Properties

Label 225.5.g.c.82.1
Level $225$
Weight $5$
Character 225.82
Analytic conductor $23.258$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,5,Mod(82,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.82"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 225.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,10,0,0,0,0,-80,-180,0,0,-200,0,-410,0,0,-712] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2582416939\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 82.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 225.82
Dual form 225.5.g.c.118.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.00000 + 5.00000i) q^{2} +34.0000i q^{4} +(-40.0000 - 40.0000i) q^{7} +(-90.0000 + 90.0000i) q^{8} -100.000 q^{11} +(-205.000 + 205.000i) q^{13} -400.000i q^{14} -356.000 q^{16} +(-235.000 - 235.000i) q^{17} +72.0000i q^{19} +(-500.000 - 500.000i) q^{22} +(-340.000 + 340.000i) q^{23} -2050.00 q^{26} +(1360.00 - 1360.00i) q^{28} +450.000i q^{29} +428.000 q^{31} +(-340.000 - 340.000i) q^{32} -2350.00i q^{34} +(755.000 + 755.000i) q^{37} +(-360.000 + 360.000i) q^{38} +950.000 q^{41} +(1220.00 - 1220.00i) q^{43} -3400.00i q^{44} -3400.00 q^{46} +(320.000 + 320.000i) q^{47} +799.000i q^{49} +(-6970.00 - 6970.00i) q^{52} +(-505.000 + 505.000i) q^{53} +7200.00 q^{56} +(-2250.00 + 2250.00i) q^{58} +6300.00i q^{59} -3808.00 q^{61} +(2140.00 + 2140.00i) q^{62} +2296.00i q^{64} +(-340.000 - 340.000i) q^{67} +(7990.00 - 7990.00i) q^{68} -3400.00 q^{71} +(-415.000 + 415.000i) q^{73} +7550.00i q^{74} -2448.00 q^{76} +(4000.00 + 4000.00i) q^{77} -6732.00i q^{79} +(4750.00 + 4750.00i) q^{82} +(680.000 - 680.000i) q^{83} +12200.0 q^{86} +(9000.00 - 9000.00i) q^{88} +2250.00i q^{89} +16400.0 q^{91} +(-11560.0 - 11560.0i) q^{92} +3200.00i q^{94} +(-1615.00 - 1615.00i) q^{97} +(-3995.00 + 3995.00i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{2} - 80 q^{7} - 180 q^{8} - 200 q^{11} - 410 q^{13} - 712 q^{16} - 470 q^{17} - 1000 q^{22} - 680 q^{23} - 4100 q^{26} + 2720 q^{28} + 856 q^{31} - 680 q^{32} + 1510 q^{37} - 720 q^{38} + 1900 q^{41}+ \cdots - 7990 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.00000 + 5.00000i 1.25000 + 1.25000i 0.955719 + 0.294281i \(0.0950802\pi\)
0.294281 + 0.955719i \(0.404920\pi\)
\(3\) 0 0
\(4\) 34.0000i 2.12500i
\(5\) 0 0
\(6\) 0 0
\(7\) −40.0000 40.0000i −0.816327 0.816327i 0.169247 0.985574i \(-0.445866\pi\)
−0.985574 + 0.169247i \(0.945866\pi\)
\(8\) −90.0000 + 90.0000i −1.40625 + 1.40625i
\(9\) 0 0
\(10\) 0 0
\(11\) −100.000 −0.826446 −0.413223 0.910630i \(-0.635597\pi\)
−0.413223 + 0.910630i \(0.635597\pi\)
\(12\) 0 0
\(13\) −205.000 + 205.000i −1.21302 + 1.21302i −0.242989 + 0.970029i \(0.578128\pi\)
−0.970029 + 0.242989i \(0.921872\pi\)
\(14\) 400.000i 2.04082i
\(15\) 0 0
\(16\) −356.000 −1.39062
\(17\) −235.000 235.000i −0.813149 0.813149i 0.171956 0.985105i \(-0.444991\pi\)
−0.985105 + 0.171956i \(0.944991\pi\)
\(18\) 0 0
\(19\) 72.0000i 0.199446i 0.995015 + 0.0997230i \(0.0317957\pi\)
−0.995015 + 0.0997230i \(0.968204\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −500.000 500.000i −1.03306 1.03306i
\(23\) −340.000 + 340.000i −0.642722 + 0.642722i −0.951224 0.308502i \(-0.900172\pi\)
0.308502 + 0.951224i \(0.400172\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2050.00 −3.03254
\(27\) 0 0
\(28\) 1360.00 1360.00i 1.73469 1.73469i
\(29\) 450.000i 0.535077i 0.963547 + 0.267539i \(0.0862103\pi\)
−0.963547 + 0.267539i \(0.913790\pi\)
\(30\) 0 0
\(31\) 428.000 0.445369 0.222685 0.974891i \(-0.428518\pi\)
0.222685 + 0.974891i \(0.428518\pi\)
\(32\) −340.000 340.000i −0.332031 0.332031i
\(33\) 0 0
\(34\) 2350.00i 2.03287i
\(35\) 0 0
\(36\) 0 0
\(37\) 755.000 + 755.000i 0.551497 + 0.551497i 0.926873 0.375375i \(-0.122486\pi\)
−0.375375 + 0.926873i \(0.622486\pi\)
\(38\) −360.000 + 360.000i −0.249307 + 0.249307i
\(39\) 0 0
\(40\) 0 0
\(41\) 950.000 0.565140 0.282570 0.959247i \(-0.408813\pi\)
0.282570 + 0.959247i \(0.408813\pi\)
\(42\) 0 0
\(43\) 1220.00 1220.00i 0.659816 0.659816i −0.295520 0.955336i \(-0.595493\pi\)
0.955336 + 0.295520i \(0.0954930\pi\)
\(44\) 3400.00i 1.75620i
\(45\) 0 0
\(46\) −3400.00 −1.60681
\(47\) 320.000 + 320.000i 0.144862 + 0.144862i 0.775818 0.630956i \(-0.217337\pi\)
−0.630956 + 0.775818i \(0.717337\pi\)
\(48\) 0 0
\(49\) 799.000i 0.332778i
\(50\) 0 0
\(51\) 0 0
\(52\) −6970.00 6970.00i −2.57766 2.57766i
\(53\) −505.000 + 505.000i −0.179779 + 0.179779i −0.791260 0.611480i \(-0.790574\pi\)
0.611480 + 0.791260i \(0.290574\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 7200.00 2.29592
\(57\) 0 0
\(58\) −2250.00 + 2250.00i −0.668847 + 0.668847i
\(59\) 6300.00i 1.80982i 0.425598 + 0.904912i \(0.360064\pi\)
−0.425598 + 0.904912i \(0.639936\pi\)
\(60\) 0 0
\(61\) −3808.00 −1.02338 −0.511690 0.859170i \(-0.670981\pi\)
−0.511690 + 0.859170i \(0.670981\pi\)
\(62\) 2140.00 + 2140.00i 0.556712 + 0.556712i
\(63\) 0 0
\(64\) 2296.00i 0.560547i
\(65\) 0 0
\(66\) 0 0
\(67\) −340.000 340.000i −0.0757407 0.0757407i 0.668222 0.743962i \(-0.267056\pi\)
−0.743962 + 0.668222i \(0.767056\pi\)
\(68\) 7990.00 7990.00i 1.72794 1.72794i
\(69\) 0 0
\(70\) 0 0
\(71\) −3400.00 −0.674469 −0.337235 0.941421i \(-0.609492\pi\)
−0.337235 + 0.941421i \(0.609492\pi\)
\(72\) 0 0
\(73\) −415.000 + 415.000i −0.0778758 + 0.0778758i −0.744972 0.667096i \(-0.767537\pi\)
0.667096 + 0.744972i \(0.267537\pi\)
\(74\) 7550.00i 1.37874i
\(75\) 0 0
\(76\) −2448.00 −0.423823
\(77\) 4000.00 + 4000.00i 0.674650 + 0.674650i
\(78\) 0 0
\(79\) 6732.00i 1.07867i −0.842090 0.539337i \(-0.818675\pi\)
0.842090 0.539337i \(-0.181325\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 4750.00 + 4750.00i 0.706425 + 0.706425i
\(83\) 680.000 680.000i 0.0987081 0.0987081i −0.656028 0.754736i \(-0.727765\pi\)
0.754736 + 0.656028i \(0.227765\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 12200.0 1.64954
\(87\) 0 0
\(88\) 9000.00 9000.00i 1.16219 1.16219i
\(89\) 2250.00i 0.284055i 0.989863 + 0.142028i \(0.0453622\pi\)
−0.989863 + 0.142028i \(0.954638\pi\)
\(90\) 0 0
\(91\) 16400.0 1.98044
\(92\) −11560.0 11560.0i −1.36578 1.36578i
\(93\) 0 0
\(94\) 3200.00i 0.362155i
\(95\) 0 0
\(96\) 0 0
\(97\) −1615.00 1615.00i −0.171644 0.171644i 0.616057 0.787701i \(-0.288729\pi\)
−0.787701 + 0.616057i \(0.788729\pi\)
\(98\) −3995.00 + 3995.00i −0.415973 + 0.415973i
\(99\) 0 0
\(100\) 0 0
\(101\) −13600.0 −1.33320 −0.666601 0.745414i \(-0.732252\pi\)
−0.666601 + 0.745414i \(0.732252\pi\)
\(102\) 0 0
\(103\) 5780.00 5780.00i 0.544820 0.544820i −0.380118 0.924938i \(-0.624117\pi\)
0.924938 + 0.380118i \(0.124117\pi\)
\(104\) 36900.0i 3.41161i
\(105\) 0 0
\(106\) −5050.00 −0.449448
\(107\) 12860.0 + 12860.0i 1.12324 + 1.12324i 0.991251 + 0.131991i \(0.0421371\pi\)
0.131991 + 0.991251i \(0.457863\pi\)
\(108\) 0 0
\(109\) 8262.00i 0.695396i −0.937607 0.347698i \(-0.886963\pi\)
0.937607 0.347698i \(-0.113037\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 14240.0 + 14240.0i 1.13520 + 1.13520i
\(113\) −16405.0 + 16405.0i −1.28475 + 1.28475i −0.346821 + 0.937931i \(0.612739\pi\)
−0.937931 + 0.346821i \(0.887261\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −15300.0 −1.13704
\(117\) 0 0
\(118\) −31500.0 + 31500.0i −2.26228 + 2.26228i
\(119\) 18800.0i 1.32759i
\(120\) 0 0
\(121\) −4641.00 −0.316987
\(122\) −19040.0 19040.0i −1.27923 1.27923i
\(123\) 0 0
\(124\) 14552.0i 0.946410i
\(125\) 0 0
\(126\) 0 0
\(127\) 13940.0 + 13940.0i 0.864282 + 0.864282i 0.991832 0.127550i \(-0.0407114\pi\)
−0.127550 + 0.991832i \(0.540711\pi\)
\(128\) −16920.0 + 16920.0i −1.03271 + 1.03271i
\(129\) 0 0
\(130\) 0 0
\(131\) −22900.0 −1.33442 −0.667211 0.744869i \(-0.732512\pi\)
−0.667211 + 0.744869i \(0.732512\pi\)
\(132\) 0 0
\(133\) 2880.00 2880.00i 0.162813 0.162813i
\(134\) 3400.00i 0.189352i
\(135\) 0 0
\(136\) 42300.0 2.28698
\(137\) 7925.00 + 7925.00i 0.422239 + 0.422239i 0.885974 0.463735i \(-0.153491\pi\)
−0.463735 + 0.885974i \(0.653491\pi\)
\(138\) 0 0
\(139\) 27792.0i 1.43843i 0.694785 + 0.719217i \(0.255499\pi\)
−0.694785 + 0.719217i \(0.744501\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −17000.0 17000.0i −0.843087 0.843087i
\(143\) 20500.0 20500.0i 1.00249 1.00249i
\(144\) 0 0
\(145\) 0 0
\(146\) −4150.00 −0.194689
\(147\) 0 0
\(148\) −25670.0 + 25670.0i −1.17193 + 1.17193i
\(149\) 25200.0i 1.13508i −0.823344 0.567542i \(-0.807894\pi\)
0.823344 0.567542i \(-0.192106\pi\)
\(150\) 0 0
\(151\) −22852.0 −1.00224 −0.501118 0.865379i \(-0.667078\pi\)
−0.501118 + 0.865379i \(0.667078\pi\)
\(152\) −6480.00 6480.00i −0.280471 0.280471i
\(153\) 0 0
\(154\) 40000.0i 1.68663i
\(155\) 0 0
\(156\) 0 0
\(157\) 1325.00 + 1325.00i 0.0537547 + 0.0537547i 0.733473 0.679718i \(-0.237898\pi\)
−0.679718 + 0.733473i \(0.737898\pi\)
\(158\) 33660.0 33660.0i 1.34834 1.34834i
\(159\) 0 0
\(160\) 0 0
\(161\) 27200.0 1.04934
\(162\) 0 0
\(163\) 22400.0 22400.0i 0.843088 0.843088i −0.146171 0.989259i \(-0.546695\pi\)
0.989259 + 0.146171i \(0.0466951\pi\)
\(164\) 32300.0i 1.20092i
\(165\) 0 0
\(166\) 6800.00 0.246770
\(167\) −27880.0 27880.0i −0.999677 0.999677i 0.000322656 1.00000i \(-0.499897\pi\)
−1.00000 0.000322656i \(0.999897\pi\)
\(168\) 0 0
\(169\) 55489.0i 1.94282i
\(170\) 0 0
\(171\) 0 0
\(172\) 41480.0 + 41480.0i 1.40211 + 1.40211i
\(173\) −19975.0 + 19975.0i −0.667413 + 0.667413i −0.957116 0.289704i \(-0.906443\pi\)
0.289704 + 0.957116i \(0.406443\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 35600.0 1.14928
\(177\) 0 0
\(178\) −11250.0 + 11250.0i −0.355069 + 0.355069i
\(179\) 45900.0i 1.43254i 0.697823 + 0.716270i \(0.254152\pi\)
−0.697823 + 0.716270i \(0.745848\pi\)
\(180\) 0 0
\(181\) 15878.0 0.484662 0.242331 0.970194i \(-0.422088\pi\)
0.242331 + 0.970194i \(0.422088\pi\)
\(182\) 82000.0 + 82000.0i 2.47555 + 2.47555i
\(183\) 0 0
\(184\) 61200.0i 1.80766i
\(185\) 0 0
\(186\) 0 0
\(187\) 23500.0 + 23500.0i 0.672024 + 0.672024i
\(188\) −10880.0 + 10880.0i −0.307832 + 0.307832i
\(189\) 0 0
\(190\) 0 0
\(191\) 17000.0 0.465996 0.232998 0.972477i \(-0.425146\pi\)
0.232998 + 0.972477i \(0.425146\pi\)
\(192\) 0 0
\(193\) 31025.0 31025.0i 0.832908 0.832908i −0.155005 0.987914i \(-0.549539\pi\)
0.987914 + 0.155005i \(0.0495395\pi\)
\(194\) 16150.0i 0.429110i
\(195\) 0 0
\(196\) −27166.0 −0.707153
\(197\) 665.000 + 665.000i 0.0171352 + 0.0171352i 0.715622 0.698487i \(-0.246143\pi\)
−0.698487 + 0.715622i \(0.746143\pi\)
\(198\) 0 0
\(199\) 30852.0i 0.779071i −0.921011 0.389536i \(-0.872636\pi\)
0.921011 0.389536i \(-0.127364\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −68000.0 68000.0i −1.66650 1.66650i
\(203\) 18000.0 18000.0i 0.436798 0.436798i
\(204\) 0 0
\(205\) 0 0
\(206\) 57800.0 1.36205
\(207\) 0 0
\(208\) 72980.0 72980.0i 1.68685 1.68685i
\(209\) 7200.00i 0.164831i
\(210\) 0 0
\(211\) 77792.0 1.74731 0.873655 0.486546i \(-0.161743\pi\)
0.873655 + 0.486546i \(0.161743\pi\)
\(212\) −17170.0 17170.0i −0.382031 0.382031i
\(213\) 0 0
\(214\) 128600.i 2.80811i
\(215\) 0 0
\(216\) 0 0
\(217\) −17120.0 17120.0i −0.363567 0.363567i
\(218\) 41310.0 41310.0i 0.869245 0.869245i
\(219\) 0 0
\(220\) 0 0
\(221\) 96350.0 1.97273
\(222\) 0 0
\(223\) −32980.0 + 32980.0i −0.663195 + 0.663195i −0.956132 0.292937i \(-0.905367\pi\)
0.292937 + 0.956132i \(0.405367\pi\)
\(224\) 27200.0i 0.542092i
\(225\) 0 0
\(226\) −164050. −3.21188
\(227\) −20740.0 20740.0i −0.402492 0.402492i 0.476618 0.879110i \(-0.341862\pi\)
−0.879110 + 0.476618i \(0.841862\pi\)
\(228\) 0 0
\(229\) 25632.0i 0.488778i 0.969677 + 0.244389i \(0.0785874\pi\)
−0.969677 + 0.244389i \(0.921413\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −40500.0 40500.0i −0.752452 0.752452i
\(233\) 5525.00 5525.00i 0.101770 0.101770i −0.654388 0.756159i \(-0.727074\pi\)
0.756159 + 0.654388i \(0.227074\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −214200. −3.84588
\(237\) 0 0
\(238\) −94000.0 + 94000.0i −1.65949 + 1.65949i
\(239\) 86400.0i 1.51258i −0.654237 0.756289i \(-0.727010\pi\)
0.654237 0.756289i \(-0.272990\pi\)
\(240\) 0 0
\(241\) 32912.0 0.566657 0.283328 0.959023i \(-0.408561\pi\)
0.283328 + 0.959023i \(0.408561\pi\)
\(242\) −23205.0 23205.0i −0.396233 0.396233i
\(243\) 0 0
\(244\) 129472.i 2.17468i
\(245\) 0 0
\(246\) 0 0
\(247\) −14760.0 14760.0i −0.241932 0.241932i
\(248\) −38520.0 + 38520.0i −0.626301 + 0.626301i
\(249\) 0 0
\(250\) 0 0
\(251\) −54700.0 −0.868240 −0.434120 0.900855i \(-0.642941\pi\)
−0.434120 + 0.900855i \(0.642941\pi\)
\(252\) 0 0
\(253\) 34000.0 34000.0i 0.531175 0.531175i
\(254\) 139400.i 2.16070i
\(255\) 0 0
\(256\) −132464. −2.02124
\(257\) −28645.0 28645.0i −0.433693 0.433693i 0.456189 0.889883i \(-0.349214\pi\)
−0.889883 + 0.456189i \(0.849214\pi\)
\(258\) 0 0
\(259\) 60400.0i 0.900404i
\(260\) 0 0
\(261\) 0 0
\(262\) −114500. 114500.i −1.66803 1.66803i
\(263\) 5360.00 5360.00i 0.0774914 0.0774914i −0.667299 0.744790i \(-0.732550\pi\)
0.744790 + 0.667299i \(0.232550\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 28800.0 0.407033
\(267\) 0 0
\(268\) 11560.0 11560.0i 0.160949 0.160949i
\(269\) 68400.0i 0.945261i −0.881261 0.472630i \(-0.843305\pi\)
0.881261 0.472630i \(-0.156695\pi\)
\(270\) 0 0
\(271\) −57868.0 −0.787952 −0.393976 0.919121i \(-0.628901\pi\)
−0.393976 + 0.919121i \(0.628901\pi\)
\(272\) 83660.0 + 83660.0i 1.13079 + 1.13079i
\(273\) 0 0
\(274\) 79250.0i 1.05560i
\(275\) 0 0
\(276\) 0 0
\(277\) 67235.0 + 67235.0i 0.876266 + 0.876266i 0.993146 0.116880i \(-0.0372894\pi\)
−0.116880 + 0.993146i \(0.537289\pi\)
\(278\) −138960. + 138960.i −1.79804 + 1.79804i
\(279\) 0 0
\(280\) 0 0
\(281\) −97750.0 −1.23795 −0.618976 0.785410i \(-0.712452\pi\)
−0.618976 + 0.785410i \(0.712452\pi\)
\(282\) 0 0
\(283\) 47900.0 47900.0i 0.598085 0.598085i −0.341718 0.939803i \(-0.611009\pi\)
0.939803 + 0.341718i \(0.111009\pi\)
\(284\) 115600.i 1.43325i
\(285\) 0 0
\(286\) 205000. 2.50624
\(287\) −38000.0 38000.0i −0.461339 0.461339i
\(288\) 0 0
\(289\) 26929.0i 0.322422i
\(290\) 0 0
\(291\) 0 0
\(292\) −14110.0 14110.0i −0.165486 0.165486i
\(293\) 48215.0 48215.0i 0.561626 0.561626i −0.368143 0.929769i \(-0.620006\pi\)
0.929769 + 0.368143i \(0.120006\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −135900. −1.55109
\(297\) 0 0
\(298\) 126000. 126000.i 1.41886 1.41886i
\(299\) 139400.i 1.55927i
\(300\) 0 0
\(301\) −97600.0 −1.07725
\(302\) −114260. 114260.i −1.25280 1.25280i
\(303\) 0 0
\(304\) 25632.0i 0.277355i
\(305\) 0 0
\(306\) 0 0
\(307\) 53720.0 + 53720.0i 0.569980 + 0.569980i 0.932123 0.362143i \(-0.117955\pi\)
−0.362143 + 0.932123i \(0.617955\pi\)
\(308\) −136000. + 136000.i −1.43363 + 1.43363i
\(309\) 0 0
\(310\) 0 0
\(311\) 136400. 1.41024 0.705121 0.709087i \(-0.250893\pi\)
0.705121 + 0.709087i \(0.250893\pi\)
\(312\) 0 0
\(313\) 48065.0 48065.0i 0.490614 0.490614i −0.417885 0.908500i \(-0.637229\pi\)
0.908500 + 0.417885i \(0.137229\pi\)
\(314\) 13250.0i 0.134387i
\(315\) 0 0
\(316\) 228888. 2.29218
\(317\) 12425.0 + 12425.0i 0.123645 + 0.123645i 0.766222 0.642576i \(-0.222134\pi\)
−0.642576 + 0.766222i \(0.722134\pi\)
\(318\) 0 0
\(319\) 45000.0i 0.442213i
\(320\) 0 0
\(321\) 0 0
\(322\) 136000. + 136000.i 1.31168 + 1.31168i
\(323\) 16920.0 16920.0i 0.162179 0.162179i
\(324\) 0 0
\(325\) 0 0
\(326\) 224000. 2.10772
\(327\) 0 0
\(328\) −85500.0 + 85500.0i −0.794728 + 0.794728i
\(329\) 25600.0i 0.236509i
\(330\) 0 0
\(331\) −13528.0 −0.123475 −0.0617373 0.998092i \(-0.519664\pi\)
−0.0617373 + 0.998092i \(0.519664\pi\)
\(332\) 23120.0 + 23120.0i 0.209755 + 0.209755i
\(333\) 0 0
\(334\) 278800.i 2.49919i
\(335\) 0 0
\(336\) 0 0
\(337\) −20815.0 20815.0i −0.183281 0.183281i 0.609503 0.792784i \(-0.291369\pi\)
−0.792784 + 0.609503i \(0.791369\pi\)
\(338\) 277445. 277445.i 2.42853 2.42853i
\(339\) 0 0
\(340\) 0 0
\(341\) −42800.0 −0.368074
\(342\) 0 0
\(343\) −64080.0 + 64080.0i −0.544671 + 0.544671i
\(344\) 219600.i 1.85573i
\(345\) 0 0
\(346\) −199750. −1.66853
\(347\) 158780. + 158780.i 1.31867 + 1.31867i 0.914828 + 0.403845i \(0.132326\pi\)
0.403845 + 0.914828i \(0.367674\pi\)
\(348\) 0 0
\(349\) 116352.i 0.955263i 0.878560 + 0.477632i \(0.158505\pi\)
−0.878560 + 0.477632i \(0.841495\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 34000.0 + 34000.0i 0.274406 + 0.274406i
\(353\) −18085.0 + 18085.0i −0.145134 + 0.145134i −0.775940 0.630806i \(-0.782724\pi\)
0.630806 + 0.775940i \(0.282724\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −76500.0 −0.603617
\(357\) 0 0
\(358\) −229500. + 229500.i −1.79067 + 1.79067i
\(359\) 223200.i 1.73183i 0.500191 + 0.865915i \(0.333263\pi\)
−0.500191 + 0.865915i \(0.666737\pi\)
\(360\) 0 0
\(361\) 125137. 0.960221
\(362\) 79390.0 + 79390.0i 0.605827 + 0.605827i
\(363\) 0 0
\(364\) 557600.i 4.20843i
\(365\) 0 0
\(366\) 0 0
\(367\) −78880.0 78880.0i −0.585645 0.585645i 0.350804 0.936449i \(-0.385908\pi\)
−0.936449 + 0.350804i \(0.885908\pi\)
\(368\) 121040. 121040.i 0.893785 0.893785i
\(369\) 0 0
\(370\) 0 0
\(371\) 40400.0 0.293517
\(372\) 0 0
\(373\) −83725.0 + 83725.0i −0.601780 + 0.601780i −0.940785 0.339005i \(-0.889910\pi\)
0.339005 + 0.940785i \(0.389910\pi\)
\(374\) 235000.i 1.68006i
\(375\) 0 0
\(376\) −57600.0 −0.407424
\(377\) −92250.0 92250.0i −0.649058 0.649058i
\(378\) 0 0
\(379\) 101232.i 0.704757i 0.935858 + 0.352378i \(0.114627\pi\)
−0.935858 + 0.352378i \(0.885373\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 85000.0 + 85000.0i 0.582495 + 0.582495i
\(383\) −142540. + 142540.i −0.971716 + 0.971716i −0.999611 0.0278952i \(-0.991120\pi\)
0.0278952 + 0.999611i \(0.491120\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 310250. 2.08227
\(387\) 0 0
\(388\) 54910.0 54910.0i 0.364744 0.364744i
\(389\) 100800.i 0.666134i 0.942903 + 0.333067i \(0.108083\pi\)
−0.942903 + 0.333067i \(0.891917\pi\)
\(390\) 0 0
\(391\) 159800. 1.04526
\(392\) −71910.0 71910.0i −0.467969 0.467969i
\(393\) 0 0
\(394\) 6650.00i 0.0428380i
\(395\) 0 0
\(396\) 0 0
\(397\) −123805. 123805.i −0.785520 0.785520i 0.195236 0.980756i \(-0.437453\pi\)
−0.980756 + 0.195236i \(0.937453\pi\)
\(398\) 154260. 154260.i 0.973839 0.973839i
\(399\) 0 0
\(400\) 0 0
\(401\) −25600.0 −0.159203 −0.0796015 0.996827i \(-0.525365\pi\)
−0.0796015 + 0.996827i \(0.525365\pi\)
\(402\) 0 0
\(403\) −87740.0 + 87740.0i −0.540241 + 0.540241i
\(404\) 462400.i 2.83306i
\(405\) 0 0
\(406\) 180000. 1.09199
\(407\) −75500.0 75500.0i −0.455783 0.455783i
\(408\) 0 0
\(409\) 313938.i 1.87671i −0.345672 0.938355i \(-0.612349\pi\)
0.345672 0.938355i \(-0.387651\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 196520. + 196520.i 1.15774 + 1.15774i
\(413\) 252000. 252000.i 1.47741 1.47741i
\(414\) 0 0
\(415\) 0 0
\(416\) 139400. 0.805520
\(417\) 0 0
\(418\) 36000.0 36000.0i 0.206039 0.206039i
\(419\) 197100.i 1.12269i −0.827583 0.561343i \(-0.810285\pi\)
0.827583 0.561343i \(-0.189715\pi\)
\(420\) 0 0
\(421\) −111232. −0.627575 −0.313787 0.949493i \(-0.601598\pi\)
−0.313787 + 0.949493i \(0.601598\pi\)
\(422\) 388960. + 388960.i 2.18414 + 2.18414i
\(423\) 0 0
\(424\) 90900.0i 0.505629i
\(425\) 0 0
\(426\) 0 0
\(427\) 152320. + 152320.i 0.835413 + 0.835413i
\(428\) −437240. + 437240.i −2.38689 + 2.38689i
\(429\) 0 0
\(430\) 0 0
\(431\) 151400. 0.815026 0.407513 0.913199i \(-0.366396\pi\)
0.407513 + 0.913199i \(0.366396\pi\)
\(432\) 0 0
\(433\) 117215. 117215.i 0.625183 0.625183i −0.321669 0.946852i \(-0.604244\pi\)
0.946852 + 0.321669i \(0.104244\pi\)
\(434\) 171200.i 0.908917i
\(435\) 0 0
\(436\) 280908. 1.47772
\(437\) −24480.0 24480.0i −0.128188 0.128188i
\(438\) 0 0
\(439\) 158508.i 0.822474i 0.911528 + 0.411237i \(0.134903\pi\)
−0.911528 + 0.411237i \(0.865097\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 481750. + 481750.i 2.46591 + 2.46591i
\(443\) −142420. + 142420.i −0.725711 + 0.725711i −0.969762 0.244052i \(-0.921523\pi\)
0.244052 + 0.969762i \(0.421523\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −329800. −1.65799
\(447\) 0 0
\(448\) 91840.0 91840.0i 0.457589 0.457589i
\(449\) 367200.i 1.82142i 0.413047 + 0.910710i \(0.364465\pi\)
−0.413047 + 0.910710i \(0.635535\pi\)
\(450\) 0 0
\(451\) −95000.0 −0.467058
\(452\) −557770. 557770.i −2.73010 2.73010i
\(453\) 0 0
\(454\) 207400.i 1.00623i
\(455\) 0 0
\(456\) 0 0
\(457\) −278545. 278545.i −1.33371 1.33371i −0.902019 0.431695i \(-0.857916\pi\)
−0.431695 0.902019i \(-0.642084\pi\)
\(458\) −128160. + 128160.i −0.610972 + 0.610972i
\(459\) 0 0
\(460\) 0 0
\(461\) −197200. −0.927908 −0.463954 0.885859i \(-0.653570\pi\)
−0.463954 + 0.885859i \(0.653570\pi\)
\(462\) 0 0
\(463\) −101320. + 101320.i −0.472643 + 0.472643i −0.902769 0.430126i \(-0.858469\pi\)
0.430126 + 0.902769i \(0.358469\pi\)
\(464\) 160200.i 0.744092i
\(465\) 0 0
\(466\) 55250.0 0.254425
\(467\) 122480. + 122480.i 0.561606 + 0.561606i 0.929763 0.368158i \(-0.120011\pi\)
−0.368158 + 0.929763i \(0.620011\pi\)
\(468\) 0 0
\(469\) 27200.0i 0.123658i
\(470\) 0 0
\(471\) 0 0
\(472\) −567000. 567000.i −2.54507 2.54507i
\(473\) −122000. + 122000.i −0.545303 + 0.545303i
\(474\) 0 0
\(475\) 0 0
\(476\) −639200. −2.82113
\(477\) 0 0
\(478\) 432000. 432000.i 1.89072 1.89072i
\(479\) 14400.0i 0.0627612i 0.999508 + 0.0313806i \(0.00999040\pi\)
−0.999508 + 0.0313806i \(0.990010\pi\)
\(480\) 0 0
\(481\) −309550. −1.33795
\(482\) 164560. + 164560.i 0.708321 + 0.708321i
\(483\) 0 0
\(484\) 157794.i 0.673596i
\(485\) 0 0
\(486\) 0 0
\(487\) 226700. + 226700.i 0.955858 + 0.955858i 0.999066 0.0432076i \(-0.0137577\pi\)
−0.0432076 + 0.999066i \(0.513758\pi\)
\(488\) 342720. 342720.i 1.43913 1.43913i
\(489\) 0 0
\(490\) 0 0
\(491\) −354100. −1.46880 −0.734400 0.678716i \(-0.762537\pi\)
−0.734400 + 0.678716i \(0.762537\pi\)
\(492\) 0 0
\(493\) 105750. 105750.i 0.435097 0.435097i
\(494\) 147600.i 0.604829i
\(495\) 0 0
\(496\) −152368. −0.619342
\(497\) 136000. + 136000.i 0.550587 + 0.550587i
\(498\) 0 0
\(499\) 227448.i 0.913442i 0.889610 + 0.456721i \(0.150976\pi\)
−0.889610 + 0.456721i \(0.849024\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −273500. 273500.i −1.08530 1.08530i
\(503\) −164800. + 164800.i −0.651360 + 0.651360i −0.953321 0.301960i \(-0.902359\pi\)
0.301960 + 0.953321i \(0.402359\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 340000. 1.32794
\(507\) 0 0
\(508\) −473960. + 473960.i −1.83660 + 1.83660i
\(509\) 420750.i 1.62401i 0.583651 + 0.812005i \(0.301624\pi\)
−0.583651 + 0.812005i \(0.698376\pi\)
\(510\) 0 0
\(511\) 33200.0 0.127144
\(512\) −391600. 391600.i −1.49384 1.49384i
\(513\) 0 0
\(514\) 286450.i 1.08423i
\(515\) 0 0
\(516\) 0 0
\(517\) −32000.0 32000.0i −0.119721 0.119721i
\(518\) 302000. 302000.i 1.12550 1.12550i
\(519\) 0 0
\(520\) 0 0
\(521\) 56000.0 0.206306 0.103153 0.994665i \(-0.467107\pi\)
0.103153 + 0.994665i \(0.467107\pi\)
\(522\) 0 0
\(523\) −262360. + 262360.i −0.959167 + 0.959167i −0.999198 0.0400314i \(-0.987254\pi\)
0.0400314 + 0.999198i \(0.487254\pi\)
\(524\) 778600.i 2.83564i
\(525\) 0 0
\(526\) 53600.0 0.193728
\(527\) −100580. 100580.i −0.362152 0.362152i
\(528\) 0 0
\(529\) 48641.0i 0.173817i
\(530\) 0 0
\(531\) 0 0
\(532\) 97920.0 + 97920.0i 0.345978 + 0.345978i
\(533\) −194750. + 194750.i −0.685525 + 0.685525i
\(534\) 0 0
\(535\) 0 0
\(536\) 61200.0 0.213021
\(537\) 0 0
\(538\) 342000. 342000.i 1.18158 1.18158i
\(539\) 79900.0i 0.275023i
\(540\) 0 0
\(541\) −298438. −1.01967 −0.509835 0.860272i \(-0.670294\pi\)
−0.509835 + 0.860272i \(0.670294\pi\)
\(542\) −289340. 289340.i −0.984940 0.984940i
\(543\) 0 0
\(544\) 159800.i 0.539982i
\(545\) 0 0
\(546\) 0 0
\(547\) −72580.0 72580.0i −0.242573 0.242573i 0.575341 0.817914i \(-0.304869\pi\)
−0.817914 + 0.575341i \(0.804869\pi\)
\(548\) −269450. + 269450.i −0.897257 + 0.897257i
\(549\) 0 0
\(550\) 0 0
\(551\) −32400.0 −0.106719
\(552\) 0 0
\(553\) −269280. + 269280.i −0.880550 + 0.880550i
\(554\) 672350.i 2.19066i
\(555\) 0 0
\(556\) −944928. −3.05667
\(557\) 319175. + 319175.i 1.02877 + 1.02877i 0.999574 + 0.0291968i \(0.00929494\pi\)
0.0291968 + 0.999574i \(0.490705\pi\)
\(558\) 0 0
\(559\) 500200.i 1.60074i
\(560\) 0 0
\(561\) 0 0
\(562\) −488750. 488750.i −1.54744 1.54744i
\(563\) 187940. 187940.i 0.592929 0.592929i −0.345493 0.938421i \(-0.612288\pi\)
0.938421 + 0.345493i \(0.112288\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 479000. 1.49521
\(567\) 0 0
\(568\) 306000. 306000.i 0.948473 0.948473i
\(569\) 223200.i 0.689397i −0.938713 0.344699i \(-0.887981\pi\)
0.938713 0.344699i \(-0.112019\pi\)
\(570\) 0 0
\(571\) 468032. 1.43550 0.717750 0.696301i \(-0.245172\pi\)
0.717750 + 0.696301i \(0.245172\pi\)
\(572\) 697000. + 697000.i 2.13030 + 2.13030i
\(573\) 0 0
\(574\) 380000.i 1.15335i
\(575\) 0 0
\(576\) 0 0
\(577\) −325855. 325855.i −0.978752 0.978752i 0.0210267 0.999779i \(-0.493307\pi\)
−0.999779 + 0.0210267i \(0.993307\pi\)
\(578\) −134645. + 134645.i −0.403027 + 0.403027i
\(579\) 0 0
\(580\) 0 0
\(581\) −54400.0 −0.161156
\(582\) 0 0
\(583\) 50500.0 50500.0i 0.148578 0.148578i
\(584\) 74700.0i 0.219026i
\(585\) 0 0
\(586\) 482150. 1.40406
\(587\) 112460. + 112460.i 0.326379 + 0.326379i 0.851208 0.524829i \(-0.175871\pi\)
−0.524829 + 0.851208i \(0.675871\pi\)
\(588\) 0 0
\(589\) 30816.0i 0.0888271i
\(590\) 0 0
\(591\) 0 0
\(592\) −268780. 268780.i −0.766926 0.766926i
\(593\) 398645. 398645.i 1.13364 1.13364i 0.144078 0.989566i \(-0.453978\pi\)
0.989566 0.144078i \(-0.0460217\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 856800. 2.41205
\(597\) 0 0
\(598\) 697000. 697000.i 1.94908 1.94908i
\(599\) 336600.i 0.938124i 0.883165 + 0.469062i \(0.155408\pi\)
−0.883165 + 0.469062i \(0.844592\pi\)
\(600\) 0 0
\(601\) −352.000 −0.000974527 −0.000487263 1.00000i \(-0.500155\pi\)
−0.000487263 1.00000i \(0.500155\pi\)
\(602\) −488000. 488000.i −1.34656 1.34656i
\(603\) 0 0
\(604\) 776968.i 2.12975i
\(605\) 0 0
\(606\) 0 0
\(607\) 323840. + 323840.i 0.878928 + 0.878928i 0.993424 0.114496i \(-0.0365253\pi\)
−0.114496 + 0.993424i \(0.536525\pi\)
\(608\) 24480.0 24480.0i 0.0662223 0.0662223i
\(609\) 0 0
\(610\) 0 0
\(611\) −131200. −0.351440
\(612\) 0 0
\(613\) −267715. + 267715.i −0.712446 + 0.712446i −0.967046 0.254601i \(-0.918056\pi\)
0.254601 + 0.967046i \(0.418056\pi\)
\(614\) 537200.i 1.42495i
\(615\) 0 0
\(616\) −720000. −1.89745
\(617\) 34085.0 + 34085.0i 0.0895350 + 0.0895350i 0.750456 0.660921i \(-0.229834\pi\)
−0.660921 + 0.750456i \(0.729834\pi\)
\(618\) 0 0
\(619\) 126072.i 0.329031i −0.986374 0.164516i \(-0.947394\pi\)
0.986374 0.164516i \(-0.0526061\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 682000. + 682000.i 1.76280 + 1.76280i
\(623\) 90000.0 90000.0i 0.231882 0.231882i
\(624\) 0 0
\(625\) 0 0
\(626\) 480650. 1.22654
\(627\) 0 0
\(628\) −45050.0 + 45050.0i −0.114229 + 0.114229i
\(629\) 354850.i 0.896899i
\(630\) 0 0
\(631\) 440372. 1.10601 0.553007 0.833176i \(-0.313480\pi\)
0.553007 + 0.833176i \(0.313480\pi\)
\(632\) 605880. + 605880.i 1.51688 + 1.51688i
\(633\) 0 0
\(634\) 124250.i 0.309113i
\(635\) 0 0
\(636\) 0 0
\(637\) −163795. 163795.i −0.403666 0.403666i
\(638\) 225000. 225000.i 0.552766 0.552766i
\(639\) 0 0
\(640\) 0 0
\(641\) −90550.0 −0.220380 −0.110190 0.993911i \(-0.535146\pi\)
−0.110190 + 0.993911i \(0.535146\pi\)
\(642\) 0 0
\(643\) −30760.0 + 30760.0i −0.0743985 + 0.0743985i −0.743327 0.668928i \(-0.766753\pi\)
0.668928 + 0.743327i \(0.266753\pi\)
\(644\) 924800.i 2.22985i
\(645\) 0 0
\(646\) 169200. 0.405448
\(647\) −166600. 166600.i −0.397985 0.397985i 0.479537 0.877522i \(-0.340805\pi\)
−0.877522 + 0.479537i \(0.840805\pi\)
\(648\) 0 0
\(649\) 630000.i 1.49572i
\(650\) 0 0
\(651\) 0 0
\(652\) 761600. + 761600.i 1.79156 + 1.79156i
\(653\) −349945. + 349945.i −0.820679 + 0.820679i −0.986205 0.165526i \(-0.947068\pi\)
0.165526 + 0.986205i \(0.447068\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −338200. −0.785898
\(657\) 0 0
\(658\) 128000. 128000.i 0.295637 0.295637i
\(659\) 407700.i 0.938793i −0.882987 0.469397i \(-0.844471\pi\)
0.882987 0.469397i \(-0.155529\pi\)
\(660\) 0 0
\(661\) −740992. −1.69594 −0.847970 0.530044i \(-0.822175\pi\)
−0.847970 + 0.530044i \(0.822175\pi\)
\(662\) −67640.0 67640.0i −0.154343 0.154343i
\(663\) 0 0
\(664\) 122400.i 0.277616i
\(665\) 0 0
\(666\) 0 0
\(667\) −153000. 153000.i −0.343906 0.343906i
\(668\) 947920. 947920.i 2.12431 2.12431i
\(669\) 0 0
\(670\) 0 0
\(671\) 380800. 0.845769
\(672\) 0 0
\(673\) 258575. 258575.i 0.570895 0.570895i −0.361483 0.932379i \(-0.617730\pi\)
0.932379 + 0.361483i \(0.117730\pi\)
\(674\) 208150.i 0.458202i
\(675\) 0 0
\(676\) 1.88663e6 4.12850
\(677\) −499945. 499945.i −1.09080 1.09080i −0.995443 0.0953562i \(-0.969601\pi\)
−0.0953562 0.995443i \(-0.530399\pi\)
\(678\) 0 0
\(679\) 129200.i 0.280235i
\(680\) 0 0
\(681\) 0 0
\(682\) −214000. 214000.i −0.460092 0.460092i
\(683\) 266840. 266840.i 0.572018 0.572018i −0.360674 0.932692i \(-0.617453\pi\)
0.932692 + 0.360674i \(0.117453\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −640800. −1.36168
\(687\) 0 0
\(688\) −434320. + 434320.i −0.917557 + 0.917557i
\(689\) 207050.i 0.436151i
\(690\) 0 0
\(691\) −141112. −0.295534 −0.147767 0.989022i \(-0.547209\pi\)
−0.147767 + 0.989022i \(0.547209\pi\)
\(692\) −679150. 679150.i −1.41825 1.41825i
\(693\) 0 0
\(694\) 1.58780e6i 3.29668i
\(695\) 0 0
\(696\) 0 0
\(697\) −223250. 223250.i −0.459543 0.459543i
\(698\) −581760. + 581760.i −1.19408 + 1.19408i
\(699\) 0 0
\(700\) 0 0
\(701\) 708050. 1.44088 0.720440 0.693517i \(-0.243940\pi\)
0.720440 + 0.693517i \(0.243940\pi\)
\(702\) 0 0
\(703\) −54360.0 + 54360.0i −0.109994 + 0.109994i
\(704\) 229600.i 0.463262i
\(705\) 0 0
\(706\) −180850. −0.362835
\(707\) 544000. + 544000.i 1.08833 + 1.08833i
\(708\) 0 0
\(709\) 474912.i 0.944758i 0.881395 + 0.472379i \(0.156605\pi\)
−0.881395 + 0.472379i \(0.843395\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −202500. 202500.i −0.399452 0.399452i
\(713\) −145520. + 145520.i −0.286249 + 0.286249i
\(714\) 0 0
\(715\) 0 0
\(716\) −1.56060e6 −3.04415
\(717\) 0 0
\(718\) −1.11600e6 + 1.11600e6i −2.16479 + 2.16479i
\(719\) 527400.i 1.02019i 0.860117 + 0.510097i \(0.170390\pi\)
−0.860117 + 0.510097i \(0.829610\pi\)
\(720\) 0 0
\(721\) −462400. −0.889503
\(722\) 625685. + 625685.i 1.20028 + 1.20028i
\(723\) 0 0
\(724\) 539852.i 1.02991i
\(725\) 0 0
\(726\) 0 0
\(727\) 315860. + 315860.i 0.597621 + 0.597621i 0.939679 0.342058i \(-0.111124\pi\)
−0.342058 + 0.939679i \(0.611124\pi\)
\(728\) −1.47600e6 + 1.47600e6i −2.78499 + 2.78499i
\(729\) 0 0
\(730\) 0 0
\(731\) −573400. −1.07306
\(732\) 0 0
\(733\) 325325. 325325.i 0.605494 0.605494i −0.336272 0.941765i \(-0.609166\pi\)
0.941765 + 0.336272i \(0.109166\pi\)
\(734\) 788800.i 1.46411i
\(735\) 0 0
\(736\) 231200. 0.426808
\(737\) 34000.0 + 34000.0i 0.0625956 + 0.0625956i
\(738\) 0 0
\(739\) 388008.i 0.710480i −0.934775 0.355240i \(-0.884399\pi\)
0.934775 0.355240i \(-0.115601\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 202000. + 202000.i 0.366896 + 0.366896i
\(743\) 256700. 256700.i 0.464995 0.464995i −0.435294 0.900289i \(-0.643355\pi\)
0.900289 + 0.435294i \(0.143355\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −837250. −1.50445
\(747\) 0 0
\(748\) −799000. + 799000.i −1.42805 + 1.42805i
\(749\) 1.02880e6i 1.83386i
\(750\) 0 0
\(751\) 532148. 0.943523 0.471762 0.881726i \(-0.343618\pi\)
0.471762 + 0.881726i \(0.343618\pi\)
\(752\) −113920. 113920.i −0.201449 0.201449i
\(753\) 0 0
\(754\) 922500.i 1.62265i
\(755\) 0 0
\(756\) 0 0
\(757\) −54685.0 54685.0i −0.0954281 0.0954281i 0.657781 0.753209i \(-0.271495\pi\)
−0.753209 + 0.657781i \(0.771495\pi\)
\(758\) −506160. + 506160.i −0.880946 + 0.880946i
\(759\) 0 0
\(760\) 0 0
\(761\) 399200. 0.689321 0.344660 0.938727i \(-0.387994\pi\)
0.344660 + 0.938727i \(0.387994\pi\)
\(762\) 0 0
\(763\) −330480. + 330480.i −0.567670 + 0.567670i
\(764\) 578000.i 0.990241i
\(765\) 0 0
\(766\) −1.42540e6 −2.42929
\(767\) −1.29150e6 1.29150e6i −2.19535 2.19535i
\(768\) 0 0
\(769\) 714528.i 1.20828i 0.796879 + 0.604139i \(0.206483\pi\)
−0.796879 + 0.604139i \(0.793517\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.05485e6 + 1.05485e6i 1.76993 + 1.76993i
\(773\) −360055. + 360055.i −0.602573 + 0.602573i −0.940995 0.338421i \(-0.890107\pi\)
0.338421 + 0.940995i \(0.390107\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 290700. 0.482749
\(777\) 0 0
\(778\) −504000. + 504000.i −0.832667 + 0.832667i
\(779\) 68400.0i 0.112715i
\(780\) 0 0
\(781\) 340000. 0.557413
\(782\) 799000. + 799000.i 1.30657 + 1.30657i
\(783\) 0 0
\(784\) 284444.i 0.462769i
\(785\) 0 0
\(786\) 0 0
\(787\) 324200. + 324200.i 0.523436 + 0.523436i 0.918607 0.395171i \(-0.129315\pi\)
−0.395171 + 0.918607i \(0.629315\pi\)
\(788\) −22610.0 + 22610.0i −0.0364123 + 0.0364123i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.31240e6 2.09755
\(792\) 0 0
\(793\) 780640. 780640.i 1.24138 1.24138i
\(794\) 1.23805e6i 1.96380i
\(795\) 0 0
\(796\) 1.04897e6 1.65553
\(797\) −743065. 743065.i −1.16980 1.16980i −0.982257 0.187539i \(-0.939949\pi\)
−0.187539 0.982257i \(-0.560051\pi\)
\(798\) 0 0
\(799\) 150400.i 0.235589i
\(800\) 0 0
\(801\) 0 0
\(802\) −128000. 128000.i −0.199004 0.199004i
\(803\) 41500.0 41500.0i 0.0643601 0.0643601i
\(804\) 0 0
\(805\) 0 0
\(806\) −877400. −1.35060
\(807\) 0 0
\(808\) 1.22400e6 1.22400e6i 1.87482 1.87482i
\(809\) 772650.i 1.18055i −0.807201 0.590277i \(-0.799019\pi\)
0.807201 0.590277i \(-0.200981\pi\)
\(810\) 0 0
\(811\) −104992. −0.159630 −0.0798150 0.996810i \(-0.525433\pi\)
−0.0798150 + 0.996810i \(0.525433\pi\)
\(812\) 612000. + 612000.i 0.928195 + 0.928195i
\(813\) 0 0
\(814\) 755000.i 1.13946i
\(815\) 0 0
\(816\) 0 0
\(817\) 87840.0 + 87840.0i 0.131598 + 0.131598i
\(818\) 1.56969e6 1.56969e6i 2.34589 2.34589i
\(819\) 0 0
\(820\) 0 0
\(821\) −862750. −1.27997 −0.639983 0.768389i \(-0.721059\pi\)
−0.639983 + 0.768389i \(0.721059\pi\)
\(822\) 0 0
\(823\) −323980. + 323980.i −0.478320 + 0.478320i −0.904594 0.426274i \(-0.859826\pi\)
0.426274 + 0.904594i \(0.359826\pi\)
\(824\) 1.04040e6i 1.53231i
\(825\) 0 0
\(826\) 2.52000e6 3.69352
\(827\) −80920.0 80920.0i −0.118316 0.118316i 0.645470 0.763786i \(-0.276662\pi\)
−0.763786 + 0.645470i \(0.776662\pi\)
\(828\) 0 0
\(829\) 1.10342e6i 1.60558i −0.596264 0.802788i \(-0.703349\pi\)
0.596264 0.802788i \(-0.296651\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −470680. 470680.i −0.679953 0.679953i
\(833\) 187765. 187765.i 0.270598 0.270598i
\(834\) 0 0
\(835\) 0 0
\(836\) 244800. 0.350267
\(837\) 0 0
\(838\) 985500. 985500.i 1.40336 1.40336i
\(839\) 63000.0i 0.0894987i −0.998998 0.0447493i \(-0.985751\pi\)
0.998998 0.0447493i \(-0.0142489\pi\)
\(840\) 0 0
\(841\) 504781. 0.713692
\(842\) −556160. 556160.i −0.784469 0.784469i
\(843\) 0 0
\(844\) 2.64493e6i 3.71303i
\(845\) 0 0
\(846\) 0 0
\(847\) 185640. + 185640.i 0.258765 + 0.258765i
\(848\) 179780. 179780.i 0.250006 0.250006i
\(849\) 0 0
\(850\) 0 0
\(851\) −513400. −0.708919
\(852\) 0 0
\(853\) 252365. 252365.i 0.346842 0.346842i −0.512090 0.858932i \(-0.671129\pi\)
0.858932 + 0.512090i \(0.171129\pi\)
\(854\) 1.52320e6i 2.08853i
\(855\) 0 0
\(856\) −2.31480e6 −3.15912
\(857\) 359195. + 359195.i 0.489067 + 0.489067i 0.908012 0.418945i \(-0.137600\pi\)
−0.418945 + 0.908012i \(0.637600\pi\)
\(858\) 0 0
\(859\) 225288.i 0.305318i 0.988279 + 0.152659i \(0.0487835\pi\)
−0.988279 + 0.152659i \(0.951216\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 757000. + 757000.i 1.01878 + 1.01878i
\(863\) 402200. 402200.i 0.540033 0.540033i −0.383505 0.923539i \(-0.625283\pi\)
0.923539 + 0.383505i \(0.125283\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.17215e6 1.56296
\(867\) 0 0
\(868\) 582080. 582080.i 0.772580 0.772580i
\(869\) 673200.i 0.891466i
\(870\) 0 0
\(871\) 139400. 0.183750
\(872\) 743580. + 743580.i 0.977901 + 0.977901i
\(873\) 0 0
\(874\) 244800.i 0.320471i
\(875\) 0 0
\(876\) 0 0
\(877\) −682675. 682675.i −0.887595 0.887595i 0.106697 0.994292i \(-0.465973\pi\)
−0.994292 + 0.106697i \(0.965973\pi\)
\(878\) −792540. + 792540.i −1.02809 + 1.02809i
\(879\) 0 0
\(880\) 0 0
\(881\) 1.22015e6 1.57203 0.786016 0.618206i \(-0.212140\pi\)
0.786016 + 0.618206i \(0.212140\pi\)
\(882\) 0 0
\(883\) −401320. + 401320.i −0.514718 + 0.514718i −0.915968 0.401250i \(-0.868576\pi\)
0.401250 + 0.915968i \(0.368576\pi\)
\(884\) 3.27590e6i 4.19205i
\(885\) 0 0
\(886\) −1.42420e6 −1.81428
\(887\) 522920. + 522920.i 0.664642 + 0.664642i 0.956471 0.291828i \(-0.0942636\pi\)
−0.291828 + 0.956471i \(0.594264\pi\)
\(888\) 0 0
\(889\) 1.11520e6i 1.41107i
\(890\) 0 0
\(891\) 0 0
\(892\) −1.12132e6 1.12132e6i −1.40929 1.40929i
\(893\) −23040.0 + 23040.0i −0.0288921 + 0.0288921i
\(894\) 0 0
\(895\) 0 0
\(896\) 1.35360e6 1.68607
\(897\) 0 0
\(898\) −1.83600e6 + 1.83600e6i −2.27677 + 2.27677i
\(899\) 192600.i 0.238307i
\(900\) 0 0
\(901\) 237350. 0.292375
\(902\) −475000. 475000.i −0.583822 0.583822i
\(903\) 0 0
\(904\) 2.95290e6i 3.61337i
\(905\) 0 0
\(906\) 0 0
\(907\) 1.09382e6 + 1.09382e6i 1.32963 + 1.32963i 0.905689 + 0.423942i \(0.139354\pi\)
0.423942 + 0.905689i \(0.360646\pi\)
\(908\) 705160. 705160.i 0.855295 0.855295i
\(909\) 0 0
\(910\) 0 0
\(911\) −321400. −0.387266 −0.193633 0.981074i \(-0.562027\pi\)
−0.193633 + 0.981074i \(0.562027\pi\)
\(912\) 0 0
\(913\) −68000.0 + 68000.0i −0.0815769 + 0.0815769i
\(914\) 2.78545e6i 3.33429i
\(915\) 0 0
\(916\) −871488. −1.03865
\(917\) 916000. + 916000.i 1.08932 + 1.08932i
\(918\) 0 0
\(919\) 1.28977e6i 1.52715i 0.645719 + 0.763575i \(0.276558\pi\)
−0.645719 + 0.763575i \(0.723442\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −986000. 986000.i −1.15989 1.15989i
\(923\) 697000. 697000.i 0.818143 0.818143i
\(924\) 0 0
\(925\) 0 0
\(926\) −1.01320e6 −1.18161
\(927\) 0 0
\(928\) 153000. 153000.i 0.177662 0.177662i
\(929\) 151200.i 0.175194i −0.996156 0.0875972i \(-0.972081\pi\)
0.996156 0.0875972i \(-0.0279188\pi\)
\(930\) 0 0
\(931\) −57528.0 −0.0663712
\(932\) 187850. + 187850.i 0.216262 + 0.216262i
\(933\) 0 0
\(934\) 1.22480e6i 1.40401i
\(935\) 0 0
\(936\) 0 0
\(937\) −401455. 401455.i −0.457254 0.457254i 0.440499 0.897753i \(-0.354802\pi\)
−0.897753 + 0.440499i \(0.854802\pi\)
\(938\) −136000. + 136000.i −0.154573 + 0.154573i
\(939\) 0 0
\(940\) 0 0
\(941\) 802400. 0.906174 0.453087 0.891466i \(-0.350323\pi\)
0.453087 + 0.891466i \(0.350323\pi\)
\(942\) 0 0
\(943\) −323000. + 323000.i −0.363228 + 0.363228i
\(944\) 2.24280e6i 2.51679i
\(945\) 0 0
\(946\) −1.22000e6 −1.36326
\(947\) 484160. + 484160.i 0.539870 + 0.539870i 0.923491 0.383621i \(-0.125323\pi\)
−0.383621 + 0.923491i \(0.625323\pi\)
\(948\) 0 0
\(949\) 170150.i 0.188929i
\(950\) 0 0
\(951\) 0 0
\(952\) −1.69200e6 1.69200e6i −1.86692 1.86692i
\(953\) −271765. + 271765.i −0.299232 + 0.299232i −0.840713 0.541481i \(-0.817864\pi\)
0.541481 + 0.840713i \(0.317864\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 2.93760e6 3.21423
\(957\) 0 0
\(958\) −72000.0 + 72000.0i −0.0784515 + 0.0784515i
\(959\) 634000.i 0.689369i
\(960\) 0 0
\(961\) −740337. −0.801646
\(962\) −1.54775e6 1.54775e6i −1.67244 1.67244i
\(963\) 0 0
\(964\) 1.11901e6i 1.20415i
\(965\) 0 0
\(966\) 0 0
\(967\) −2860.00 2860.00i −0.00305853 0.00305853i 0.705576 0.708634i \(-0.250688\pi\)
−0.708634 + 0.705576i \(0.750688\pi\)
\(968\) 417690. 417690.i 0.445762 0.445762i
\(969\) 0 0
\(970\) 0 0
\(971\) −814300. −0.863666 −0.431833 0.901954i \(-0.642133\pi\)
−0.431833 + 0.901954i \(0.642133\pi\)
\(972\) 0 0
\(973\) 1.11168e6 1.11168e6i 1.17423 1.17423i
\(974\) 2.26700e6i 2.38965i
\(975\) 0 0
\(976\) 1.35565e6 1.42314
\(977\) −447685. 447685.i −0.469011 0.469011i 0.432583 0.901594i \(-0.357602\pi\)
−0.901594 + 0.432583i \(0.857602\pi\)
\(978\) 0 0
\(979\) 225000.i 0.234756i
\(980\) 0 0
\(981\) 0 0
\(982\) −1.77050e6 1.77050e6i −1.83600 1.83600i
\(983\) −1.28038e6 + 1.28038e6i −1.32505 + 1.32505i −0.415418 + 0.909631i \(0.636365\pi\)
−0.909631 + 0.415418i \(0.863635\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1.05750e6 1.08774
\(987\) 0 0
\(988\) 501840. 501840.i 0.514104 0.514104i
\(989\) 829600.i 0.848157i
\(990\) 0 0
\(991\) −522988. −0.532530 −0.266265 0.963900i \(-0.585790\pi\)
−0.266265 + 0.963900i \(0.585790\pi\)
\(992\) −145520. 145520.i −0.147877 0.147877i
\(993\) 0 0
\(994\) 1.36000e6i 1.37647i
\(995\) 0 0
\(996\) 0 0
\(997\) −77395.0 77395.0i −0.0778615 0.0778615i 0.667104 0.744965i \(-0.267534\pi\)
−0.744965 + 0.667104i \(0.767534\pi\)
\(998\) −1.13724e6 + 1.13724e6i −1.14180 + 1.14180i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.5.g.c.82.1 2
3.2 odd 2 225.5.g.a.82.1 2
5.2 odd 4 45.5.g.a.28.1 2
5.3 odd 4 inner 225.5.g.c.118.1 2
5.4 even 2 45.5.g.a.37.1 yes 2
15.2 even 4 45.5.g.c.28.1 yes 2
15.8 even 4 225.5.g.a.118.1 2
15.14 odd 2 45.5.g.c.37.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.5.g.a.28.1 2 5.2 odd 4
45.5.g.a.37.1 yes 2 5.4 even 2
45.5.g.c.28.1 yes 2 15.2 even 4
45.5.g.c.37.1 yes 2 15.14 odd 2
225.5.g.a.82.1 2 3.2 odd 2
225.5.g.a.118.1 2 15.8 even 4
225.5.g.c.82.1 2 1.1 even 1 trivial
225.5.g.c.118.1 2 5.3 odd 4 inner