Properties

Label 225.6.f.b.143.8
Level $225$
Weight $6$
Character 225.143
Analytic conductor $36.086$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,6,Mod(107,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.107");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 225.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.0863594579\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 19978x^{16} + 11248353x^{12} + 1386043201x^{8} + 1477627450x^{4} + 332150625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{29}\cdot 3^{24}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 143.8
Root \(3.15495 - 3.15495i\) of defining polynomial
Character \(\chi\) \(=\) 225.143
Dual form 225.6.f.b.107.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.49760 + 3.49760i) q^{2} -7.53358i q^{4} +(-24.1207 + 24.1207i) q^{7} +(138.273 - 138.273i) q^{8} +O(q^{10})\) \(q+(3.49760 + 3.49760i) q^{2} -7.53358i q^{4} +(-24.1207 + 24.1207i) q^{7} +(138.273 - 138.273i) q^{8} +173.562i q^{11} +(-597.849 - 597.849i) q^{13} -168.729 q^{14} +726.171 q^{16} +(-734.740 - 734.740i) q^{17} +1622.15i q^{19} +(-607.051 + 607.051i) q^{22} +(667.211 - 667.211i) q^{23} -4182.07i q^{26} +(181.715 + 181.715i) q^{28} -3698.77 q^{29} -9560.23 q^{31} +(-1884.87 - 1884.87i) q^{32} -5139.65i q^{34} +(5758.92 - 5758.92i) q^{37} +(-5673.62 + 5673.62i) q^{38} -16087.5i q^{41} +(-9780.29 - 9780.29i) q^{43} +1307.54 q^{44} +4667.28 q^{46} +(-11110.0 - 11110.0i) q^{47} +15643.4i q^{49} +(-4503.94 + 4503.94i) q^{52} +(-1013.67 + 1013.67i) q^{53} +6670.46i q^{56} +(-12936.8 - 12936.8i) q^{58} -46524.8 q^{59} +52196.0 q^{61} +(-33437.9 - 33437.9i) q^{62} -36422.5i q^{64} +(31213.8 - 31213.8i) q^{67} +(-5535.22 + 5535.22i) q^{68} -22440.4i q^{71} +(3589.53 + 3589.53i) q^{73} +40284.8 q^{74} +12220.6 q^{76} +(-4186.44 - 4186.44i) q^{77} -17531.6i q^{79} +(56267.8 - 56267.8i) q^{82} +(-71122.6 + 71122.6i) q^{83} -68415.1i q^{86} +(23998.9 + 23998.9i) q^{88} +48621.5 q^{89} +28841.0 q^{91} +(-5026.49 - 5026.49i) q^{92} -77716.5i q^{94} +(7908.79 - 7908.79i) q^{97} +(-54714.3 + 54714.3i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 152 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 152 q^{7} - 1844 q^{13} - 6280 q^{16} + 6512 q^{22} - 29728 q^{28} + 43120 q^{31} + 37516 q^{37} - 5408 q^{43} + 118720 q^{46} + 285256 q^{52} - 274752 q^{58} + 163360 q^{61} + 302704 q^{67} - 146324 q^{73} + 760800 q^{76} + 305744 q^{82} - 355296 q^{88} + 499120 q^{91} + 362524 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.49760 + 3.49760i 0.618294 + 0.618294i 0.945094 0.326799i \(-0.105970\pi\)
−0.326799 + 0.945094i \(0.605970\pi\)
\(3\) 0 0
\(4\) 7.53358i 0.235424i
\(5\) 0 0
\(6\) 0 0
\(7\) −24.1207 + 24.1207i −0.186056 + 0.186056i −0.793989 0.607932i \(-0.791999\pi\)
0.607932 + 0.793989i \(0.291999\pi\)
\(8\) 138.273 138.273i 0.763856 0.763856i
\(9\) 0 0
\(10\) 0 0
\(11\) 173.562i 0.432487i 0.976339 + 0.216244i \(0.0693805\pi\)
−0.976339 + 0.216244i \(0.930619\pi\)
\(12\) 0 0
\(13\) −597.849 597.849i −0.981145 0.981145i 0.0186808 0.999825i \(-0.494053\pi\)
−0.999825 + 0.0186808i \(0.994053\pi\)
\(14\) −168.729 −0.230075
\(15\) 0 0
\(16\) 726.171 0.709151
\(17\) −734.740 734.740i −0.616611 0.616611i 0.328050 0.944661i \(-0.393609\pi\)
−0.944661 + 0.328050i \(0.893609\pi\)
\(18\) 0 0
\(19\) 1622.15i 1.03088i 0.856927 + 0.515438i \(0.172371\pi\)
−0.856927 + 0.515438i \(0.827629\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −607.051 + 607.051i −0.267404 + 0.267404i
\(23\) 667.211 667.211i 0.262993 0.262993i −0.563276 0.826269i \(-0.690459\pi\)
0.826269 + 0.563276i \(0.190459\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4182.07i 1.21327i
\(27\) 0 0
\(28\) 181.715 + 181.715i 0.0438022 + 0.0438022i
\(29\) −3698.77 −0.816700 −0.408350 0.912825i \(-0.633896\pi\)
−0.408350 + 0.912825i \(0.633896\pi\)
\(30\) 0 0
\(31\) −9560.23 −1.78675 −0.893376 0.449310i \(-0.851670\pi\)
−0.893376 + 0.449310i \(0.851670\pi\)
\(32\) −1884.87 1884.87i −0.325392 0.325392i
\(33\) 0 0
\(34\) 5139.65i 0.762494i
\(35\) 0 0
\(36\) 0 0
\(37\) 5758.92 5758.92i 0.691571 0.691571i −0.271007 0.962577i \(-0.587357\pi\)
0.962577 + 0.271007i \(0.0873565\pi\)
\(38\) −5673.62 + 5673.62i −0.637385 + 0.637385i
\(39\) 0 0
\(40\) 0 0
\(41\) 16087.5i 1.49462i −0.664477 0.747309i \(-0.731346\pi\)
0.664477 0.747309i \(-0.268654\pi\)
\(42\) 0 0
\(43\) −9780.29 9780.29i −0.806641 0.806641i 0.177483 0.984124i \(-0.443205\pi\)
−0.984124 + 0.177483i \(0.943205\pi\)
\(44\) 1307.54 0.101818
\(45\) 0 0
\(46\) 4667.28 0.325214
\(47\) −11110.0 11110.0i −0.733615 0.733615i 0.237719 0.971334i \(-0.423600\pi\)
−0.971334 + 0.237719i \(0.923600\pi\)
\(48\) 0 0
\(49\) 15643.4i 0.930766i
\(50\) 0 0
\(51\) 0 0
\(52\) −4503.94 + 4503.94i −0.230985 + 0.230985i
\(53\) −1013.67 + 1013.67i −0.0495687 + 0.0495687i −0.731457 0.681888i \(-0.761159\pi\)
0.681888 + 0.731457i \(0.261159\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 6670.46i 0.284240i
\(57\) 0 0
\(58\) −12936.8 12936.8i −0.504961 0.504961i
\(59\) −46524.8 −1.74002 −0.870010 0.493035i \(-0.835888\pi\)
−0.870010 + 0.493035i \(0.835888\pi\)
\(60\) 0 0
\(61\) 52196.0 1.79602 0.898012 0.439971i \(-0.145011\pi\)
0.898012 + 0.439971i \(0.145011\pi\)
\(62\) −33437.9 33437.9i −1.10474 1.10474i
\(63\) 0 0
\(64\) 36422.5i 1.11153i
\(65\) 0 0
\(66\) 0 0
\(67\) 31213.8 31213.8i 0.849494 0.849494i −0.140576 0.990070i \(-0.544895\pi\)
0.990070 + 0.140576i \(0.0448954\pi\)
\(68\) −5535.22 + 5535.22i −0.145165 + 0.145165i
\(69\) 0 0
\(70\) 0 0
\(71\) 22440.4i 0.528306i −0.964481 0.264153i \(-0.914908\pi\)
0.964481 0.264153i \(-0.0850924\pi\)
\(72\) 0 0
\(73\) 3589.53 + 3589.53i 0.0788371 + 0.0788371i 0.745426 0.666589i \(-0.232246\pi\)
−0.666589 + 0.745426i \(0.732246\pi\)
\(74\) 40284.8 0.855189
\(75\) 0 0
\(76\) 12220.6 0.242693
\(77\) −4186.44 4186.44i −0.0804669 0.0804669i
\(78\) 0 0
\(79\) 17531.6i 0.316049i −0.987435 0.158024i \(-0.949488\pi\)
0.987435 0.158024i \(-0.0505125\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 56267.8 56267.8i 0.924113 0.924113i
\(83\) −71122.6 + 71122.6i −1.13322 + 1.13322i −0.143576 + 0.989639i \(0.545860\pi\)
−0.989639 + 0.143576i \(0.954140\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 68415.1i 0.997483i
\(87\) 0 0
\(88\) 23998.9 + 23998.9i 0.330358 + 0.330358i
\(89\) 48621.5 0.650659 0.325330 0.945601i \(-0.394525\pi\)
0.325330 + 0.945601i \(0.394525\pi\)
\(90\) 0 0
\(91\) 28841.0 0.365096
\(92\) −5026.49 5026.49i −0.0619149 0.0619149i
\(93\) 0 0
\(94\) 77716.5i 0.907180i
\(95\) 0 0
\(96\) 0 0
\(97\) 7908.79 7908.79i 0.0853455 0.0853455i −0.663145 0.748491i \(-0.730779\pi\)
0.748491 + 0.663145i \(0.230779\pi\)
\(98\) −54714.3 + 54714.3i −0.575487 + 0.575487i
\(99\) 0 0
\(100\) 0 0
\(101\) 69114.4i 0.674163i 0.941475 + 0.337082i \(0.109440\pi\)
−0.941475 + 0.337082i \(0.890560\pi\)
\(102\) 0 0
\(103\) 66208.5 + 66208.5i 0.614923 + 0.614923i 0.944225 0.329302i \(-0.106813\pi\)
−0.329302 + 0.944225i \(0.606813\pi\)
\(104\) −165332. −1.49891
\(105\) 0 0
\(106\) −7090.84 −0.0612961
\(107\) −84771.5 84771.5i −0.715798 0.715798i 0.251944 0.967742i \(-0.418930\pi\)
−0.967742 + 0.251944i \(0.918930\pi\)
\(108\) 0 0
\(109\) 43319.2i 0.349232i 0.984637 + 0.174616i \(0.0558685\pi\)
−0.984637 + 0.174616i \(0.944132\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −17515.7 + 17515.7i −0.131942 + 0.131942i
\(113\) 97783.2 97783.2i 0.720391 0.720391i −0.248294 0.968685i \(-0.579870\pi\)
0.968685 + 0.248294i \(0.0798700\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 27865.0i 0.192271i
\(117\) 0 0
\(118\) −162725. 162725.i −1.07584 1.07584i
\(119\) 35444.8 0.229449
\(120\) 0 0
\(121\) 130927. 0.812955
\(122\) 182561. + 182561.i 1.11047 + 1.11047i
\(123\) 0 0
\(124\) 72022.8i 0.420645i
\(125\) 0 0
\(126\) 0 0
\(127\) −136748. + 136748.i −0.752337 + 0.752337i −0.974915 0.222578i \(-0.928553\pi\)
0.222578 + 0.974915i \(0.428553\pi\)
\(128\) 67075.6 67075.6i 0.361859 0.361859i
\(129\) 0 0
\(130\) 0 0
\(131\) 8932.22i 0.0454759i −0.999741 0.0227379i \(-0.992762\pi\)
0.999741 0.0227379i \(-0.00723834\pi\)
\(132\) 0 0
\(133\) −39127.3 39127.3i −0.191801 0.191801i
\(134\) 218347. 1.05047
\(135\) 0 0
\(136\) −203189. −0.942004
\(137\) −155119. 155119.i −0.706093 0.706093i 0.259618 0.965711i \(-0.416403\pi\)
−0.965711 + 0.259618i \(0.916403\pi\)
\(138\) 0 0
\(139\) 148665.i 0.652636i 0.945260 + 0.326318i \(0.105808\pi\)
−0.945260 + 0.326318i \(0.894192\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 78487.7 78487.7i 0.326649 0.326649i
\(143\) 103764. 103764.i 0.424332 0.424332i
\(144\) 0 0
\(145\) 0 0
\(146\) 25109.5i 0.0974890i
\(147\) 0 0
\(148\) −43385.3 43385.3i −0.162813 0.162813i
\(149\) −168325. −0.621130 −0.310565 0.950552i \(-0.600518\pi\)
−0.310565 + 0.950552i \(0.600518\pi\)
\(150\) 0 0
\(151\) −365709. −1.30525 −0.652625 0.757681i \(-0.726332\pi\)
−0.652625 + 0.757681i \(0.726332\pi\)
\(152\) 224299. + 224299.i 0.787440 + 0.787440i
\(153\) 0 0
\(154\) 29285.0i 0.0995045i
\(155\) 0 0
\(156\) 0 0
\(157\) −336039. + 336039.i −1.08803 + 1.08803i −0.0922993 + 0.995731i \(0.529422\pi\)
−0.995731 + 0.0922993i \(0.970578\pi\)
\(158\) 61318.6 61318.6i 0.195411 0.195411i
\(159\) 0 0
\(160\) 0 0
\(161\) 32187.2i 0.0978629i
\(162\) 0 0
\(163\) 425628. + 425628.i 1.25476 + 1.25476i 0.953561 + 0.301200i \(0.0973873\pi\)
0.301200 + 0.953561i \(0.402613\pi\)
\(164\) −121197. −0.351869
\(165\) 0 0
\(166\) −497517. −1.40132
\(167\) 272794. + 272794.i 0.756909 + 0.756909i 0.975759 0.218849i \(-0.0702303\pi\)
−0.218849 + 0.975759i \(0.570230\pi\)
\(168\) 0 0
\(169\) 343554.i 0.925290i
\(170\) 0 0
\(171\) 0 0
\(172\) −73680.6 + 73680.6i −0.189903 + 0.189903i
\(173\) 166817. 166817.i 0.423764 0.423764i −0.462733 0.886498i \(-0.653131\pi\)
0.886498 + 0.462733i \(0.153131\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 126036.i 0.306699i
\(177\) 0 0
\(178\) 170059. + 170059.i 0.402299 + 0.402299i
\(179\) 651990. 1.52093 0.760463 0.649381i \(-0.224972\pi\)
0.760463 + 0.649381i \(0.224972\pi\)
\(180\) 0 0
\(181\) 247026. 0.560461 0.280231 0.959933i \(-0.409589\pi\)
0.280231 + 0.959933i \(0.409589\pi\)
\(182\) 100874. + 100874.i 0.225737 + 0.225737i
\(183\) 0 0
\(184\) 184514.i 0.401777i
\(185\) 0 0
\(186\) 0 0
\(187\) 127523. 127523.i 0.266676 0.266676i
\(188\) −83697.9 + 83697.9i −0.172711 + 0.172711i
\(189\) 0 0
\(190\) 0 0
\(191\) 63445.3i 0.125839i 0.998019 + 0.0629196i \(0.0200412\pi\)
−0.998019 + 0.0629196i \(0.979959\pi\)
\(192\) 0 0
\(193\) −184478. 184478.i −0.356493 0.356493i 0.506026 0.862518i \(-0.331114\pi\)
−0.862518 + 0.506026i \(0.831114\pi\)
\(194\) 55323.6 0.105537
\(195\) 0 0
\(196\) 117851. 0.219125
\(197\) 153826. + 153826.i 0.282399 + 0.282399i 0.834065 0.551666i \(-0.186008\pi\)
−0.551666 + 0.834065i \(0.686008\pi\)
\(198\) 0 0
\(199\) 88348.0i 0.158148i 0.996869 + 0.0790740i \(0.0251963\pi\)
−0.996869 + 0.0790740i \(0.974804\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −241734. + 241734.i −0.416831 + 0.416831i
\(203\) 89216.9 89216.9i 0.151952 0.151952i
\(204\) 0 0
\(205\) 0 0
\(206\) 463142.i 0.760407i
\(207\) 0 0
\(208\) −434140. 434140.i −0.695780 0.695780i
\(209\) −281543. −0.445840
\(210\) 0 0
\(211\) 220425. 0.340843 0.170422 0.985371i \(-0.445487\pi\)
0.170422 + 0.985371i \(0.445487\pi\)
\(212\) 7636.57 + 7636.57i 0.0116697 + 0.0116697i
\(213\) 0 0
\(214\) 592994.i 0.885147i
\(215\) 0 0
\(216\) 0 0
\(217\) 230599. 230599.i 0.332436 0.332436i
\(218\) −151513. + 151513.i −0.215928 + 0.215928i
\(219\) 0 0
\(220\) 0 0
\(221\) 878527.i 1.20997i
\(222\) 0 0
\(223\) 550351. + 550351.i 0.741101 + 0.741101i 0.972790 0.231689i \(-0.0744252\pi\)
−0.231689 + 0.972790i \(0.574425\pi\)
\(224\) 90928.7 0.121082
\(225\) 0 0
\(226\) 684013. 0.890827
\(227\) −32455.5 32455.5i −0.0418045 0.0418045i 0.685896 0.727700i \(-0.259411\pi\)
−0.727700 + 0.685896i \(0.759411\pi\)
\(228\) 0 0
\(229\) 389872.i 0.491285i 0.969360 + 0.245643i \(0.0789990\pi\)
−0.969360 + 0.245643i \(0.921001\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −511439. + 511439.i −0.623841 + 0.623841i
\(233\) 737801. 737801.i 0.890326 0.890326i −0.104227 0.994554i \(-0.533237\pi\)
0.994554 + 0.104227i \(0.0332369\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 350498.i 0.409643i
\(237\) 0 0
\(238\) 123972. + 123972.i 0.141867 + 0.141867i
\(239\) 367547. 0.416216 0.208108 0.978106i \(-0.433269\pi\)
0.208108 + 0.978106i \(0.433269\pi\)
\(240\) 0 0
\(241\) 1.10156e6 1.22170 0.610850 0.791747i \(-0.290828\pi\)
0.610850 + 0.791747i \(0.290828\pi\)
\(242\) 457931. + 457931.i 0.502645 + 0.502645i
\(243\) 0 0
\(244\) 393222.i 0.422828i
\(245\) 0 0
\(246\) 0 0
\(247\) 969799. 969799.i 1.01144 1.01144i
\(248\) −1.32192e6 + 1.32192e6i −1.36482 + 1.36482i
\(249\) 0 0
\(250\) 0 0
\(251\) 1.75554e6i 1.75884i −0.476049 0.879419i \(-0.657932\pi\)
0.476049 0.879419i \(-0.342068\pi\)
\(252\) 0 0
\(253\) 115803. + 115803.i 0.113741 + 0.113741i
\(254\) −956581. −0.930331
\(255\) 0 0
\(256\) −696313. −0.664056
\(257\) −1.38179e6 1.38179e6i −1.30500 1.30500i −0.924978 0.380020i \(-0.875917\pi\)
−0.380020 0.924978i \(-0.624083\pi\)
\(258\) 0 0
\(259\) 277818.i 0.257342i
\(260\) 0 0
\(261\) 0 0
\(262\) 31241.3 31241.3i 0.0281175 0.0281175i
\(263\) −504029. + 504029.i −0.449330 + 0.449330i −0.895132 0.445801i \(-0.852919\pi\)
0.445801 + 0.895132i \(0.352919\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 273703.i 0.237179i
\(267\) 0 0
\(268\) −235152. 235152.i −0.199992 0.199992i
\(269\) 715977. 0.603279 0.301640 0.953422i \(-0.402466\pi\)
0.301640 + 0.953422i \(0.402466\pi\)
\(270\) 0 0
\(271\) −1.50875e6 −1.24794 −0.623969 0.781449i \(-0.714481\pi\)
−0.623969 + 0.781449i \(0.714481\pi\)
\(272\) −533547. 533547.i −0.437270 0.437270i
\(273\) 0 0
\(274\) 1.08509e6i 0.873147i
\(275\) 0 0
\(276\) 0 0
\(277\) 1.19043e6 1.19043e6i 0.932189 0.932189i −0.0656538 0.997842i \(-0.520913\pi\)
0.997842 + 0.0656538i \(0.0209133\pi\)
\(278\) −519970. + 519970.i −0.403521 + 0.403521i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.32423e6i 1.00045i −0.865894 0.500227i \(-0.833250\pi\)
0.865894 0.500227i \(-0.166750\pi\)
\(282\) 0 0
\(283\) −13034.8 13034.8i −0.00967472 0.00967472i 0.702253 0.711928i \(-0.252178\pi\)
−0.711928 + 0.702253i \(0.752178\pi\)
\(284\) −169057. −0.124376
\(285\) 0 0
\(286\) 725849. 0.524725
\(287\) 388042. + 388042.i 0.278083 + 0.278083i
\(288\) 0 0
\(289\) 340172.i 0.239582i
\(290\) 0 0
\(291\) 0 0
\(292\) 27042.0 27042.0i 0.0185602 0.0185602i
\(293\) 776691. 776691.i 0.528542 0.528542i −0.391596 0.920137i \(-0.628077\pi\)
0.920137 + 0.391596i \(0.128077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.59260e6i 1.05652i
\(297\) 0 0
\(298\) −588733. 588733.i −0.384041 0.384041i
\(299\) −797783. −0.516068
\(300\) 0 0
\(301\) 471814. 0.300161
\(302\) −1.27910e6 1.27910e6i −0.807028 0.807028i
\(303\) 0 0
\(304\) 1.17796e6i 0.731047i
\(305\) 0 0
\(306\) 0 0
\(307\) −397374. + 397374.i −0.240632 + 0.240632i −0.817112 0.576479i \(-0.804426\pi\)
0.576479 + 0.817112i \(0.304426\pi\)
\(308\) −31538.8 + 31538.8i −0.0189439 + 0.0189439i
\(309\) 0 0
\(310\) 0 0
\(311\) 726100.i 0.425692i −0.977086 0.212846i \(-0.931727\pi\)
0.977086 0.212846i \(-0.0682732\pi\)
\(312\) 0 0
\(313\) −971529. 971529.i −0.560525 0.560525i 0.368931 0.929457i \(-0.379724\pi\)
−0.929457 + 0.368931i \(0.879724\pi\)
\(314\) −2.35066e6 −1.34545
\(315\) 0 0
\(316\) −132076. −0.0744056
\(317\) −1.02045e6 1.02045e6i −0.570352 0.570352i 0.361875 0.932227i \(-0.382137\pi\)
−0.932227 + 0.361875i \(0.882137\pi\)
\(318\) 0 0
\(319\) 641967.i 0.353212i
\(320\) 0 0
\(321\) 0 0
\(322\) −112578. + 112578.i −0.0605081 + 0.0605081i
\(323\) 1.19186e6 1.19186e6i 0.635649 0.635649i
\(324\) 0 0
\(325\) 0 0
\(326\) 2.97735e6i 1.55162i
\(327\) 0 0
\(328\) −2.22447e6 2.22447e6i −1.14167 1.14167i
\(329\) 535960. 0.272988
\(330\) 0 0
\(331\) 640294. 0.321225 0.160613 0.987018i \(-0.448653\pi\)
0.160613 + 0.987018i \(0.448653\pi\)
\(332\) 535808. + 535808.i 0.266786 + 0.266786i
\(333\) 0 0
\(334\) 1.90825e6i 0.935986i
\(335\) 0 0
\(336\) 0 0
\(337\) −891757. + 891757.i −0.427732 + 0.427732i −0.887855 0.460123i \(-0.847805\pi\)
0.460123 + 0.887855i \(0.347805\pi\)
\(338\) −1.20161e6 + 1.20161e6i −0.572102 + 0.572102i
\(339\) 0 0
\(340\) 0 0
\(341\) 1.65929e6i 0.772747i
\(342\) 0 0
\(343\) −782725. 782725.i −0.359231 0.359231i
\(344\) −2.70469e6 −1.23232
\(345\) 0 0
\(346\) 1.16692e6 0.524022
\(347\) −2.35342e6 2.35342e6i −1.04924 1.04924i −0.998723 0.0505198i \(-0.983912\pi\)
−0.0505198 0.998723i \(-0.516088\pi\)
\(348\) 0 0
\(349\) 781439.i 0.343425i 0.985147 + 0.171712i \(0.0549299\pi\)
−0.985147 + 0.171712i \(0.945070\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 327142. 327142.i 0.140728 0.140728i
\(353\) −1.35451e6 + 1.35451e6i −0.578558 + 0.578558i −0.934506 0.355948i \(-0.884158\pi\)
0.355948 + 0.934506i \(0.384158\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 366294.i 0.153181i
\(357\) 0 0
\(358\) 2.28040e6 + 2.28040e6i 0.940380 + 0.940380i
\(359\) 3.10750e6 1.27255 0.636276 0.771461i \(-0.280474\pi\)
0.636276 + 0.771461i \(0.280474\pi\)
\(360\) 0 0
\(361\) −155264. −0.0627049
\(362\) 863997. + 863997.i 0.346530 + 0.346530i
\(363\) 0 0
\(364\) 217276.i 0.0859526i
\(365\) 0 0
\(366\) 0 0
\(367\) 1.25930e6 1.25930e6i 0.488050 0.488050i −0.419640 0.907690i \(-0.637844\pi\)
0.907690 + 0.419640i \(0.137844\pi\)
\(368\) 484509. 484509.i 0.186502 0.186502i
\(369\) 0 0
\(370\) 0 0
\(371\) 48900.9i 0.0184451i
\(372\) 0 0
\(373\) 731112. + 731112.i 0.272090 + 0.272090i 0.829941 0.557851i \(-0.188374\pi\)
−0.557851 + 0.829941i \(0.688374\pi\)
\(374\) 892049. 0.329769
\(375\) 0 0
\(376\) −3.07241e6 −1.12075
\(377\) 2.21131e6 + 2.21131e6i 0.801301 + 0.801301i
\(378\) 0 0
\(379\) 4.11660e6i 1.47211i −0.676921 0.736056i \(-0.736686\pi\)
0.676921 0.736056i \(-0.263314\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −221906. + 221906.i −0.0778057 + 0.0778057i
\(383\) 998442. 998442.i 0.347797 0.347797i −0.511491 0.859288i \(-0.670907\pi\)
0.859288 + 0.511491i \(0.170907\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.29046e6i 0.440835i
\(387\) 0 0
\(388\) −59581.5 59581.5i −0.0200924 0.0200924i
\(389\) 1.81467e6 0.608027 0.304014 0.952668i \(-0.401673\pi\)
0.304014 + 0.952668i \(0.401673\pi\)
\(390\) 0 0
\(391\) −980454. −0.324329
\(392\) 2.16305e6 + 2.16305e6i 0.710971 + 0.710971i
\(393\) 0 0
\(394\) 1.07604e6i 0.349212i
\(395\) 0 0
\(396\) 0 0
\(397\) −130258. + 130258.i −0.0414789 + 0.0414789i −0.727542 0.686063i \(-0.759337\pi\)
0.686063 + 0.727542i \(0.259337\pi\)
\(398\) −309006. + 309006.i −0.0977820 + 0.0977820i
\(399\) 0 0
\(400\) 0 0
\(401\) 1.71814e6i 0.533578i 0.963755 + 0.266789i \(0.0859626\pi\)
−0.963755 + 0.266789i \(0.914037\pi\)
\(402\) 0 0
\(403\) 5.71557e6 + 5.71557e6i 1.75306 + 1.75306i
\(404\) 520678. 0.158714
\(405\) 0 0
\(406\) 624090. 0.187902
\(407\) 999530. + 999530.i 0.299095 + 0.299095i
\(408\) 0 0
\(409\) 2.89387e6i 0.855402i −0.903920 0.427701i \(-0.859324\pi\)
0.903920 0.427701i \(-0.140676\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 498787. 498787.i 0.144768 0.144768i
\(413\) 1.12221e6 1.12221e6i 0.323742 0.323742i
\(414\) 0 0
\(415\) 0 0
\(416\) 2.25374e6i 0.638513i
\(417\) 0 0
\(418\) −984726. 984726.i −0.275661 0.275661i
\(419\) −143217. −0.0398527 −0.0199264 0.999801i \(-0.506343\pi\)
−0.0199264 + 0.999801i \(0.506343\pi\)
\(420\) 0 0
\(421\) 1.34045e6 0.368592 0.184296 0.982871i \(-0.440999\pi\)
0.184296 + 0.982871i \(0.440999\pi\)
\(422\) 770959. + 770959.i 0.210742 + 0.210742i
\(423\) 0 0
\(424\) 280326.i 0.0757267i
\(425\) 0 0
\(426\) 0 0
\(427\) −1.25900e6 + 1.25900e6i −0.334162 + 0.334162i
\(428\) −638633. + 638633.i −0.168516 + 0.168516i
\(429\) 0 0
\(430\) 0 0
\(431\) 6.72542e6i 1.74392i 0.489577 + 0.871960i \(0.337151\pi\)
−0.489577 + 0.871960i \(0.662849\pi\)
\(432\) 0 0
\(433\) 493739. + 493739.i 0.126555 + 0.126555i 0.767547 0.640993i \(-0.221477\pi\)
−0.640993 + 0.767547i \(0.721477\pi\)
\(434\) 1.61309e6 0.411087
\(435\) 0 0
\(436\) 326349. 0.0822178
\(437\) 1.08232e6 + 1.08232e6i 0.271113 + 0.271113i
\(438\) 0 0
\(439\) 7.03925e6i 1.74327i 0.490154 + 0.871636i \(0.336941\pi\)
−0.490154 + 0.871636i \(0.663059\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −3.07274e6 + 3.07274e6i −0.748117 + 0.748117i
\(443\) 1.43616e6 1.43616e6i 0.347691 0.347691i −0.511558 0.859249i \(-0.670931\pi\)
0.859249 + 0.511558i \(0.170931\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 3.84981e6i 0.916437i
\(447\) 0 0
\(448\) 878536. + 878536.i 0.206807 + 0.206807i
\(449\) 3.63556e6 0.851052 0.425526 0.904946i \(-0.360089\pi\)
0.425526 + 0.904946i \(0.360089\pi\)
\(450\) 0 0
\(451\) 2.79219e6 0.646403
\(452\) −736657. 736657.i −0.169597 0.169597i
\(453\) 0 0
\(454\) 227033.i 0.0516950i
\(455\) 0 0
\(456\) 0 0
\(457\) 1.72616e6 1.72616e6i 0.386625 0.386625i −0.486857 0.873482i \(-0.661857\pi\)
0.873482 + 0.486857i \(0.161857\pi\)
\(458\) −1.36362e6 + 1.36362e6i −0.303759 + 0.303759i
\(459\) 0 0
\(460\) 0 0
\(461\) 1.59109e6i 0.348693i −0.984684 0.174347i \(-0.944219\pi\)
0.984684 0.174347i \(-0.0557813\pi\)
\(462\) 0 0
\(463\) −5.66635e6 5.66635e6i −1.22843 1.22843i −0.964557 0.263874i \(-0.915000\pi\)
−0.263874 0.964557i \(-0.585000\pi\)
\(464\) −2.68594e6 −0.579164
\(465\) 0 0
\(466\) 5.16106e6 1.10097
\(467\) 2.14280e6 + 2.14280e6i 0.454662 + 0.454662i 0.896898 0.442237i \(-0.145815\pi\)
−0.442237 + 0.896898i \(0.645815\pi\)
\(468\) 0 0
\(469\) 1.50580e6i 0.316107i
\(470\) 0 0
\(471\) 0 0
\(472\) −6.43310e6 + 6.43310e6i −1.32912 + 1.32912i
\(473\) 1.69749e6 1.69749e6i 0.348862 0.348862i
\(474\) 0 0
\(475\) 0 0
\(476\) 267027.i 0.0540178i
\(477\) 0 0
\(478\) 1.28553e6 + 1.28553e6i 0.257344 + 0.257344i
\(479\) −779790. −0.155288 −0.0776441 0.996981i \(-0.524740\pi\)
−0.0776441 + 0.996981i \(0.524740\pi\)
\(480\) 0 0
\(481\) −6.88593e6 −1.35706
\(482\) 3.85281e6 + 3.85281e6i 0.755370 + 0.755370i
\(483\) 0 0
\(484\) 986350.i 0.191389i
\(485\) 0 0
\(486\) 0 0
\(487\) −2.11432e6 + 2.11432e6i −0.403970 + 0.403970i −0.879629 0.475659i \(-0.842209\pi\)
0.475659 + 0.879629i \(0.342209\pi\)
\(488\) 7.21727e6 7.21727e6i 1.37190 1.37190i
\(489\) 0 0
\(490\) 0 0
\(491\) 2.20117e6i 0.412049i 0.978547 + 0.206025i \(0.0660527\pi\)
−0.978547 + 0.206025i \(0.933947\pi\)
\(492\) 0 0
\(493\) 2.71764e6 + 2.71764e6i 0.503586 + 0.503586i
\(494\) 6.78394e6 1.25073
\(495\) 0 0
\(496\) −6.94236e6 −1.26708
\(497\) 541279. + 541279.i 0.0982947 + 0.0982947i
\(498\) 0 0
\(499\) 287378.i 0.0516656i 0.999666 + 0.0258328i \(0.00822375\pi\)
−0.999666 + 0.0258328i \(0.991776\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 6.14017e6 6.14017e6i 1.08748 1.08748i
\(503\) 734293. 734293.i 0.129405 0.129405i −0.639438 0.768843i \(-0.720833\pi\)
0.768843 + 0.639438i \(0.220833\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 810063.i 0.140651i
\(507\) 0 0
\(508\) 1.03020e6 + 1.03020e6i 0.177118 + 0.177118i
\(509\) −9.29537e6 −1.59028 −0.795138 0.606429i \(-0.792601\pi\)
−0.795138 + 0.606429i \(0.792601\pi\)
\(510\) 0 0
\(511\) −173164. −0.0293363
\(512\) −4.58184e6 4.58184e6i −0.772441 0.772441i
\(513\) 0 0
\(514\) 9.66591e6i 1.61375i
\(515\) 0 0
\(516\) 0 0
\(517\) 1.92827e6 1.92827e6i 0.317279 0.317279i
\(518\) −971697. + 971697.i −0.159113 + 0.159113i
\(519\) 0 0
\(520\) 0 0
\(521\) 4.12354e6i 0.665543i −0.943008 0.332771i \(-0.892016\pi\)
0.943008 0.332771i \(-0.107984\pi\)
\(522\) 0 0
\(523\) −3.87029e6 3.87029e6i −0.618713 0.618713i 0.326489 0.945201i \(-0.394135\pi\)
−0.945201 + 0.326489i \(0.894135\pi\)
\(524\) −67291.6 −0.0107061
\(525\) 0 0
\(526\) −3.52578e6 −0.555637
\(527\) 7.02428e6 + 7.02428e6i 1.10173 + 1.10173i
\(528\) 0 0
\(529\) 5.54600e6i 0.861670i
\(530\) 0 0
\(531\) 0 0
\(532\) −294769. + 294769.i −0.0451546 + 0.0451546i
\(533\) −9.61792e6 + 9.61792e6i −1.46644 + 1.46644i
\(534\) 0 0
\(535\) 0 0
\(536\) 8.63204e6i 1.29778i
\(537\) 0 0
\(538\) 2.50420e6 + 2.50420e6i 0.373004 + 0.373004i
\(539\) −2.71510e6 −0.402544
\(540\) 0 0
\(541\) −7.61255e6 −1.11825 −0.559123 0.829085i \(-0.688862\pi\)
−0.559123 + 0.829085i \(0.688862\pi\)
\(542\) −5.27699e6 5.27699e6i −0.771593 0.771593i
\(543\) 0 0
\(544\) 2.76978e6i 0.401280i
\(545\) 0 0
\(546\) 0 0
\(547\) −8.10895e6 + 8.10895e6i −1.15877 + 1.15877i −0.174027 + 0.984741i \(0.555678\pi\)
−0.984741 + 0.174027i \(0.944322\pi\)
\(548\) −1.16860e6 + 1.16860e6i −0.166232 + 0.166232i
\(549\) 0 0
\(550\) 0 0
\(551\) 5.99996e6i 0.841917i
\(552\) 0 0
\(553\) 422874. + 422874.i 0.0588029 + 0.0588029i
\(554\) 8.32729e6 1.15273
\(555\) 0 0
\(556\) 1.11998e6 0.153646
\(557\) −7.99279e6 7.99279e6i −1.09159 1.09159i −0.995359 0.0962338i \(-0.969320\pi\)
−0.0962338 0.995359i \(-0.530680\pi\)
\(558\) 0 0
\(559\) 1.16943e7i 1.58286i
\(560\) 0 0
\(561\) 0 0
\(562\) 4.63163e6 4.63163e6i 0.618576 0.618576i
\(563\) 4.58626e6 4.58626e6i 0.609801 0.609801i −0.333093 0.942894i \(-0.608092\pi\)
0.942894 + 0.333093i \(0.108092\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 91181.1i 0.0119637i
\(567\) 0 0
\(568\) −3.10290e6 3.10290e6i −0.403550 0.403550i
\(569\) −3.63459e6 −0.470624 −0.235312 0.971920i \(-0.575611\pi\)
−0.235312 + 0.971920i \(0.575611\pi\)
\(570\) 0 0
\(571\) 3.08250e6 0.395652 0.197826 0.980237i \(-0.436612\pi\)
0.197826 + 0.980237i \(0.436612\pi\)
\(572\) −781713. 781713.i −0.0998982 0.0998982i
\(573\) 0 0
\(574\) 2.71443e6i 0.343874i
\(575\) 0 0
\(576\) 0 0
\(577\) 3.08704e6 3.08704e6i 0.386014 0.386014i −0.487249 0.873263i \(-0.662000\pi\)
0.873263 + 0.487249i \(0.162000\pi\)
\(578\) 1.18979e6 1.18979e6i 0.148132 0.148132i
\(579\) 0 0
\(580\) 0 0
\(581\) 3.43105e6i 0.421684i
\(582\) 0 0
\(583\) −175935. 175935.i −0.0214378 0.0214378i
\(584\) 992668. 0.120440
\(585\) 0 0
\(586\) 5.43311e6 0.653589
\(587\) −635529. 635529.i −0.0761272 0.0761272i 0.668018 0.744145i \(-0.267143\pi\)
−0.744145 + 0.668018i \(0.767143\pi\)
\(588\) 0 0
\(589\) 1.55081e7i 1.84192i
\(590\) 0 0
\(591\) 0 0
\(592\) 4.18196e6 4.18196e6i 0.490428 0.490428i
\(593\) −4.12654e6 + 4.12654e6i −0.481892 + 0.481892i −0.905735 0.423843i \(-0.860681\pi\)
0.423843 + 0.905735i \(0.360681\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.26809e6i 0.146229i
\(597\) 0 0
\(598\) −2.79033e6 2.79033e6i −0.319082 0.319082i
\(599\) −9.76542e6 −1.11205 −0.556025 0.831166i \(-0.687674\pi\)
−0.556025 + 0.831166i \(0.687674\pi\)
\(600\) 0 0
\(601\) 1.09854e7 1.24059 0.620297 0.784367i \(-0.287012\pi\)
0.620297 + 0.784367i \(0.287012\pi\)
\(602\) 1.65022e6 + 1.65022e6i 0.185588 + 0.185588i
\(603\) 0 0
\(604\) 2.75510e6i 0.307287i
\(605\) 0 0
\(606\) 0 0
\(607\) −3.19843e6 + 3.19843e6i −0.352343 + 0.352343i −0.860981 0.508638i \(-0.830149\pi\)
0.508638 + 0.860981i \(0.330149\pi\)
\(608\) 3.05754e6 3.05754e6i 0.335438 0.335438i
\(609\) 0 0
\(610\) 0 0
\(611\) 1.32842e7i 1.43957i
\(612\) 0 0
\(613\) −7.58934e6 7.58934e6i −0.815742 0.815742i 0.169746 0.985488i \(-0.445705\pi\)
−0.985488 + 0.169746i \(0.945705\pi\)
\(614\) −2.77971e6 −0.297563
\(615\) 0 0
\(616\) −1.15774e6 −0.122930
\(617\) −7.77526e6 7.77526e6i −0.822247 0.822247i 0.164183 0.986430i \(-0.447501\pi\)
−0.986430 + 0.164183i \(0.947501\pi\)
\(618\) 0 0
\(619\) 8.12168e6i 0.851960i −0.904733 0.425980i \(-0.859929\pi\)
0.904733 0.425980i \(-0.140071\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2.53961e6 2.53961e6i 0.263203 0.263203i
\(623\) −1.17278e6 + 1.17278e6i −0.121059 + 0.121059i
\(624\) 0 0
\(625\) 0 0
\(626\) 6.79604e6i 0.693139i
\(627\) 0 0
\(628\) 2.53158e6 + 2.53158e6i 0.256149 + 0.256149i
\(629\) −8.46262e6 −0.852860
\(630\) 0 0
\(631\) 6.96100e6 0.695983 0.347991 0.937498i \(-0.386864\pi\)
0.347991 + 0.937498i \(0.386864\pi\)
\(632\) −2.42414e6 2.42414e6i −0.241416 0.241416i
\(633\) 0 0
\(634\) 7.13824e6i 0.705291i
\(635\) 0 0
\(636\) 0 0
\(637\) 9.35238e6 9.35238e6i 0.913216 0.913216i
\(638\) 2.24534e6 2.24534e6i 0.218389 0.218389i
\(639\) 0 0
\(640\) 0 0
\(641\) 2.95734e6i 0.284286i −0.989846 0.142143i \(-0.954601\pi\)
0.989846 0.142143i \(-0.0453993\pi\)
\(642\) 0 0
\(643\) −6.84906e6 6.84906e6i −0.653287 0.653287i 0.300496 0.953783i \(-0.402848\pi\)
−0.953783 + 0.300496i \(0.902848\pi\)
\(644\) 242485. 0.0230393
\(645\) 0 0
\(646\) 8.33728e6 0.786037
\(647\) −7.70791e6 7.70791e6i −0.723896 0.723896i 0.245501 0.969396i \(-0.421048\pi\)
−0.969396 + 0.245501i \(0.921048\pi\)
\(648\) 0 0
\(649\) 8.07493e6i 0.752536i
\(650\) 0 0
\(651\) 0 0
\(652\) 3.20650e6 3.20650e6i 0.295401 0.295401i
\(653\) −1.24415e7 + 1.24415e7i −1.14180 + 1.14180i −0.153682 + 0.988120i \(0.549113\pi\)
−0.988120 + 0.153682i \(0.950887\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.16823e7i 1.05991i
\(657\) 0 0
\(658\) 1.87457e6 + 1.87457e6i 0.168787 + 0.168787i
\(659\) 2.14806e7 1.92679 0.963393 0.268092i \(-0.0863933\pi\)
0.963393 + 0.268092i \(0.0863933\pi\)
\(660\) 0 0
\(661\) 7.56548e6 0.673493 0.336746 0.941595i \(-0.390673\pi\)
0.336746 + 0.941595i \(0.390673\pi\)
\(662\) 2.23949e6 + 2.23949e6i 0.198612 + 0.198612i
\(663\) 0 0
\(664\) 1.96686e7i 1.73123i
\(665\) 0 0
\(666\) 0 0
\(667\) −2.46786e6 + 2.46786e6i −0.214786 + 0.214786i
\(668\) 2.05512e6 2.05512e6i 0.178195 0.178195i
\(669\) 0 0
\(670\) 0 0
\(671\) 9.05924e6i 0.776757i
\(672\) 0 0
\(673\) 1.45146e7 + 1.45146e7i 1.23529 + 1.23529i 0.961906 + 0.273381i \(0.0881420\pi\)
0.273381 + 0.961906i \(0.411858\pi\)
\(674\) −6.23802e6 −0.528929
\(675\) 0 0
\(676\) 2.58819e6 0.217836
\(677\) 6.19483e6 + 6.19483e6i 0.519467 + 0.519467i 0.917410 0.397943i \(-0.130276\pi\)
−0.397943 + 0.917410i \(0.630276\pi\)
\(678\) 0 0
\(679\) 381531.i 0.0317581i
\(680\) 0 0
\(681\) 0 0
\(682\) 5.80355e6 5.80355e6i 0.477785 0.477785i
\(683\) −1.43009e7 + 1.43009e7i −1.17303 + 1.17303i −0.191550 + 0.981483i \(0.561351\pi\)
−0.981483 + 0.191550i \(0.938649\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 5.47532e6i 0.444221i
\(687\) 0 0
\(688\) −7.10216e6 7.10216e6i −0.572031 0.572031i
\(689\) 1.21204e6 0.0972682
\(690\) 0 0
\(691\) −1.62663e6 −0.129596 −0.0647982 0.997898i \(-0.520640\pi\)
−0.0647982 + 0.997898i \(0.520640\pi\)
\(692\) −1.25673e6 1.25673e6i −0.0997644 0.0997644i
\(693\) 0 0
\(694\) 1.64627e7i 1.29748i
\(695\) 0 0
\(696\) 0 0
\(697\) −1.18202e7 + 1.18202e7i −0.921597 + 0.921597i
\(698\) −2.73316e6 + 2.73316e6i −0.212337 + 0.212337i
\(699\) 0 0
\(700\) 0 0
\(701\) 3.74205e6i 0.287617i 0.989606 + 0.143809i \(0.0459350\pi\)
−0.989606 + 0.143809i \(0.954065\pi\)
\(702\) 0 0
\(703\) 9.34182e6 + 9.34182e6i 0.712924 + 0.712924i
\(704\) 6.32157e6 0.480721
\(705\) 0 0
\(706\) −9.47510e6 −0.715438
\(707\) −1.66709e6 1.66709e6i −0.125432 0.125432i
\(708\) 0 0
\(709\) 288785.i 0.0215754i −0.999942 0.0107877i \(-0.996566\pi\)
0.999942 0.0107877i \(-0.00343389\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.72303e6 6.72303e6i 0.497010 0.497010i
\(713\) −6.37870e6 + 6.37870e6i −0.469903 + 0.469903i
\(714\) 0 0
\(715\) 0 0
\(716\) 4.91181e6i 0.358063i
\(717\) 0 0
\(718\) 1.08688e7 + 1.08688e7i 0.786812 + 0.786812i
\(719\) −2.55140e7 −1.84059 −0.920294 0.391228i \(-0.872050\pi\)
−0.920294 + 0.391228i \(0.872050\pi\)
\(720\) 0 0
\(721\) −3.19399e6 −0.228821
\(722\) −543050. 543050.i −0.0387701 0.0387701i
\(723\) 0 0
\(724\) 1.86099e6i 0.131946i
\(725\) 0 0
\(726\) 0 0
\(727\) 1.35802e7 1.35802e7i 0.952949 0.952949i −0.0459929 0.998942i \(-0.514645\pi\)
0.998942 + 0.0459929i \(0.0146452\pi\)
\(728\) 3.98793e6 3.98793e6i 0.278881 0.278881i
\(729\) 0 0
\(730\) 0 0
\(731\) 1.43719e7i 0.994768i
\(732\) 0 0
\(733\) −9.25323e6 9.25323e6i −0.636111 0.636111i 0.313483 0.949594i \(-0.398504\pi\)
−0.949594 + 0.313483i \(0.898504\pi\)
\(734\) 8.80907e6 0.603517
\(735\) 0 0
\(736\) −2.51521e6 −0.171151
\(737\) 5.41754e6 + 5.41754e6i 0.367395 + 0.367395i
\(738\) 0 0
\(739\) 1.43488e7i 0.966503i −0.875482 0.483251i \(-0.839456\pi\)
0.875482 0.483251i \(-0.160544\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 171036. 171036.i 0.0114045 0.0114045i
\(743\) 1.33920e7 1.33920e7i 0.889966 0.889966i −0.104553 0.994519i \(-0.533341\pi\)
0.994519 + 0.104553i \(0.0333413\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 5.11428e6i 0.336463i
\(747\) 0 0
\(748\) −960704. 960704.i −0.0627821 0.0627821i
\(749\) 4.08949e6 0.266357
\(750\) 0 0
\(751\) −1.51119e7 −0.977729 −0.488865 0.872360i \(-0.662589\pi\)
−0.488865 + 0.872360i \(0.662589\pi\)
\(752\) −8.06774e6 8.06774e6i −0.520244 0.520244i
\(753\) 0 0
\(754\) 1.54685e7i 0.990880i
\(755\) 0 0
\(756\) 0 0
\(757\) −1.61045e7 + 1.61045e7i −1.02143 + 1.02143i −0.0216614 + 0.999765i \(0.506896\pi\)
−0.999765 + 0.0216614i \(0.993104\pi\)
\(758\) 1.43982e7 1.43982e7i 0.910198 0.910198i
\(759\) 0 0
\(760\) 0 0
\(761\) 2.01897e7i 1.26377i −0.775061 0.631886i \(-0.782281\pi\)
0.775061 0.631886i \(-0.217719\pi\)
\(762\) 0 0
\(763\) −1.04489e6 1.04489e6i −0.0649769 0.0649769i
\(764\) 477970. 0.0296256
\(765\) 0 0
\(766\) 6.98430e6 0.430082
\(767\) 2.78148e7 + 2.78148e7i 1.70721 + 1.70721i
\(768\) 0 0
\(769\) 6.14899e6i 0.374963i 0.982268 + 0.187481i \(0.0600324\pi\)
−0.982268 + 0.187481i \(0.939968\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.38978e6 + 1.38978e6i −0.0839270 + 0.0839270i
\(773\) 5.16075e6 5.16075e6i 0.310645 0.310645i −0.534515 0.845159i \(-0.679506\pi\)
0.845159 + 0.534515i \(0.179506\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 2.18714e6i 0.130383i
\(777\) 0 0
\(778\) 6.34698e6 + 6.34698e6i 0.375940 + 0.375940i
\(779\) 2.60964e7 1.54076
\(780\) 0 0
\(781\) 3.89481e6 0.228486
\(782\) −3.42924e6 3.42924e6i −0.200530 0.200530i
\(783\) 0 0
\(784\) 1.13598e7i 0.660054i
\(785\) 0 0
\(786\) 0 0
\(787\) −2.01433e7 + 2.01433e7i −1.15929 + 1.15929i −0.174666 + 0.984628i \(0.555884\pi\)
−0.984628 + 0.174666i \(0.944116\pi\)
\(788\) 1.15886e6 1.15886e6i 0.0664836 0.0664836i
\(789\) 0 0
\(790\) 0 0
\(791\) 4.71719e6i 0.268066i
\(792\) 0 0
\(793\) −3.12053e7 3.12053e7i −1.76216 1.76216i
\(794\) −911180. −0.0512924
\(795\) 0 0
\(796\) 665576. 0.0372319
\(797\) −1.26474e7 1.26474e7i −0.705268 0.705268i 0.260269 0.965536i \(-0.416189\pi\)
−0.965536 + 0.260269i \(0.916189\pi\)
\(798\) 0 0
\(799\) 1.63259e7i 0.904711i
\(800\) 0 0
\(801\) 0 0
\(802\) −6.00937e6 + 6.00937e6i −0.329908 + 0.329908i
\(803\) −623006. + 623006.i −0.0340960 + 0.0340960i
\(804\) 0 0
\(805\) 0 0
\(806\) 3.99816e7i 2.16782i
\(807\) 0 0
\(808\) 9.55663e6 + 9.55663e6i 0.514963 + 0.514963i
\(809\) −2.22055e7 −1.19286 −0.596428 0.802666i \(-0.703414\pi\)
−0.596428 + 0.802666i \(0.703414\pi\)
\(810\) 0 0
\(811\) −1.63199e7 −0.871297 −0.435648 0.900117i \(-0.643481\pi\)
−0.435648 + 0.900117i \(0.643481\pi\)
\(812\) −672123. 672123.i −0.0357733 0.0357733i
\(813\) 0 0
\(814\) 6.99191e6i 0.369858i
\(815\) 0 0
\(816\) 0 0
\(817\) 1.58651e7 1.58651e7i 0.831547 0.831547i
\(818\) 1.01216e7 1.01216e7i 0.528890 0.528890i
\(819\) 0 0
\(820\) 0 0
\(821\) 1.30178e7i 0.674030i −0.941499 0.337015i \(-0.890583\pi\)
0.941499 0.337015i \(-0.109417\pi\)
\(822\) 0 0
\(823\) −1.21922e6 1.21922e6i −0.0627457 0.0627457i 0.675038 0.737783i \(-0.264127\pi\)
−0.737783 + 0.675038i \(0.764127\pi\)
\(824\) 1.83097e7 0.939425
\(825\) 0 0
\(826\) 7.85008e6 0.400335
\(827\) 1.43495e7 + 1.43495e7i 0.729578 + 0.729578i 0.970536 0.240957i \(-0.0774614\pi\)
−0.240957 + 0.970536i \(0.577461\pi\)
\(828\) 0 0
\(829\) 1.26744e7i 0.640530i 0.947328 + 0.320265i \(0.103772\pi\)
−0.947328 + 0.320265i \(0.896228\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −2.17752e7 + 2.17752e7i −1.09057 + 1.09057i
\(833\) 1.14938e7 1.14938e7i 0.573921 0.573921i
\(834\) 0 0
\(835\) 0 0
\(836\) 2.12103e6i 0.104962i
\(837\) 0 0
\(838\) −500914. 500914.i −0.0246407 0.0246407i
\(839\) −2.29844e7 −1.12727 −0.563636 0.826023i \(-0.690598\pi\)
−0.563636 + 0.826023i \(0.690598\pi\)
\(840\) 0 0
\(841\) −6.83023e6 −0.333001
\(842\) 4.68837e6 + 4.68837e6i 0.227898 + 0.227898i
\(843\) 0 0
\(844\) 1.66059e6i 0.0802428i
\(845\) 0 0
\(846\) 0 0
\(847\) −3.15805e6 + 3.15805e6i −0.151255 + 0.151255i
\(848\) −736099. + 736099.i −0.0351517 + 0.0351517i
\(849\) 0 0
\(850\) 0 0
\(851\) 7.68483e6i 0.363756i
\(852\) 0 0
\(853\) 7.90959e6 + 7.90959e6i 0.372204 + 0.372204i 0.868280 0.496075i \(-0.165226\pi\)
−0.496075 + 0.868280i \(0.665226\pi\)
\(854\) −8.80697e6 −0.413221
\(855\) 0 0
\(856\) −2.34432e7 −1.09353
\(857\) −4.10620e6 4.10620e6i −0.190980 0.190980i 0.605139 0.796120i \(-0.293117\pi\)
−0.796120 + 0.605139i \(0.793117\pi\)
\(858\) 0 0
\(859\) 8.04118e6i 0.371824i −0.982566 0.185912i \(-0.940476\pi\)
0.982566 0.185912i \(-0.0595239\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −2.35228e7 + 2.35228e7i −1.07826 + 1.07826i
\(863\) 7.70658e6 7.70658e6i 0.352237 0.352237i −0.508704 0.860941i \(-0.669875\pi\)
0.860941 + 0.508704i \(0.169875\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 3.45380e6i 0.156496i
\(867\) 0 0
\(868\) −1.73724e6 1.73724e6i −0.0782636 0.0782636i
\(869\) 3.04282e6 0.136687
\(870\) 0 0
\(871\) −3.73223e7 −1.66695
\(872\) 5.98986e6 + 5.98986e6i 0.266763 + 0.266763i
\(873\) 0 0
\(874\) 7.57101e6i 0.335255i
\(875\) 0 0
\(876\) 0 0
\(877\) 2.59846e7 2.59846e7i 1.14082 1.14082i 0.152521 0.988300i \(-0.451261\pi\)
0.988300 0.152521i \(-0.0487393\pi\)
\(878\) −2.46205e7 + 2.46205e7i −1.07786 + 1.07786i
\(879\) 0 0
\(880\) 0 0
\(881\) 2.62840e7i 1.14091i 0.821329 + 0.570455i \(0.193233\pi\)
−0.821329 + 0.570455i \(0.806767\pi\)
\(882\) 0 0
\(883\) 2.82514e7 + 2.82514e7i 1.21938 + 1.21938i 0.967850 + 0.251530i \(0.0809336\pi\)
0.251530 + 0.967850i \(0.419066\pi\)
\(884\) 6.61845e6 0.284856
\(885\) 0 0
\(886\) 1.00462e7 0.429951
\(887\) 3.11073e7 + 3.11073e7i 1.32756 + 1.32756i 0.907496 + 0.420061i \(0.137991\pi\)
0.420061 + 0.907496i \(0.362009\pi\)
\(888\) 0 0
\(889\) 6.59692e6i 0.279954i
\(890\) 0 0
\(891\) 0 0
\(892\) 4.14611e6 4.14611e6i 0.174473 0.174473i
\(893\) 1.80220e7 1.80220e7i 0.756266 0.756266i
\(894\) 0 0
\(895\) 0 0
\(896\) 3.23582e6i 0.134652i
\(897\) 0 0
\(898\) 1.27158e7 + 1.27158e7i 0.526201 + 0.526201i
\(899\) 3.53611e7 1.45924
\(900\) 0 0
\(901\) 1.48957e6 0.0611292
\(902\) 9.76595e6 + 9.76595e6i 0.399667 + 0.399667i
\(903\) 0 0
\(904\) 2.70415e7i 1.10055i
\(905\) 0 0
\(906\) 0 0
\(907\) −1.56307e7 + 1.56307e7i −0.630900 + 0.630900i −0.948294 0.317393i \(-0.897192\pi\)
0.317393 + 0.948294i \(0.397192\pi\)
\(908\) −244506. + 244506.i −0.00984181 + 0.00984181i
\(909\) 0 0
\(910\) 0 0
\(911\) 1.64166e7i 0.655371i −0.944787 0.327685i \(-0.893731\pi\)
0.944787 0.327685i \(-0.106269\pi\)
\(912\) 0 0
\(913\) −1.23442e7 1.23442e7i −0.490101 0.490101i
\(914\) 1.20748e7 0.478096
\(915\) 0 0
\(916\) 2.93713e6 0.115661
\(917\) 215451. + 215451.i 0.00846108 + 0.00846108i
\(918\) 0 0
\(919\) 6.26477e6i 0.244690i −0.992488 0.122345i \(-0.960959\pi\)
0.992488 0.122345i \(-0.0390414\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 5.56501e6 5.56501e6i 0.215595 0.215595i
\(923\) −1.34160e7 + 1.34160e7i −0.518345 + 0.518345i
\(924\) 0 0
\(925\) 0 0
\(926\) 3.96372e7i 1.51906i
\(927\) 0 0
\(928\) 6.97171e6 + 6.97171e6i 0.265748 + 0.265748i
\(929\) 2.18132e7 0.829241 0.414620 0.909995i \(-0.363914\pi\)
0.414620 + 0.909995i \(0.363914\pi\)
\(930\) 0 0
\(931\) −2.53759e7 −0.959504
\(932\) −5.55828e6 5.55828e6i −0.209604 0.209604i
\(933\) 0 0
\(934\) 1.49893e7i 0.562230i
\(935\) 0 0
\(936\) 0 0
\(937\) 1.22575e7 1.22575e7i 0.456093 0.456093i −0.441277 0.897371i \(-0.645475\pi\)
0.897371 + 0.441277i \(0.145475\pi\)
\(938\) −5.26668e6 + 5.26668e6i −0.195447 + 0.195447i
\(939\) 0 0
\(940\) 0 0
\(941\) 1.86115e7i 0.685183i 0.939484 + 0.342592i \(0.111305\pi\)
−0.939484 + 0.342592i \(0.888695\pi\)
\(942\) 0 0
\(943\) −1.07338e7 1.07338e7i −0.393074 0.393074i
\(944\) −3.37849e7 −1.23394
\(945\) 0 0
\(946\) 1.18743e7 0.431399
\(947\) −1.15031e7 1.15031e7i −0.416811 0.416811i 0.467292 0.884103i \(-0.345230\pi\)
−0.884103 + 0.467292i \(0.845230\pi\)
\(948\) 0 0
\(949\) 4.29199e6i 0.154701i
\(950\) 0 0
\(951\) 0 0
\(952\) 4.90105e6 4.90105e6i 0.175266 0.175266i
\(953\) −2.82233e7 + 2.82233e7i −1.00664 + 1.00664i −0.00666540 + 0.999978i \(0.502122\pi\)
−0.999978 + 0.00666540i \(0.997878\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 2.76895e6i 0.0979873i
\(957\) 0 0
\(958\) −2.72739e6 2.72739e6i −0.0960138 0.0960138i
\(959\) 7.48313e6 0.262746
\(960\) 0 0
\(961\) 6.27689e7 2.19248
\(962\) −2.40842e7 2.40842e7i −0.839064 0.839064i
\(963\) 0 0
\(964\) 8.29866e6i 0.287618i
\(965\) 0 0
\(966\) 0 0
\(967\) 2.24829e7 2.24829e7i 0.773191 0.773191i −0.205472 0.978663i \(-0.565873\pi\)
0.978663 + 0.205472i \(0.0658729\pi\)
\(968\) 1.81037e7 1.81037e7i 0.620980 0.620980i
\(969\) 0 0
\(970\) 0 0
\(971\) 3.49863e7i 1.19083i 0.803418 + 0.595416i \(0.203013\pi\)
−0.803418 + 0.595416i \(0.796987\pi\)
\(972\) 0 0
\(973\) −3.58590e6 3.58590e6i −0.121427 0.121427i
\(974\) −1.47901e7 −0.499545
\(975\) 0 0
\(976\) 3.79032e7 1.27365
\(977\) −1.51625e7 1.51625e7i −0.508200 0.508200i 0.405774 0.913974i \(-0.367002\pi\)
−0.913974 + 0.405774i \(0.867002\pi\)
\(978\) 0 0
\(979\) 8.43886e6i 0.281402i
\(980\) 0 0
\(981\) 0 0
\(982\) −7.69880e6 + 7.69880e6i −0.254768 + 0.254768i
\(983\) 1.33195e7 1.33195e7i 0.439648 0.439648i −0.452245 0.891894i \(-0.649377\pi\)
0.891894 + 0.452245i \(0.149377\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1.90104e7i 0.622729i
\(987\) 0 0
\(988\) −7.30606e6 7.30606e6i −0.238117 0.238117i
\(989\) −1.30510e7 −0.424282
\(990\) 0 0
\(991\) 5.61948e6 0.181766 0.0908829 0.995862i \(-0.471031\pi\)
0.0908829 + 0.995862i \(0.471031\pi\)
\(992\) 1.80198e7 + 1.80198e7i 0.581394 + 0.581394i
\(993\) 0 0
\(994\) 3.78635e6i 0.121550i
\(995\) 0 0
\(996\) 0 0
\(997\) −7.08932e6 + 7.08932e6i −0.225874 + 0.225874i −0.810967 0.585092i \(-0.801058\pi\)
0.585092 + 0.810967i \(0.301058\pi\)
\(998\) −1.00513e6 + 1.00513e6i −0.0319446 + 0.0319446i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.6.f.b.143.8 20
3.2 odd 2 inner 225.6.f.b.143.3 20
5.2 odd 4 inner 225.6.f.b.107.3 20
5.3 odd 4 45.6.f.a.17.8 yes 20
5.4 even 2 45.6.f.a.8.3 20
15.2 even 4 inner 225.6.f.b.107.8 20
15.8 even 4 45.6.f.a.17.3 yes 20
15.14 odd 2 45.6.f.a.8.8 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.6.f.a.8.3 20 5.4 even 2
45.6.f.a.8.8 yes 20 15.14 odd 2
45.6.f.a.17.3 yes 20 15.8 even 4
45.6.f.a.17.8 yes 20 5.3 odd 4
225.6.f.b.107.3 20 5.2 odd 4 inner
225.6.f.b.107.8 20 15.2 even 4 inner
225.6.f.b.143.3 20 3.2 odd 2 inner
225.6.f.b.143.8 20 1.1 even 1 trivial