 0.449521i
\(704\) 4.19231e10i 0.170672i
\(705\) 0 0
\(706\) −1.91366e11 −0.770276
\(707\) −1.52453e10 −0.0610182
\(708\) 0 0
\(709\) 2.45402e11 0.971167 0.485583 0.874190i \(-0.338607\pi\)
0.485583 + 0.874190i \(0.338607\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 1.44724e9i − 0.00563145i
\(713\) 2.73661e10 0.105890
\(714\) 0 0
\(715\) 0 0
\(716\) − 7.09656e10i − 0.270020i
\(717\) 0 0
\(718\) 3.62880e11i 1.36542i
\(719\) 9.18110e10i 0.343541i 0.985137 + 0.171771i \(0.0549488\pi\)
−0.985137 + 0.171771i \(0.945051\pi\)
\(720\) 0 0
\(721\) 7.16218e10 0.265036
\(722\) 2.39679e11 0.882026
\(723\) 0 0
\(724\) −1.15482e11 −0.420300
\(725\) 0 0
\(726\) 0 0
\(727\) 2.00140e11i 0.716466i 0.933632 + 0.358233i \(0.116621\pi\)
−0.933632 + 0.358233i \(0.883379\pi\)
\(728\) −2.94665e10 −0.104907
\(729\) 0 0
\(730\) 0 0
\(731\) 7.48344e10i 0.262079i
\(732\) 0 0
\(733\) − 2.83723e11i − 0.982831i −0.870925 0.491415i \(-0.836480\pi\)
0.870925 0.491415i \(-0.163520\pi\)
\(734\) 3.17628e11i 1.09429i
\(735\) 0 0
\(736\) −1.01301e11 −0.345224
\(737\) −2.47746e11 −0.839723
\(738\) 0 0
\(739\) 2.87048e10 0.0962448 0.0481224 0.998841i \(-0.484676\pi\)
0.0481224 + 0.998841i \(0.484676\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 8.90772e10i − 0.293867i
\(743\) −3.52977e11 −1.15822 −0.579110 0.815249i \(-0.696600\pi\)
−0.579110 + 0.815249i \(0.696600\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.68384e11i 0.543682i
\(747\) 0 0
\(748\) − 5.41414e10i − 0.172951i
\(749\) − 1.46049e10i − 0.0464057i
\(750\) 0 0
\(751\) 1.47680e11 0.464260 0.232130 0.972685i \(-0.425431\pi\)
0.232130 + 0.972685i \(0.425431\pi\)
\(752\) 5.63954e11 1.76349
\(753\) 0 0
\(754\) 6.58383e11 2.03701
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.11874e10i − 0.0340679i −0.999855 0.0170339i \(-0.994578\pi\)
0.999855 0.0170339i \(-0.00542233\pi\)
\(758\) −8.19243e10 −0.248162
\(759\) 0 0
\(760\) 0 0
\(761\) − 1.96694e9i − 0.00586480i −0.999996 0.00293240i \(-0.999067\pi\)
0.999996 0.00293240i \(-0.000933414\pi\)
\(762\) 0 0
\(763\) − 7.55503e10i − 0.222914i
\(764\) 5.70010e10i 0.167305i
\(765\) 0 0
\(766\) 1.47380e11 0.428079
\(767\) −1.37490e11 −0.397274
\(768\) 0 0
\(769\) −2.76788e11 −0.791484 −0.395742 0.918362i \(-0.629513\pi\)
−0.395742 + 0.918362i \(0.629513\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.23655e10i 0.147427i
\(773\) −1.07076e11 −0.299897 −0.149949 0.988694i \(-0.547911\pi\)
−0.149949 + 0.988694i \(0.547911\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 1.00962e11i − 0.278428i
\(777\) 0 0
\(778\) − 1.17856e11i − 0.321688i
\(779\) 1.83560e11i 0.498458i
\(780\) 0 0
\(781\) −3.12258e11 −0.839286
\(782\) −1.17347e11 −0.313795
\(783\) 0 0
\(784\) −4.59671e11 −1.21670
\(785\) 0 0
\(786\) 0 0
\(787\) 9.64061e10i 0.251308i 0.992074 + 0.125654i \(0.0401028\pi\)
−0.992074 + 0.125654i \(0.959897\pi\)
\(788\) −2.76372e11 −0.716784
\(789\) 0 0
\(790\) 0 0
\(791\) − 8.84218e10i − 0.225867i
\(792\) 0 0
\(793\) 2.18256e11i 0.551917i
\(794\) − 4.23607e10i − 0.106581i
\(795\) 0 0
\(796\) 1.88689e11 0.469995
\(797\) 2.37223e11 0.587928 0.293964 0.955817i \(-0.405025\pi\)
0.293964 + 0.955817i \(0.405025\pi\)
\(798\) 0 0
\(799\) 3.57557e11 0.877320
\(800\) 0 0
\(801\) 0 0
\(802\) − 3.23628e11i − 0.782255i
\(803\) 4.19495e11 1.00894
\(804\) 0 0
\(805\) 0 0
\(806\) 1.28506e11i 0.304498i
\(807\) 0 0
\(808\) 1.14806e11i 0.269351i
\(809\) − 7.32794e11i − 1.71075i −0.518006 0.855377i \(-0.673325\pi\)
0.518006 0.855377i \(-0.326675\pi\)
\(810\) 0 0
\(811\) 7.41211e10 0.171340 0.0856699 0.996324i \(-0.472697\pi\)
0.0856699 + 0.996324i \(0.472697\pi\)
\(812\) −4.86602e10 −0.111931
\(813\) 0 0
\(814\) −2.94594e11 −0.671005
\(815\) 0 0
\(816\) 0 0
\(817\) − 9.67866e10i − 0.217234i
\(818\) 3.11155e11 0.694966
\(819\) 0 0
\(820\) 0 0
\(821\) 6.64630e11i 1.46288i 0.681908 + 0.731438i \(0.261150\pi\)
−0.681908 + 0.731438i \(0.738850\pi\)
\(822\) 0 0
\(823\) 8.12755e10i 0.177158i 0.996069 + 0.0885789i \(0.0282325\pi\)
−0.996069 + 0.0885789i \(0.971767\pi\)
\(824\) − 5.39351e11i − 1.16994i
\(825\) 0 0
\(826\) 3.34683e10 0.0718974
\(827\) −6.94609e11 −1.48497 −0.742487 0.669861i \(-0.766354\pi\)
−0.742487 + 0.669861i \(0.766354\pi\)
\(828\) 0 0
\(829\) −4.71468e11 −0.998239 −0.499119 0.866533i \(-0.666343\pi\)
−0.499119 + 0.866533i \(0.666343\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.29552e11i 0.270365i
\(833\) −2.91440e11 −0.605297
\(834\) 0 0
\(835\) 0 0
\(836\) 7.00234e10i 0.143357i
\(837\) 0 0
\(838\) − 9.22145e11i − 1.86992i
\(839\) − 7.29115e11i − 1.47146i −0.677275 0.735730i \(-0.736839\pi\)
0.677275 0.735730i \(-0.263161\pi\)
\(840\) 0 0
\(841\) −9.06167e11 −1.81144
\(842\) −1.70081e11 −0.338383
\(843\) 0 0
\(844\) −1.07389e11 −0.211636
\(845\) 0 0
\(846\) 0 0
\(847\) 4.65263e10i 0.0903993i
\(848\) −1.03192e12 −1.99554
\(849\) 0 0
\(850\) 0 0
\(851\) 1.93866e11i 0.369643i
\(852\) 0 0
\(853\) 6.28399e11i 1.18697i 0.804845 + 0.593484i \(0.202248\pi\)
−0.804845 + 0.593484i \(0.797752\pi\)
\(854\) − 5.31286e10i − 0.0998842i
\(855\) 0 0
\(856\) −1.09983e11 −0.204847
\(857\) 3.34649e11 0.620391 0.310196 0.950673i \(-0.399605\pi\)
0.310196 + 0.950673i \(0.399605\pi\)
\(858\) 0 0
\(859\) −7.69062e11 −1.41250 −0.706250 0.707962i \(-0.749615\pi\)
−0.706250 + 0.707962i \(0.749615\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 5.91197e11i 1.07079i
\(863\) −4.07704e11 −0.735024 −0.367512 0.930019i \(-0.619790\pi\)
−0.367512 + 0.930019i \(0.619790\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.07748e12i 1.91574i
\(867\) 0 0
\(868\) − 9.49773e9i − 0.0167317i
\(869\) 7.27959e11i 1.27652i
\(870\) 0 0
\(871\) −7.65589e11 −1.33022
\(872\) −5.68935e11 −0.984003
\(873\) 0 0
\(874\) 1.51770e11 0.260101
\(875\) 0 0
\(876\) 0 0
\(877\) − 3.77721e11i − 0.638517i −0.947668 0.319258i \(-0.896566\pi\)
0.947668 0.319258i \(-0.103434\pi\)
\(878\) −9.81671e11 −1.65192
\(879\) 0 0
\(880\) 0 0
\(881\) − 8.54455e11i − 1.41836i −0.705029 0.709179i \(-0.749066\pi\)
0.705029 0.709179i \(-0.250934\pi\)
\(882\) 0 0
\(883\) − 3.81956e11i − 0.628305i −0.949373 0.314153i \(-0.898280\pi\)
0.949373 0.314153i \(-0.101720\pi\)
\(884\) − 1.67309e11i − 0.273974i
\(885\) 0 0
\(886\) 4.00233e11 0.649498
\(887\) −1.16568e11 −0.188314 −0.0941571 0.995557i \(-0.530016\pi\)
−0.0941571 + 0.995557i \(0.530016\pi\)
\(888\) 0 0
\(889\) −5.23007e10 −0.0837338
\(890\) 0 0
\(891\) 0 0
\(892\) − 3.99163e11i − 0.630508i
\(893\) −4.62444e11 −0.727199
\(894\) 0 0
\(895\) 0 0
\(896\) − 1.12172e11i − 0.174042i
\(897\) 0 0
\(898\) − 2.32132e11i − 0.356969i
\(899\) − 2.74511e11i − 0.420262i
\(900\) 0 0
\(901\) −6.54254e11 −0.992767
\(902\) 4.92527e11 0.744054
\(903\) 0 0
\(904\) −6.65864e11 −0.997039
\(905\) 0 0
\(906\) 0 0
\(907\) 1.36281e11i 0.201375i 0.994918 + 0.100688i \(0.0321043\pi\)
−0.994918 + 0.100688i \(0.967896\pi\)
\(908\) −7.34483e10 −0.108053
\(909\) 0 0
\(910\) 0 0
\(911\) − 2.64274e11i − 0.383691i −0.981425 0.191845i \(-0.938553\pi\)
0.981425 0.191845i \(-0.0614472\pi\)
\(912\) 0 0
\(913\) 2.22458e11i 0.320159i
\(914\) 5.12359e10i 0.0734159i
\(915\) 0 0
\(916\) 2.27192e10 0.0322708
\(917\) −6.70568e10 −0.0948343
\(918\) 0 0
\(919\) −4.88253e11 −0.684515 −0.342257 0.939606i \(-0.611191\pi\)
−0.342257 + 0.939606i \(0.611191\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 1.25213e12i − 1.73271i
\(923\) −9.64947e11 −1.32953
\(924\) 0 0
\(925\) 0 0
\(926\) 7.22914e11i 0.983202i
\(927\) 0 0
\(928\) 1.01615e12i 1.37015i
\(929\) 3.78797e11i 0.508562i 0.967130 + 0.254281i \(0.0818388\pi\)
−0.967130 + 0.254281i \(0.918161\pi\)
\(930\) 0 0
\(931\) 3.76931e11 0.501723
\(932\) 2.85943e11 0.378979
\(933\) 0 0
\(934\) 1.05410e12 1.38514
\(935\) 0 0
\(936\) 0 0
\(937\) 1.32228e10i 0.0171539i 0.999963 + 0.00857697i \(0.00273017\pi\)
−0.999963 + 0.00857697i \(0.997270\pi\)
\(938\) 1.86362e11 0.240739
\(939\) 0 0
\(940\) 0 0
\(941\) − 8.58191e11i − 1.09452i −0.836961 0.547262i \(-0.815670\pi\)
0.836961 0.547262i \(-0.184330\pi\)
\(942\) 0 0
\(943\) − 3.24122e11i − 0.409884i
\(944\) − 3.87714e11i − 0.488229i
\(945\) 0 0
\(946\) −2.59697e11 −0.324267
\(947\) −5.90260e11 −0.733911 −0.366955 0.930239i \(-0.619600\pi\)
−0.366955 + 0.930239i \(0.619600\pi\)
\(948\) 0 0
\(949\) 1.29633e12 1.59828
\(950\) 0 0
\(951\) 0 0
\(952\) − 5.26829e10i − 0.0641390i
\(953\) −4.29217e11 −0.520362 −0.260181 0.965560i \(-0.583782\pi\)
−0.260181 + 0.965560i \(0.583782\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 6.28186e11i 0.752068i
\(957\) 0 0
\(958\) − 1.60813e12i − 1.90923i
\(959\) − 1.70427e11i − 0.201494i
\(960\) 0 0
\(961\) −7.99311e11 −0.937178
\(962\) −9.10359e11 −1.06295
\(963\) 0 0
\(964\) 2.13750e11 0.247513
\(965\) 0 0
\(966\) 0 0
\(967\) − 5.19725e11i − 0.594385i −0.954818 0.297193i \(-0.903950\pi\)
0.954818 0.297193i \(-0.0960503\pi\)
\(968\) 3.50368e11 0.399046
\(969\) 0 0
\(970\) 0 0
\(971\) 8.29188e11i 0.932773i 0.884581 + 0.466386i \(0.154444\pi\)
−0.884581 + 0.466386i \(0.845556\pi\)
\(972\) 0 0
\(973\) − 2.43213e11i − 0.271354i
\(974\) 1.72215e12i 1.91352i
\(975\) 0 0
\(976\) −6.15470e11 −0.678278
\(977\) 5.88558e11 0.645968 0.322984 0.946404i \(-0.395314\pi\)
0.322984 + 0.946404i \(0.395314\pi\)
\(978\) 0 0
\(979\) 4.89846e9 0.00533248
\(980\) 0 0
\(981\) 0 0
\(982\) − 1.02249e12i − 1.09955i
\(983\) 8.98175e11 0.961938 0.480969 0.876738i \(-0.340285\pi\)
0.480969 + 0.876738i \(0.340285\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1.17712e12i 1.24541i
\(987\) 0 0
\(988\) 2.16388e11i 0.227094i
\(989\) 1.70901e11i 0.178632i
\(990\) 0 0
\(991\) −3.95110e11 −0.409660 −0.204830 0.978798i \(-0.565664\pi\)
−0.204830 + 0.978798i \(0.565664\pi\)
\(992\) −1.98338e11 −0.204813
\(993\) 0 0
\(994\) 2.34891e11 0.240614
\(995\) 0 0
\(996\) 0 0
\(997\) 1.72914e12i 1.75004i 0.484083 + 0.875022i \(0.339153\pi\)
−0.484083 + 0.875022i \(0.660847\pi\)
\(998\) 1.51664e11 0.152883
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.9.d.c.224.8 24
3.2 odd 2 inner 225.9.d.c.224.18 24
5.2 odd 4 225.9.c.d.26.4 12
5.3 odd 4 45.9.c.a.26.9 yes 12
5.4 even 2 inner 225.9.d.c.224.17 24
15.2 even 4 225.9.c.d.26.9 12
15.8 even 4 45.9.c.a.26.4 12
15.14 odd 2 inner 225.9.d.c.224.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.9.c.a.26.4 12 15.8 even 4
45.9.c.a.26.9 yes 12 5.3 odd 4
225.9.c.d.26.4 12 5.2 odd 4
225.9.c.d.26.9 12 15.2 even 4
225.9.d.c.224.7 24 15.14 odd 2 inner
225.9.d.c.224.8 24 1.1 even 1 trivial
225.9.d.c.224.17 24 5.4 even 2 inner
225.9.d.c.224.18 24 3.2 odd 2 inner